JP3363124B2 - Manufacturing method of positive electrode current collector - Google Patents

Manufacturing method of positive electrode current collector

Info

Publication number
JP3363124B2
JP3363124B2 JP2000087940A JP2000087940A JP3363124B2 JP 3363124 B2 JP3363124 B2 JP 3363124B2 JP 2000087940 A JP2000087940 A JP 2000087940A JP 2000087940 A JP2000087940 A JP 2000087940A JP 3363124 B2 JP3363124 B2 JP 3363124B2
Authority
JP
Japan
Prior art keywords
current collector
base material
positive electrode
needle
basis weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000087940A
Other languages
Japanese (ja)
Other versions
JP2001273924A (en
Inventor
敏之 美馬
道孝 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Original Assignee
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Tokyo Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP2000087940A priority Critical patent/JP3363124B2/en
Publication of JP2001273924A publication Critical patent/JP2001273924A/en
Application granted granted Critical
Publication of JP3363124B2 publication Critical patent/JP3363124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、例えばナトリウ
ム−硫黄電池等に好適に用いられる正極集電体の製造方
法に関し、詳しくは高抵抗層の構造を精密に制御するこ
とができる正極集電体の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a positive electrode current collector suitable for use in, for example, a sodium-sulfur battery, and more specifically, a positive electrode current collector capable of precisely controlling the structure of a high resistance layer. The present invention relates to a manufacturing method of.

【0002】[0002]

【従来の技術】 ナトリウム−硫黄電池(以下、「NA
S電池」という。)は、300〜350℃の高温で作動
させる密閉型高温二次電池であって、負極活物質である
ナトリウムと正極活物質である硫黄とを、ナトリウムイ
オンを選択的に透過させる機能を有する固体電解質(例
えばβ−アルミナ、β"−アルミナ等)により隔離収納
した構造を有するものである。
2. Description of the Related Art Sodium-sulfur batteries (hereinafter referred to as "NA
S battery ". ) Is a sealed high-temperature secondary battery that operates at a high temperature of 300 to 350 ° C., and is a solid having a function of selectively permeating sodium ions between sodium as a negative electrode active material and sulfur as a positive electrode active material. It has a structure in which it is separated and housed by an electrolyte (for example, β-alumina, β ″ -alumina, etc.).

【0003】 例えば図1に示すNAS電池1は、中空
円筒状の正極容器9の内部に有底円筒状の固体電解質管
13を配置し、固体電解質管13内部に負極活物質のナ
トリウム2を、外部には正極活物質の硫黄4を隔離収納
したものである。固体電解質管13は、α−アルミナ等
からなる絶縁体リング3、円筒状金具5を介して正極容
器9に接合され、正極側と負極側とが電気的に絶縁され
るように構成されている。
For example, in a NAS battery 1 shown in FIG. 1, a bottomed cylindrical solid electrolyte tube 13 is arranged inside a hollow cylindrical positive electrode container 9, and sodium 2 as a negative electrode active material is placed inside the solid electrolyte tube 13. Sulfur 4, which is a positive electrode active material, is separately stored outside. The solid electrolyte tube 13 is joined to the positive electrode container 9 via the insulator ring 3 made of α-alumina or the like and the cylindrical metal member 5 so that the positive electrode side and the negative electrode side are electrically insulated. .

【0004】 NAS電池1は、放電時には負極活物質
のナトリウム2が外部回路に電子を放出してナトリウム
イオンとなり、固体電解質管13内を透過して正極側に
移動し、正極活物質の硫黄4及び外部回路から供給され
る電子と反応して多硫化ソーダを生成することによっ
て、2V程度の電圧を発生させる。
In the NAS battery 1, when discharging, sodium 2 of the negative electrode active material emits electrons to the external circuit to become sodium ions, permeates through the solid electrolyte tube 13 and moves to the positive electrode side, and sulfur of the positive electrode active material 4 And a voltage of about 2V is generated by reacting with electrons supplied from an external circuit to generate sodium polysulfide.

【0005】 一方、充電時には外部回路から電圧を印
加することによって、多硫化ソーダが外部回路に電子を
放出して硫黄とナトリウムイオンを生成し、固体電解質
管13内を透過して負極側に移動したナトリウムイオン
を、外部回路から供給する電子と反応させて電気的に中
性化することにより、電気エネルギーを化学エネルギー
に変換する。
On the other hand, at the time of charging, by applying a voltage from an external circuit, sodium polysulfide releases electrons to the external circuit to generate sulfur and sodium ions, which permeate the solid electrolyte tube 13 and move to the negative electrode side. The sodium ion is reacted with an electron supplied from an external circuit to be electrically neutralized, thereby converting electric energy into chemical energy.

【0006】 NAS電池の正極活物質である硫黄4は
絶縁物であるため、正極と負極との間の導通を確保し、
電池の内部抵抗を低減することを目的として、正極集電
体11を配設することが一般的である。正極集電体11
は、導電性を有する炭素繊維又はグラファイト繊維から
なるフェルト材で構成された部材であり、正極活物質の
硫黄4を含浸させ、正極容器9内周面と固体電解質管1
3外周面の双方に当接するように配置することにより、
正極と負極との間の導通が確保され、電池の内部抵抗も
低減される。
Sulfur 4, which is the positive electrode active material of the NAS battery, is an insulator, and therefore ensures continuity between the positive electrode and the negative electrode.
The positive electrode current collector 11 is generally provided for the purpose of reducing the internal resistance of the battery. Positive electrode current collector 11
Is a member composed of a felt material made of conductive carbon fiber or graphite fiber, impregnated with sulfur 4 as a positive electrode active material, and the inner peripheral surface of the positive electrode container 9 and the solid electrolyte tube 1
3 By arranging so as to contact both outer peripheral surfaces,
The conduction between the positive electrode and the negative electrode is secured, and the internal resistance of the battery is also reduced.

【0007】 更に、NAS電池1は、正極集電体11
の固体電解質管13と当接する表面側に、絶縁性物質で
あるガラス繊維をニードルパンチにより打ち込んで形成
された高抵抗層を有している。高抵抗層は、固体電解質
管13と正極集電体11との接触面近傍の導電性を低下
させるため、充電時に固体電解質管13と正極集電体1
1との接触面近傍のみで電子の授受反応が行われること
を回避できる。従って、当該部分に絶縁物である硫黄が
析出し、充電反応の進行とともに電池の内部抵抗が上昇
することに起因する充電回復性の低下(多硫化ソーダが
残存しているにも拘わらず充電反応が進行せず、充電が
完結しない現象)を防止することが可能である。
Further, the NAS battery 1 includes the positive electrode current collector 11
On the surface side contacting with the solid electrolyte tube 13, there is provided a high resistance layer formed by driving glass fiber, which is an insulating material, with a needle punch. Since the high resistance layer reduces the conductivity in the vicinity of the contact surface between the solid electrolyte tube 13 and the positive electrode current collector 11, the solid electrolyte tube 13 and the positive electrode current collector 1 are charged during charging.
It is possible to avoid the electron transfer reaction only in the vicinity of the contact surface with 1. Therefore, the sulfur, which is an insulator, is deposited in the relevant part, and the charge recovery is lowered due to the increase of the internal resistance of the battery as the charging reaction progresses. It is possible to prevent a phenomenon in which charging does not complete and charging is not completed.

【0008】[0008]

【発明が解決しようとする課題】 ところが、高抵抗層
の形成方法によっては、当該正極集電体を配設したNA
S電池の内部抵抗が上昇し、放電時におけるナトリウム
イオンの正極側への移動が妨げられる場合が生じてい
た。これは、高抵抗層の構造が精密に制御されていない
こと、具体的には基材表面の高抵抗層による被覆率(以
下、「表面被覆率」という。)が所定の範囲内に制御さ
れていないことに起因するものであることが判明してい
る。
However, depending on the method of forming the high resistance layer, the NA having the positive electrode current collector disposed therein may be used.
There has been a case where the internal resistance of the S battery rises and the movement of sodium ions to the positive electrode side during discharge is hindered. This is because the structure of the high resistance layer is not precisely controlled, specifically, the coverage of the high resistance layer on the surface of the base material (hereinafter referred to as "surface coverage") is controlled within a predetermined range. It has been found to be due to not having.

【0009】 また、高抵抗層の形成方法によっては、
ニードルパンチ条件が過酷となることに起因して基材が
損傷するおそれもある。このような集電体は、電子伝導
性が低下し、電池とした場合に内部抵抗の上昇を招く点
において好ましくない。また、集電体は、ニードルパン
チ後に所定の長さ、幅に裁断し、金型を用いて円弧状に
湾曲させ、硫黄を含浸することにより電池部品とするた
め、これらの工程で集電体に亀裂が発生する等、取扱い
が著しく困難となる点においても問題である。
Further, depending on the method of forming the high resistance layer,
The base material may be damaged due to severe needle punching conditions. Such a current collector is not preferable in that the electron conductivity is lowered and the internal resistance is increased in the case of a battery. In addition, the current collector is cut into a predetermined length and width after needle punching, curved in an arc using a mold, and impregnated with sulfur to form a battery component. It is also a problem in that it is extremely difficult to handle, such as cracks in the surface.

【0010】 本発明は、このような従来技術の問題点
に鑑みてなされたものであって、その目的とするところ
は、表面被覆率などの高抵抗層の構造を精密に制御する
ことができ、かつ、基材の損傷を防止できる正極集電体
の製造方法を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to precisely control the structure of the high resistance layer such as surface coverage. The present invention also provides a method of manufacturing a positive electrode current collector that can prevent damage to a base material.

【0011】[0011]

【課題を解決するための手段】 本発明者らが鋭意検討
した結果、正極集電体の目付量を所定の範囲に制御する
ことにより、表面被覆率などの高抵抗層の構造を精密に
制御可能であり、また、基材の損傷を防止できることを
見出して本発明を完成した。
Means for Solving the Problems As a result of intensive investigations by the present inventors, the structure of the high resistance layer such as surface coverage is precisely controlled by controlling the basis weight of the positive electrode current collector within a predetermined range. The present invention has been completed with the finding that this is possible and that damage to the substrate can be prevented.

【0012】 即ち、本発明によれば、炭素繊維又はグ
ラファイト繊維からなるフェルト状の基材を用意し、当
該基材の一方の表面に、ガラス繊維からなる布状体若し
くは綿状体を積重し、当該布状体若しくは綿状体をニー
ドルパンチにより基材に打ち込むことにより高抵抗層を
形成する正極集電体の製造方法であって、正極集電体の
目付量が、前記基材の目付量と前記布状体若しくは綿状
体の目付量の和の80〜95%となるように、ニードル
パンチを行うことを特徴とする正極集電体の製造方法が
提供される。
That is, according to the present invention, a felt-like base material made of carbon fibers or graphite fibers is prepared, and a cloth-like body or a cotton-like body made of glass fibers is stacked on one surface of the base material. Then, the method for producing a positive electrode current collector in which a high resistance layer is formed by driving the cloth-like material or cotton-like material into a base material with a needle punch, wherein the basis weight of the positive electrode current collector is There is provided a method for producing a positive electrode current collector, which comprises performing needle punching so as to be 80 to 95% of the sum of the basis weight and the basis weight of the cloth-like or cotton-like body.

【0013】 本発明の製造方法においては、ニードル
パンチの際に、金属針のフック部分を、基材厚みの70
〜100%の深さまで打ち込むことが好ましい。
In the manufacturing method of the present invention, when needle punching, the hook portion of the metal needle is set to 70% of the base material thickness.
It is preferable to drive to a depth of -100%.

【0014】[0014]

【発明の実施の形態】 本発明の製造方法は、正極集電
体の目付量を所定の範囲に制御することを特徴とする製
造方法である。このような製造方法によれば、表面被覆
率などの高抵抗層の構造を精密に制御することができ、
かつ、基材の損傷を防止することが可能となる。以下、
本発明の正極集電体について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The manufacturing method of the present invention is characterized by controlling the basis weight of the positive electrode current collector within a predetermined range. According to such a manufacturing method, the structure of the high resistance layer such as the surface coverage can be precisely controlled,
In addition, it is possible to prevent the base material from being damaged. Less than,
The positive electrode current collector of the present invention will be described in detail.

【0015】 本発明の製造方法に係る正極集電体(以
下、単に「集電体」という。)は、絶縁性に優れること
に加えて、多硫化ソーダとの親和性が高いガラス繊維を
高抵抗層の材料とし、当該ガラス繊維を、高い導電性を
有し、正極活物質の硫黄に対する耐食性に優れる炭素繊
維又はグラファイト繊維をフェルト状とした基材の一方
の表面側からニードルパンチにより打ち込んで高抵抗層
を形成したものである。
The positive electrode current collector (hereinafter, simply referred to as “current collector”) according to the production method of the present invention is excellent in insulating property and, in addition, has high glass fiber affinity for sodium polysulfide. As a material of the resistance layer, the glass fiber, having high conductivity, carbon fiber or graphite fiber having excellent corrosion resistance to sulfur of the positive electrode active material is driven by needle punching from one surface side of the felt-like substrate A high resistance layer is formed.

【0016】 このように高抵抗層を形成した集電体
は、基材の一方の表面が高抵抗層で被覆され、当該部分
の電気抵抗が高いため、充電時に固体電解質管と集電体
との接触面近傍のみに絶縁物である硫黄が析出して絶縁
層が形成されることを防止できる。従って、充電反応の
進行とともに電池の内部抵抗が上昇することがなく、充
電回復性が高い点において好ましいものである。
In the current collector having the high resistance layer thus formed, one surface of the base material is covered with the high resistance layer, and the electric resistance of the portion is high, so that the solid electrolyte tube and the current collector are not charged during charging. It is possible to prevent the formation of an insulating layer by depositing sulfur as an insulator only in the vicinity of the contact surface. Therefore, it is preferable in that the internal resistance of the battery does not increase with the progress of the charging reaction and the charge recovery property is high.

【0017】 また、上記集電体は、ガラス繊維をニー
ドルパンチにより打ち込んで高抵抗層を形成しているた
め、ガラス繊維が基材の厚み方向に配向している。多硫
化ソーダに対する濡れ性に優れるガラス繊維が基材の厚
み方向に配向していると、当該ガラス繊維に沿って多硫
化ソーダが移動するため、集電体における多硫化ソーダ
の移動が促進される。従って、電池が大型化し集電体の
厚みが増加した場合でも、円滑な充電が可能となり、充
電回復率が高められるという効果がある。
Further, in the above current collector, glass fibers are punched with a needle punch to form a high resistance layer, so that the glass fibers are oriented in the thickness direction of the base material. When glass fibers having excellent wettability with respect to sodium polysulfide are oriented in the thickness direction of the base material, the sodium polysulfide moves along the glass fibers, so that the movement of the sodium polysulfide in the current collector is promoted. . Therefore, even when the battery becomes large and the thickness of the current collector increases, there is an effect that smooth charging is possible and the charge recovery rate is increased.

【0018】 上記の集電体は、表面被覆率を20〜8
5%としたものが好ましいことが判明している。表面被
覆率を20%以上とすることにより、固体電解質管と集
電体との接触面近傍の導電性を確実に低下させることが
でき、充電回復性を向上させることが可能である一方、
表面被覆率を85%以下とすることにより電池の内部抵
抗が一定値以下に抑制されるため、放電時におけるナト
リウムイオンの正極側への移動を円滑に行うことが可能
となるからである。
The above current collector has a surface coverage of 20 to 8
It has been found that 5% is preferable. By setting the surface coverage to 20% or more, the conductivity in the vicinity of the contact surface between the solid electrolyte tube and the current collector can be reliably reduced, and the charge recovery can be improved.
By setting the surface coverage to 85% or less, the internal resistance of the battery is suppressed to a certain value or less, so that sodium ions can be smoothly moved to the positive electrode side during discharging.

【0019】 ニードルパンチは、不織布のフェルト加
工等に用いられるニードルパンチ機を使用して行うこと
ができる。ニードルパンチ機は、先端部や長手方向の中
途にフックを有する金属針が多数突設された針ボード
を、加工対象物に対して鉛直方向に打ち込み、引き抜く
操作を繰り返すことが可能な装置である。また、ニード
ルパンチ機には、針ボードの打ち込みに同期して加工対
象物を水平方向に移動可能なベルトコンベアー等の移動
手段が併設されている。
Needle punching can be carried out using a needle punching machine used for felt processing of nonwoven fabrics. The needle punching machine is a device capable of repeatedly driving a needle board, in which a large number of metal needles having hooks at the tip or in the middle of the longitudinal direction thereof are protruded, in the vertical direction with respect to a workpiece and withdrawing the needle board. . Further, the needle punching machine is provided with a moving means such as a belt conveyer capable of horizontally moving the workpiece in synchronization with the driving of the needle board.

【0020】 このようなニードルパンチ機によれば、
ガラス繊維からなる布状体(例えば不織布等)や綿状体
を基材表面に積重し、ガラス繊維側から針ボードを打ち
込むと、金属針のフック部分に係合されたガラス繊維が
金属針と共に基材の厚み方向に打ち込まれる。更に、ベ
ルトコンベアー等で基材を水平方向へ移動させながら、
針ボードを打ち込むことにより、基材全体に均一な間隔
でガラス繊維が打ち込まれる。
According to such a needle punching machine,
When cloth-like materials (eg, non-woven fabrics) and cotton-like materials made of glass fibers are stacked on the surface of the base material and the needle board is driven from the glass fiber side, the glass fibers engaged with the hook portion of the metal needles become metal needles. At the same time, it is driven in the thickness direction of the base material. Furthermore, while moving the substrate horizontally with a belt conveyor,
By driving the needle board, glass fibers are driven into the entire base material at uniform intervals.

【0021】 上述のニードルパンチにおいて針ボード
を継続的に打ち込むと、基材表面のガラス繊維が基材内
に打ち込まれて徐々に減少し、基材内部と基材表面の双
方にガラス繊維からなる高抵抗層が形成される。更に打
ち込みを継続すると最終的には基材を構成する炭素繊維
等の一部が表面に露出するようになる。
When the needle board is continuously driven in the above-mentioned needle punch, the glass fibers on the surface of the base material are driven into the base material and gradually decrease, and the glass fibers are formed both inside the base material and on the surface of the base material. A high resistance layer is formed. When the driving is further continued, finally, a part of the carbon fiber or the like which constitutes the base material is exposed on the surface.

【0022】 従って、ニードルパンチの程度を適正に
制御すれば、これに伴って変化する表面被覆率などの高
抵抗層の構造を精密に制御することができるとともに、
過剰な打ち込みによる基材の損傷も防止することが可能
となる。しかしながら、ニードルパンチの程度は、針ボ
ードの針形状、針密度、針のフック位置、針の打込み数
(単位面積当たりの針打込み密度)、針の打ち込み深さ
等の様々なニードルパンチ条件の影響を受けるため、適
正に制御するのは容易ではない。
Therefore, if the degree of needle punching is properly controlled, the structure of the high resistance layer such as the surface coverage that changes with it can be precisely controlled, and
It is also possible to prevent damage to the base material due to excessive driving. However, the degree of needle punching depends on various needle punching conditions such as needle board needle shape, needle density, needle hook position, number of needles (needle driving density per unit area), and needle driving depth. Therefore, it is not easy to control properly.

【0023】 そこで、本発明においては、集電体の目
付量が所定の範囲となるようにニードルパンチを行うこ
ととした。このような方法によれば、任意のニードルパ
ンチ条件を設定し、当該条件において集電体が所定の目
付量に減少するまでニードルパンチを行うことにより、
ニードルパンチの程度が適正に制御されるため、複雑な
ニードルパンチ条件の設定を必要とせず、非常に簡便で
ある。
Therefore, in the present invention, needle punching is performed so that the basis weight of the current collector falls within a predetermined range. According to such a method, by setting an arbitrary needle punching condition and performing needle punching until the current collector is reduced to a predetermined basis weight under the condition,
Since the degree of needle punching is properly controlled, complicated needle punching conditions need not be set, which is very simple.

【0024】 目付量は、シート状材料(フェルト材、
布状体、綿状体など)の単位面積当たりの質量(g/m
2)を示す単位である。集電体の構成材料となるガラス
繊維からなる布状体等(以下、「布状体」という。)と
基材を同一幅、同一長さに切断して面積をS1とした場
合において、基材の目付量がW1、布状体等の目付量が
2であれば、これらを積重した全体の目付量はW1+W
2となる。
The basis weight is a sheet material (felt material,
Mass (g / m) per unit area of cloth, cotton, etc.
2 ) is a unit indicating. In the case where a cloth-like body made of glass fibers (hereinafter referred to as “cloth-like body”) which is a constituent material of the current collector and a base material are cut into the same width and the same length to have an area of S 1 , If the basis weight of the base material is W 1 and the basis weight of the cloth-like body is W 2 , the total basis weight of these stacked is W 1 + W
It becomes 2 .

【0025】 ニードルパンチを行った場合、基材の質
量はW1/S1、布状体の質量はW2/S1で変化しない
が、ガラス繊維が打ち込まれることにより、基材が押し
広げられるため、基材の面積はS1+αに増大する。従
って、形成された集電体全体の目付量は(W1+W2)×
{S1/(S1+α)}に減少することになる。この変化
量αは、ガラス繊維が基材内に打ち込まれた量、即ちニ
ードルパンチの程度に伴って増減するため、集電体の目
付量をニードルパンチの程度の指標とすることができ
る。集電体の目付量は、集電体の構成材料となる基材、
布状体の質量と、形成された集電体の面積から極めて簡
便に算出することが可能である。
When needle punching is performed, the mass of the base material does not change at W 1 / S 1 and the mass of the cloth-like body does not change at W 2 / S 1 , but the glass fiber is driven into the base material to spread it out. Therefore, the area of the base material increases to S 1 + α. Therefore, the basis weight of the formed current collector is (W 1 + W 2 ) ×
It will be reduced to {S 1 / (S 1 + α)}. This change amount α increases or decreases depending on the amount of glass fibers driven into the base material, that is, the degree of needle punching. Therefore, the basis weight of the current collector can be used as an index of the degree of needle punching. The basis weight of the current collector is the base material that constitutes the current collector,
It is possible to calculate extremely easily from the mass of the cloth-like body and the area of the formed current collector.

【0026】 本発明においては、集電体の目付量を、
ニードルパンチ前における基材の目付量と布状体若しく
は綿状体の目付量の和の95%以下となるようにニード
ルパンチを行う(以下、この比率を「目付量変化率」と
いう。)。目付量変化率を95%以下とすることによ
り、最低限のガラス繊維が基材に打ち込まれ、表面被覆
率を85%以下に抑制することができる。従って、当該
集電体を使用した電池は、放電時におけるナトリウムイ
オンの正極側への移動が妨げられる事態を防止でき、電
池の内部抵抗を低下させることが可能となる。
In the present invention, the basis weight of the current collector is
Needle punching is performed so as to be 95% or less of the sum of the basis weight of the base material and the basis weight of the cloth-like body or the cotton-like body before the needle punching (hereinafter, this ratio is referred to as "a change amount in basis weight"). By setting the basis weight change rate to 95% or less, the minimum amount of glass fiber is driven into the base material, and the surface coverage can be suppressed to 85% or less. Therefore, in the battery using the current collector, it is possible to prevent a situation in which the movement of sodium ions to the positive electrode side is hindered during discharging, and it is possible to reduce the internal resistance of the battery.

【0027】 また、本発明においては、目付量変化率
が80%以上となるようにニードルパンチを行うことが
必要である。目付量変化率を80%以上とすることによ
り、ガラス繊維の過剰な打ち込みによる基材の損傷を防
止することができる。従って、集電体の強度を確保する
ことができ、生産時の取扱いが容易となる。
Further, in the present invention, it is necessary to perform needle punching so that the change amount of weight is 80% or more. By setting the basis weight change rate to 80% or more, it is possible to prevent damage to the base material due to excessive driving of the glass fiber. Therefore, the strength of the current collector can be ensured, and handling during production becomes easy.

【0028】 更に、本発明においては、ニードルパン
チの際に、金属針のフック部分を、基材厚みの70〜1
00%の深さまで打ち込むことが好ましい。金属針のフ
ック部分を打ち込む深さ(以下「打ち込み深さ」とい
う。)によりガラス繊維が基材に打ち込まれる深さを制
御することができるため、内部到達率70〜100%の
集電体を形成することができるからである。内部到達率
を70%以上とすることにより、多硫化ソーダの移動が
更に促進され、充電回復性が向上する一方、内部到達率
を100%以下とすることにより、ガラス繊維が基材の
他方の表面まで突出し、正極容器と集電体との当接面に
おける接触抵抗が高くなることを防止できる。
Further, in the present invention, when needle punching, the hook portion of the metal needle is made to have a thickness of 70 to 1 of the base material.
It is preferable to drive to a depth of 00%. Since the depth at which the glass fiber is driven into the base material can be controlled by the depth at which the hook portion of the metal needle is driven (hereinafter referred to as "driving depth"), a collector having an internal arrival rate of 70 to 100% can be provided. This is because it can be formed. By setting the internal arrival rate to 70% or more, the movement of sodium polysulfide is further promoted and the charge recovery property is improved, while by setting the internal arrival rate to 100% or less, the glass fiber is not It is possible to prevent the contact resistance of the contact surface between the positive electrode container and the current collector from increasing due to the protrusion to the surface.

【0029】 なお、「内部到達率」は、集電体を有酸
素雰囲気下で熱処理することにより基材部分を焼失さ
せ、残留したガラス繊維の長さの実測値と、焼失前の基
材厚みとの比率から算出することが可能である。
The “internal reach ratio” is the measured value of the length of the remaining glass fiber after the heat treatment of the current collector in an oxygen-containing atmosphere to burn off the base material portion, and the thickness of the base material before burning. It is possible to calculate from the ratio.

【0030】 本発明の製造方法により製造された集電
体は、図1に示すような中空円筒状の正極容器9の内部
に有底円筒状の固体電解質管13が配置され、固体電解
質管13内部に負極活物質のナトリウム2、外部に正極
活物質の硫黄4が隔離収納された構造を有するNAS電
池1において、高抵抗層を有する面が固体電解質管13
の外周面に当接するように配置することにより、充電回
復性に優れ、内部抵抗が低いNAS電池を構成すること
が可能となる。
In the current collector manufactured by the manufacturing method of the present invention, a solid electrolyte tube 13 having a cylindrical shape with a bottom is disposed inside a positive electrode container 9 having a hollow cylindrical shape as shown in FIG. In the NAS battery 1 having a structure in which sodium 2 as a negative electrode active material is contained inside and sulfur 4 as a positive electrode active material is separately housed outside, a surface having a high resistance layer is a solid electrolyte tube 13
By arranging the NAS battery so as to be in contact with the outer peripheral surface thereof, it is possible to configure a NAS battery having excellent charge recovery and low internal resistance.

【0031】[0031]

【実施例】 以下、本発明の正極集電体及びNAS電池
を、実施例を用いて更に詳細に説明する。但し、本発明
はこれらの実施例に限定されるものではない。
EXAMPLES Hereinafter, the positive electrode current collector and the NAS battery of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

【0032】 実施例においては、以下の方法により集
電体を製造した。基材としては、直径数μm〜10数μ
mの炭素繊維からなり、幅50cm、長さ300cm、
厚さ15mm、目付量1700g/m2のフェルト材を
使用した。基材の厚さは、厚板直径30mm、負荷加重
200gのダイヤル式シックネスゲージを用い、基材の
幅方向、長手方向の数点について測定した厚さの平均値
を使用した。
In the examples, a current collector was manufactured by the following method. As a base material, a diameter of several μm to several dozen μ
Made of m carbon fiber, width 50 cm, length 300 cm,
A felt material having a thickness of 15 mm and a basis weight of 1700 g / m 2 was used. As the thickness of the base material, an average value of thicknesses measured at several points in the width direction and the longitudinal direction of the base material was used by using a dial type thickness gauge having a thick plate diameter of 30 mm and a load weight of 200 g.

【0033】 高抵抗層の材料としては、直径10μm
のガラス繊維からなり、目付量230g/m2の不織布
を使用した。幅と長さについては、基材と同一の幅及び
長さに切断した。高抵抗層の形成は、ニードルパンチ機
を使用し、前記の不織布を基材に積重し、不織布側から
ニードルパンチすることにより行った。
The material for the high resistance layer has a diameter of 10 μm.
A non-woven fabric made of glass fiber of No. 2 having a basis weight of 230 g / m 2 was used. Regarding the width and length, it was cut into the same width and length as the substrate. The high resistance layer was formed by using a needle punching machine, stacking the above-mentioned non-woven fabric on a substrate, and performing needle punching from the non-woven fabric side.

【0034】 ニードルパンチの際には、金属針フック
部分の打ち込み深さを制御することにより、内部到達率
が異なる集電体を製造した。この際、針ボードの針形
状、針密度、針の打込み数(単位面積当たりの針打込み
密度)等のニードルパンチ条件については同一の条件と
し、ニードルパンチの回数のみによって集電体の目付量
変化率を制御した。なお、打ち込み深さは、基材厚みに
対する比率(%)で表記した。
During needle punching, current collectors having different internal arrival rates were manufactured by controlling the driving depth of the metal needle hook portion. At this time, the needle punch conditions such as the needle board needle shape, needle density, and number of needles (needle driving density per unit area) are the same, and the basis weight of the current collector changes only by the number of needle punches. Controlled rate. In addition, the driving depth was expressed as a ratio (%) to the thickness of the base material.

【0035】 評価は、上記のように製造した集電体の
目付量変化率、表面被覆率、内部到達率、破断荷重、抵
抗比率及び当該集電体を組み込んだNAS電池の内部抵
抗及び充電回復率を基準として行った。以下、これらの
測定方法を示す。なお、抵抗比率はニードルパンチによ
る基材の損傷程度を示すための指標として評価したもの
である。
The evaluation was performed by changing the basis weight of the current collector manufactured as described above, the surface coverage, the internal arrival rate, the breaking load, the resistance ratio, and the internal resistance and charge recovery of the NAS battery incorporating the current collector. The rate was used as a standard. Hereinafter, these measuring methods will be described. The resistance ratio is evaluated as an index for indicating the degree of damage to the substrate due to the needle punch.

【0036】目付量変化率 基材、ガラス繊維からなる不織布の質量をその面積で除
することにより基材の目付量Ws1、不織布の目付量量W
s2を算出した。集電体の目付量量Ws3については正確を
期するため20cm角に切断した試料を作製し、当該試
料の質量を面積で除することにより算出した。基材の目
付量Ws1、不織布の目付量量Ws2、集電体の目付量量W
s3から下記式(1)により目付量変化率を算出した。 目付量変化率[%]=100×Ws3/(Ws1+Ws2) …(1)
The basis weight change rate: The basis weight Ws 1 of the base material and the basis weight W of the non-woven fabric are calculated by dividing the mass of the base material and the non-woven fabric made of glass fiber by its area.
s 2 was calculated. The weight amount Ws 3 of the current collector was calculated by making a 20 cm square sample for accuracy and dividing the mass of the sample by the area. Amount of base material Ws 1 , an amount of non-woven fabric Ws 2 , an amount of collector W W
From s 3, the change amount of basis weight was calculated by the following formula (1). Change rate of basis weight [%] = 100 × Ws 3 / (Ws 1 + Ws 2 ) (1)

【0037】表面被覆率:まず、ニードルパンチで基
材にガラス繊維を打ち込んだ集電体(試料A)と、これ
と同一のパンチ条件でニードルパンチのみ行った基材
(試料B)を縦350mm×横100mmの大きさに切
り出した。次いで、各試料を表裏両面から縦400mm
×横200mmの平板状電極で厚さ13mmまで圧縮し
た状態で4端子法により抵抗値を測定し、試料Aの抵抗
値Raと試料Bの抵抗値Rbから、下記式(2)により表
面被覆率を計算した。 表面被覆率[%]=100×(1−Rb/Ra) …(2)
Surface coverage: First, a current collector (sample A) in which glass fiber was punched into the base material with a needle punch, and a base material (sample B) in which only needle punching was performed under the same punching conditions, were 350 mm in length. It was cut into a size of 100 mm in width. Next, each sample is 400 mm in length from the front and back sides.
The resistance value was measured by the four-terminal method in a state of being compressed to a thickness of 13 mm with a flat plate electrode having a width of 200 mm, and the surface coverage was calculated from the resistance value Ra of sample A and the resistance value Rb of sample B by the following formula (2). Was calculated. Surface coverage [%] = 100 × (1−Rb / Ra) (2)

【0038】内部到達率:まず、ニードルパンチで基
材にガラス繊維を打ち込んだ集電体を縦350mm×横
100mmの大きさに切り出し、試料を作製した。当該
試料を有酸素雰囲気下、1000℃、2時間の条件で熱
処理することにより基材部分を焼失させ、残留したガラ
ス繊維の長さの実測値Lrと熱処理前の基材厚みLiか
ら、下記式(3)により内部到達率を計算した。 内部到達率[%]=100×Lr/Li …(3)
Internal arrival rate: First, a current collector having glass fibers impregnated into a base material with a needle punch was cut into a size of 350 mm length × 100 mm width to prepare a sample. By subjecting the sample to heat treatment under the conditions of an oxygen atmosphere at 1000 ° C. for 2 hours to burn off the base material portion, from the measured value Lr of the length of the remaining glass fiber and the base material thickness Li before the heat treatment, The internal arrival rate was calculated according to (3). Internal arrival rate [%] = 100 × Lr / Li (3)

【0039】破断荷重:集電体を幅5cm、長さ20
cmの大きさに切り出して試料を作製した。この試料の
長手方向の端部から5cmの位置を把持した状態で、試
料を長手方向に引っ張り完全に破断する際の荷重を測定
した。破断荷重が1.5Kg以上の場合は◎、1.5K
g未満の場合は×として評価した。
Breaking load: Current collector 5 cm wide, 20 length
A sample was prepared by cutting into a size of cm. The load was measured when the sample was pulled in the longitudinal direction and completely broken while the sample was held at a position 5 cm from the end in the longitudinal direction. ◎, 1.5K when breaking load is more than 1.5Kg
When it was less than g, it was evaluated as x.

【0040】抵抗比率 ニードルパンチ前の基材と、不織布を積重せず各集電体
の製造と同じニードルパンチ条件でニードルパンチを行
った基材を、各々縦350mm×横100mmの大きさ
に切り出して、試料F、試料Nとした。表面被覆率の測
定に準じて、試料Fの抵抗値Rfと、試料Nの抵抗値Rn
を測定し、当該抵抗値から下記式(4)により抵抗比率
を計算した。抵抗比率が120%未満の場合は◎、12
0%以上の場合は×として評価した。 抵抗比率[%]=100×Rn/Rf …(4)
Resistivity Ratio The base material before needle punching and the base material that was needle-punched under the same needle punching conditions as the production of each current collector without stacking non-woven fabrics were respectively measured to have a size of 350 mm length × 100 mm width. It was cut out to obtain Sample F and Sample N. According to the measurement of the surface coverage, the resistance value Rf of the sample F and the resistance value Rn of the sample N
Was measured, and the resistance ratio was calculated from the resistance value by the following formula (4). ◎, 12 when the resistance ratio is less than 120%
When 0% or more, it was evaluated as x. Resistance ratio [%] = 100 × Rn / Rf (4)

【0041】 NAS電池の内部抵抗及び充電回復率に
ついては、図1に示す構造のNAS電池1に各実施例の
集電体を組み込み、以下の方法で測定した。正極容器9
は外径92mmのものを、固体電解質管13は全長45
0mm、外径60mm、肉厚2.5mmのものを、集電
体11は厚さ14mm、長さ350mmのものを使用し
た。
The internal resistance and the charge recovery rate of the NAS battery were measured by the following method by incorporating the current collector of each example into the NAS battery 1 having the structure shown in FIG. Positive electrode container 9
Has an outer diameter of 92 mm, and the solid electrolyte tube 13 has a total length of 45.
The current collector 11 had a thickness of 0 mm, an outer diameter of 60 mm, and a wall thickness of 2.5 mm, and the current collector 11 had a thickness of 14 mm and a length of 350 mm.

【0042】内部抵抗:電池の正極及び負極に電流、
電圧端子を付けた後、320℃の高温槽に入れ、定格電
流による充放電を実施した。放電、充電の各状態におい
て充放電途中の電池電圧と通電電流から抵抗値を換算
し、放電全域、充電全域にわたる平均抵抗を計算し、平
均放電抵抗と平均充電抵抗を求めた。これらの平均放電
抵抗、平均充電抵抗の相加平均から平均抵抗値を算出し
た。平均抵抗値が3.5mΩ未満の場合は◎、3.5m
Ω以上の場合は×として評価した。
Internal resistance: current to the positive and negative electrodes of the battery,
After attaching the voltage terminal, the battery was placed in a high temperature bath at 320 ° C. and charged and discharged at a rated current. In each state of discharging and charging, the resistance value was converted from the battery voltage and the energizing current during charging / discharging, the average resistance over the entire discharge area and the entire charge area was calculated, and the average discharge resistance and the average charge resistance were obtained. The average resistance value was calculated from the arithmetic average of these average discharge resistance and average charge resistance. ◎, 3.5m when the average resistance value is less than 3.5mΩ
When it was Ω or more, it was evaluated as ×.

【0043】充電回復率:電池の充電時の終了条件を
一定電圧とした場合の未充電容量Cr(Ah)と電池の
設計容量Cf(Ah)とから、下記式(5)により充電
回復率を計算した。電池の定格充電電流での値を充電回
復率1、定格の1/4の充電電流での値を充電回復率2
とし、充電回復率1が89%以上で、かつ、充電回復率
2が95%以上の場合は◎、充電回復率1が89%未
満、或いは充電回復率2が95%未満の場合は×として
評価した。 充電回復率[%]=100×(1−Cr/Cf) …(5)
Charge recovery rate: From the uncharged capacity Cr (Ah) and the designed capacity Cf (Ah) of the battery when the termination condition at the time of charging the battery is a constant voltage, the charge recovery rate is calculated by the following equation (5). I calculated. The value at the rated charging current of the battery is the charge recovery rate of 1, and the value at the charging current of 1/4 of the rating is the charge recovery rate of 2.
When the charge recovery rate 1 is 89% or more and the charge recovery rate 2 is 95% or more, it is ◎, and when the charge recovery rate 1 is less than 89% or the charge recovery rate 2 is less than 95%, it is x. evaluated. Charge recovery rate [%] = 100 × (1-Cr / Cf) (5)

【0044】[0044]

【表1】 [Table 1]

【0045】(結果)表1に示すように、目付量変化率
が80%未満の場合(比較例1〜4)には、抵抗比率は
120%を超え、電池の内部抵抗が高くなることが予想
される。また、破断荷重が1.5Kg未満に低下し、そ
の後の製造工程での取扱が著しく困難となった。一方、
目付量変化率が95%超の場合(比較例5)には、集電
体の表面被覆率が85%を超えてしまい、電池の内部抵
抗が高くなった。
(Results) As shown in Table 1, when the basis weight change rate is less than 80% (Comparative Examples 1 to 4), the resistance ratio exceeds 120% and the internal resistance of the battery increases. is expected. Further, the breaking load was reduced to less than 1.5 kg, and handling in the subsequent manufacturing process became extremely difficult. on the other hand,
When the basis weight change rate was more than 95% (Comparative Example 5), the surface coverage of the current collector exceeded 85%, and the internal resistance of the battery was high.

【0046】 また、目付量変化率が80〜95%の範
囲内にあっても、内部到達率を70%未満とした場合
(実施例5,9,10,15)には、電池の充電回復率
が低下し、内部到達率が低いことに起因して表面被覆率
が上昇した場合(実施例9,10,15)には電池の内
部抵抗も高くなった。一方、内部到達率を100%超と
した場合(実施例6,14)には、抵抗比率が120%
にまで達し、電池の内部抵抗が高くなることが予想され
る。また、破断荷重が1.5Kg未満に低下し、その後
の製造工程での取扱が著しく困難となった。
Even if the change amount of the basis weight is in the range of 80 to 95%, if the internal arrival rate is less than 70% (Examples 5, 9, 10, and 15), the battery charge recovery is performed. The internal resistance of the battery was also high when the surface coverage was increased due to the decrease in the rate and the low internal arrival rate (Examples 9, 10, and 15). On the other hand, when the internal arrival rate is more than 100% (Examples 6 and 14), the resistance ratio is 120%.
The internal resistance of the battery is expected to increase. Further, the breaking load was reduced to less than 1.5 kg, and handling in the subsequent manufacturing process became extremely difficult.

【0047】[0047]

【発明の効果】 以上説明した通り、本発明の正極集電
体の製造方法は、表面被覆率などの高抵抗層の構造を精
密に制御することができ、かつ、基材の損傷を防止する
ことが可能となる。従って、本発明の製造方法は、内部
抵抗が低く、充電回復性に優れたNAS電池の提供に資
することができる。
As described above, according to the method for manufacturing a positive electrode current collector of the present invention, the structure of the high resistance layer such as the surface coverage can be precisely controlled, and damage to the base material can be prevented. It becomes possible. Therefore, the manufacturing method of the present invention can contribute to the provision of a NAS battery having low internal resistance and excellent charge recovery.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ナトリウム−硫黄電池の一般的態様を示す概
略断面図である。
FIG. 1 is a schematic cross-sectional view showing a general embodiment of a sodium-sulfur battery.

【符号の説明】[Explanation of symbols]

1…NAS電池、2…ナトリウム、3…絶縁体リング、
4…硫黄、5…円筒状金具、7…陰極金具、9…正極容
器、10…くびれ部、11…正極集電体、13…固体電
解質管。
1 ... NAS battery, 2 ... Sodium, 3 ... Insulator ring,
4 ... Sulfur, 5 ... Cylindrical metal fitting, 7 ... Cathode metal fitting, 9 ... Positive electrode container, 10 ... Constriction part, 11 ... Positive electrode collector, 13 ... Solid electrolyte tube.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開2001−266934(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/39 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 2001-266934 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/39

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素繊維又はグラファイト繊維からなる
フェルト状の基材を用意し、当該基材の一方の表面に、
ガラス繊維からなる布状体若しくは綿状体を積重し、当
該布状体若しくは綿状体をニードルパンチにより基材に
打ち込むことにより高抵抗層を形成する正極集電体の製
造方法であって、 正極集電体の目付量が、前記基材の目付量と前記布状体
若しくは綿状体の目付量の和の80〜95%となるよう
に、ニードルパンチを行うことを特徴とする正極集電体
の製造方法。
1. A felt-like base material made of carbon fiber or graphite fiber is prepared, and one surface of the base material is
A method for producing a positive electrode current collector, which comprises stacking cloth-like or cotton-like objects made of glass fibers and driving the cloth-like or cotton-like objects into a base material by needle punching to form a high resistance layer. The positive electrode collector is needle-punched so that the basis weight of the positive electrode current collector is 80 to 95% of the sum of the basis weight of the base material and the basis weight of the cloth-like or cotton-like body. Method of manufacturing current collector.
【請求項2】 ニードルパンチの際に、金属針のフック
部分を、基材厚みの70〜100%の深さまで打ち込む
請求項1に記載の正極集電体の製造方法。
2. The method for producing a positive electrode current collector according to claim 1, wherein the hook portion of the metal needle is driven to a depth of 70 to 100% of the thickness of the base material during the needle punching.
JP2000087940A 2000-03-28 2000-03-28 Manufacturing method of positive electrode current collector Expired - Lifetime JP3363124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000087940A JP3363124B2 (en) 2000-03-28 2000-03-28 Manufacturing method of positive electrode current collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000087940A JP3363124B2 (en) 2000-03-28 2000-03-28 Manufacturing method of positive electrode current collector

Publications (2)

Publication Number Publication Date
JP2001273924A JP2001273924A (en) 2001-10-05
JP3363124B2 true JP3363124B2 (en) 2003-01-08

Family

ID=18603885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000087940A Expired - Lifetime JP3363124B2 (en) 2000-03-28 2000-03-28 Manufacturing method of positive electrode current collector

Country Status (1)

Country Link
JP (1) JP3363124B2 (en)

Also Published As

Publication number Publication date
JP2001273924A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
JP4076331B2 (en) Positive electrode current collector and sodium-sulfur battery using the same
US10700377B2 (en) Solid electrolyte for a negative electrode of a secondary battery including first and second solid electrolytes with different affinities for metal deposition electronchemical cell and method of manufacturing
EP2975681B1 (en) Non-woven fabric current collector, method for manufacturing battery by using same, and manufacturing system therefor
JP6724861B2 (en) Electrode current collector and all-solid-state battery
JP2008226639A (en) All-solid battery
KR101209847B1 (en) Fibrous Current Collector Comprising Carbon Nano Fiber, Electrode Using the Same, and Method of Manufacturing the Same
JP6937908B2 (en) Sulfur-carbon complex, its manufacturing method, and lithium secondary battery containing it
JP2018190529A (en) Laminate battery
JP2018190531A (en) Laminate battery
KR20210156023A (en) All solid state battery having electrolyte layer comprising impregnated pattern
WO2020143413A1 (en) Electrode used for improving battery performance and comprising composite layer with bracket structure and protective layer, and battery
US20200321598A1 (en) Electrode for solid-state battery and manufacturing method therefor
JP2020107449A (en) Solid electrolyte laminated sheet and solid-state battery
JP3363124B2 (en) Manufacturing method of positive electrode current collector
KR20220008056A (en) All solid battery comprising an oxide based solid electrolyte for low temperature sintering process and manufacturing method thereof
JP3416607B2 (en) Positive electrode collector for sodium-sulfur battery and sodium-sulfur battery using the same
KR20200129728A (en) A method for manufacturing an all solid state lithium secondary battery
KR20200050560A (en) A anode for lithium secondary battery, the manufacturing method of the same and lithium secondary battery comprising the same
JP3416609B2 (en) Method for producing positive electrode current collector for sodium-sulfur battery
JP2019117731A (en) Electrode current collector and all- solid-state battery
KR20150055186A (en) Electrode and method of manufacturing the same and battery having the same
JPH10154527A (en) Positive electrode conductive material for sodium-sulfur battery
JP4077618B2 (en) Method for producing positive electrode current collector
KR102509542B1 (en) All-solid state composite electrode based on metal support and method of manufacturing thereof and all-solid state secondary battery including the same
US20220399546A1 (en) Protective film for lithium electrode and lithium electrode for lithium secondary battery comprising same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021008

R150 Certificate of patent or registration of utility model

Ref document number: 3363124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131025

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term