JP3362692B2 - Steel continuous casting method and mold - Google Patents

Steel continuous casting method and mold

Info

Publication number
JP3362692B2
JP3362692B2 JP06332099A JP6332099A JP3362692B2 JP 3362692 B2 JP3362692 B2 JP 3362692B2 JP 06332099 A JP06332099 A JP 06332099A JP 6332099 A JP6332099 A JP 6332099A JP 3362692 B2 JP3362692 B2 JP 3362692B2
Authority
JP
Japan
Prior art keywords
mold
cooling plate
molten steel
slab
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06332099A
Other languages
Japanese (ja)
Other versions
JP2000254762A (en
Inventor
英夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP06332099A priority Critical patent/JP3362692B2/en
Publication of JP2000254762A publication Critical patent/JP2000254762A/en
Application granted granted Critical
Publication of JP3362692B2 publication Critical patent/JP3362692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、中炭素鋼などを鋳
造する際に、鋳片表面に発生する縦割れなどの表面欠陥
を防止できる鋼の連続鋳造方法およびその連続鋳造方法
に用いる鋳型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for steel capable of preventing surface defects such as vertical cracks occurring on the surface of a slab when casting medium carbon steel or the like, and a mold used in the continuous casting method. .

【0002】[0002]

【従来の技術】縦割れなどの欠陥のない良好な表面品質
の鋳片を得るためには、鋳型内の溶鋼メニスカスおよび
その直下の凝固殻の厚みを鋳片の幅方向で均一にするこ
とが重要である。凝固殻の厚みに鋳片の幅方向で差があ
ると、鋳片表面に応力が働いたとき、縦割れが発生しや
すいからである。
2. Description of the Related Art In order to obtain a slab of good surface quality without defects such as vertical cracks, it is necessary to make the thickness of the molten steel meniscus in the mold and the solidified shell immediately below it uniform in the width direction of the slab. is important. This is because if there is a difference in the thickness of the solidified shells in the width direction of the slab, vertical cracking is likely to occur when stress acts on the surface of the slab.

【0003】凝固殻の厚みに鋳片の幅方向で差が生じる
原因は、鋳型の長辺側の冷却板内を反溶鋼側に向かう熱
流束が鋳片の幅方向で均一でなく、差があるからであ
る。そして、この熱流束の鋳片の幅方向での均一性に
は、鋳型内の溶鋼の流動が大きな影響を与えている。
The cause of the difference in the thickness of the solidified shell in the width direction of the slab is that the heat flux toward the anti-melting steel side in the cooling plate on the long side of the mold is not uniform in the width direction of the slab and the difference is caused. Because there is. The flow of molten steel in the mold has a great influence on the uniformity of the heat flux in the width direction of the slab.

【0004】図2は、鋳型内の溶鋼の流動を模式的に示
す図である。鋳片に残存する非金属介在物を少なくした
り、ブレークアウトなどの操業事故を防止するために、
一般に、吐出孔からの吐出流4が鋳型1の両側の短辺1
aに向いた2孔を有する浸漬ノズル2が用いられる。こ
のとき、鋳型1の短辺1aに衝突した吐出流4は、溶鋼
メニスカス5に向かう上昇流4aと鋳型の下部に向かう
下降流4bとに分かれる。上昇流4aは、短辺1a近傍
の溶鋼メニスカス5を盛り上げるとともに、浸漬ノズル
2近傍に向かう溶鋼の流れ4cを形成する。
FIG. 2 is a diagram schematically showing the flow of molten steel in the mold. In order to reduce the non-metallic inclusions remaining in the slab and prevent operational accidents such as breakout,
Generally, the discharge flow 4 from the discharge hole is the short side 1 on both sides of the mold 1.
The immersion nozzle 2 having two holes facing a is used. At this time, the discharge flow 4 colliding with the short side 1a of the mold 1 is divided into an upward flow 4a toward the molten steel meniscus 5 and a downward flow 4b toward the lower part of the mold. The ascending flow 4a raises the molten steel meniscus 5 near the short side 1a and forms a molten steel flow 4c toward the immersion nozzle 2.

【0005】このように鋳型内の溶鋼3には、溶鋼メニ
スカス5を盛り上げる作用があるが、溶鋼メニスカス5
が盛り上がった位置の溶融パウダー層6の厚みは薄くな
り、逆に溶鋼メニスカス5が下がった位置の溶融パウダ
層6の厚みは厚くなる。このように、溶融パウダ層6の
厚みが鋳片の幅方向で不均一になると、鋳型の冷却板と
凝固殻8の隙間に流れ込む溶融パウダの厚みが鋳片の幅
方向で不均一になる。一方、溶鋼3や凝固殻8の熱は、
溶融パウダを介して鋳型の冷却板に伝達されるが、その
熱の伝わり方は、溶融パウダの厚みなどによって変化す
る。したがって、溶融パウダの厚みが鋳片の幅方向で不
均一になると、冷却板内を反溶鋼側に向かう熱流束が鋳
片の幅方向で不均一になる。
As described above, the molten steel 3 in the mold has a function of raising the molten steel meniscus 5,
The thickness of the molten powder layer 6 at the position where the molten steel meniscus 5 rises becomes thin, and the thickness of the molten powder layer 6 at the position where the molten steel meniscus 5 descends becomes thicker. Thus, if the thickness of the molten powder layer 6 becomes uneven in the width direction of the slab, the thickness of the molten powder flowing into the gap between the cooling plate of the mold and the solidified shell 8 becomes uneven in the width direction of the slab. On the other hand, the heat of the molten steel 3 and the solidified shell 8 is
The heat is transferred to the cooling plate of the mold through the melt powder, but the way of transmitting the heat changes depending on the thickness of the melt powder and the like. Therefore, if the thickness of the molten powder becomes uneven in the width direction of the slab, the heat flux in the cooling plate toward the anti-molten steel side becomes uneven in the width direction of the slab.

【0006】冷却板内を反溶鋼側に向かう熱流束が鋳片
の幅方向で不均一になると、鋳型内の凝固殻の厚みが鋳
片の幅方向で不均一になる。このとき、さらに、鋳造速
度が速くなればなるほど、鋳型内の溶鋼メニスカスの盛
り上がりが大きくなり、溶融パウダ層の厚みが鋳片の幅
方向でより不均一になるので、結果的に、鋳型内の凝固
殻の厚みが鋳片の幅方向でさらに不均一になる。
When the heat flux toward the anti-molten steel side in the cooling plate becomes uneven in the width direction of the slab, the thickness of the solidified shell in the mold becomes uneven in the width direction of the slab. At this time, as the casting speed further increases, the rising of the molten steel meniscus in the mold increases, and the thickness of the molten powder layer becomes more uneven in the width direction of the slab, resulting in The thickness of the solidified shell becomes more uneven in the width direction of the slab.

【0007】上述したように、鋳型内の溶鋼の流動が、
凝固殻の厚みの鋳片の幅方向での均一性に大きな影響を
与える。そこで、従来から鋳型内の溶鋼の流動を制御す
る目的で、電磁力などにより吐出流の流速や方向を制御
することが行われている。この電磁力などにより吐出流
を制御することは、一般的な鋼に対しては、鋳型内の凝
固殻の厚みの均一性、すなわち、鋳片の縦割れの発生防
止に効果的である。
As described above, the flow of molten steel in the mold is
It greatly affects the uniformity of the thickness of the solidified shell in the width direction of the slab. Therefore, conventionally, for the purpose of controlling the flow of molten steel in the mold, the flow velocity and direction of the discharge flow have been controlled by electromagnetic force or the like. Controlling the discharge flow by this electromagnetic force or the like is effective for general steel in terms of the uniformity of the thickness of the solidified shell in the mold, that is, the prevention of vertical cracking of the slab.

【0008】しかし、C含有量が0.06〜0.18重
量%の中炭素鋼では、凝固に際して包晶反応と呼ばれる
相変態が起こる。この相変態が起こるとき、凝固殻の変
態収縮量が大きいので、凝固殻が鋳型の冷却板と離れや
すくなる。また、その凝固殻と冷却板の間隔が鋳片の幅
方向で不均一になりやすいので、鋳型の冷却板と凝固殻
の隙間に流れ込む溶融パウダの厚みが鋳片の幅方向で不
均一になる。したがって、鋳型内の凝固殻の厚みが鋳片
の幅方向で不均一になりやすい。そのため、上述したよ
うな鋳型内の溶鋼の吐出流の制御を行っても、中炭素鋼
の場合には、鋳片表面の縦割れを防止しにくい。
However, in medium carbon steel having a C content of 0.06 to 0.18% by weight, a phase transformation called peritectic reaction occurs during solidification. When this phase transformation occurs, the amount of transformation shrinkage of the solidified shell is large, so that the solidified shell easily separates from the cooling plate of the mold. Further, since the interval between the solidified shell and the cooling plate tends to be nonuniform in the width direction of the slab, the thickness of the molten powder flowing into the gap between the cooling plate and the solidified shell of the mold becomes nonuniform in the width direction of the slab. . Therefore, the thickness of the solidified shell in the mold tends to be uneven in the width direction of the slab. Therefore, even if the discharge flow of the molten steel in the mold is controlled as described above, in the case of medium carbon steel, it is difficult to prevent vertical cracking on the surface of the slab.

【0009】そこで、中炭素鋼の鋳片表面の縦割れ防止
方法として、上述した鋳型内の溶鋼の流動の制御に加え
て、たとえば従来から、冷却板と凝固殻の隙間に流れ込
んだ溶融パウダが、冷却する過程で結晶を多く析出する
ように、パウダの化学組成を選択することが行われてい
る。すなわち、結晶を多く析出させることにより、冷却
板内の反溶鋼側に向かう熱流束を小さくする。冷却板内
の反溶鋼側に向かう熱流束を小さくすることにより、こ
の熱流束の鋳片の幅方向での差を小さくしようとするも
のである。しかし、結晶の析出によって熱流束の鋳片の
幅方向での差を小さくするという一定の効果はあるが、
中炭素鋼では、鋳片表面の縦割れの発生防止が完全には
達成されていないのが現状である。
Therefore, as a method of preventing vertical cracks on the surface of a slab of medium carbon steel, in addition to the control of the flow of the molten steel in the mold described above, for example, conventionally, a molten powder flowing into the gap between the cooling plate and the solidified shell has been used. The chemical composition of powder is selected so that many crystals are precipitated during the cooling process. That is, by precipitating a large amount of crystals, the heat flux toward the anti-melting steel side in the cooling plate is reduced. By reducing the heat flux toward the anti-molten steel side in the cooling plate, the difference in the heat flux in the width direction of the slab is reduced. However, although there is a certain effect of reducing the difference in the heat flux in the width direction of the slab due to the precipitation of crystals,
The current situation is that the prevention of vertical cracks on the surface of the slab has not been completely achieved with medium carbon steel.

【0010】中炭素鋼の鋳片表面の縦割れ防止方法とし
て、最近では、冷却板内の反溶鋼側に向かう熱流束の鋳
片の幅方向での差に大きな影響を与える鋳型や冷却板の
構造などの改善が試みられている。
As a method of preventing vertical cracks on the surface of a slab of medium carbon steel, recently, a mold or a cooling plate that greatly affects the difference in the heat flux toward the anti-melting steel side in the cooling plate in the width direction of the slab has been used. Attempts have been made to improve the structure.

【0011】特開平1−278944号公報では、鋳型
の構造を、加熱装置を備える上部と凝固殻を冷却する下
部とに分割した構造とし、上部に備えた誘導加熱装置に
よって上部の冷却板を加熱し、鋳型内の凝固殻の厚みを
鋳片の幅方向で均一にする方法が提案されている。しか
し、この方法では、鋳型内の凝固殻の厚みの均一化効果
は小さく、また、鋳型内の凝固殻の成長が抑制されるた
め、鋳造速度を速くできない。鋳造速度を速くする場合
には、ブレークアウトなどの事故が起こることがある。
したがって、生産性が悪くなる。
In Japanese Patent Laid-Open No. 1-278944, a structure of a mold is divided into an upper part provided with a heating device and a lower part for cooling a solidified shell, and an induction heating device provided on the upper part heats a cooling plate on the upper part. However, a method has been proposed in which the thickness of the solidified shell in the mold is made uniform in the width direction of the slab. However, with this method, the effect of making the thickness of the solidified shell in the mold uniform is small, and since the growth of the solidified shell in the mold is suppressed, the casting speed cannot be increased. Accidents such as breakouts may occur when the casting speed is increased.
Therefore, productivity becomes poor.

【0012】特開昭62−22455号公報では、溶鋼
メニスカス近傍の冷却板の鋳型内部側に、たとえばニッ
ケル・クロム系の電気抵抗発熱体のコイルを備え、溶鋼
メニスカス近傍の冷却板による溶鋼からの抜熱量を均一
にする方法が提案されている。しかし、この方法でも、
上述した特開平1−278944号公報と同様に、鋳型
内の凝固殻の厚みの均一化効果が小さく、また、鋳型内
の凝固殻の成長が抑制されるため、鋳造速度を速くでき
ない。鋳造速度を速くすると、ブレークアウトなどの事
故が起こる場合がある。
In Japanese Patent Laid-Open No. 62-22455, a coil of an electric resistance heating element of, for example, a nickel-chromium system is provided inside the mold of the cooling plate near the molten steel meniscus, and a coil from the molten steel by the cooling plate near the molten steel meniscus is provided. A method of making the amount of heat removed uniform has been proposed. But even with this method,
As in the above-mentioned JP-A-1-278944, the effect of equalizing the thickness of the solidified shell in the mold is small and the growth of the solidified shell in the mold is suppressed, so that the casting speed cannot be increased. Increasing the casting speed may cause an accident such as breakout.

【0013】[0013]

【発明が解決しようとする課題】前述したような、鋳片
に縦割れが発生しやすい中炭素鋼などを鋳造する際の、
従来の鋳片の縦割れ発生防止の方法における問題点をま
とめると、下記のとおりである。 鋳型内の溶鋼の流動の制御や結晶を多く析出するパウ
ダの化学組成の選択などだけでは、中炭素鋼の鋳片の縦
割れの発生を防止できない。 鋳型の上部の構造を、誘導加熱や電気抵抗発熱体など
により加熱できる構造とする方法では、鋳造速度を速く
できない。鋳造速度を速くすると、ブレークアウトなど
の操業事故が起こる場合がある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention When casting medium carbon steel or the like, in which vertical cracks are likely to occur in the slab, as described above,
The problems in the conventional method of preventing vertical cracking of a cast slab are summarized as follows. The occurrence of vertical cracks in the slab of medium carbon steel cannot be prevented only by controlling the flow of molten steel in the mold and selecting the chemical composition of the powder that precipitates many crystals. The casting speed cannot be increased by a method in which the structure of the upper part of the mold is structured such that it can be heated by induction heating or an electric resistance heating element. Increasing the casting speed may cause operational accidents such as breakouts.

【0014】本発明は、中炭素鋼などの鋳片表面に縦割
れなどが発生しやすい鋼を鋳造する際に、鋳造速度を下
げることなく鋳造が可能で、かつ、鋳片表面に発生する
縦割れなどの表面欠陥を防止することが可能な鋼の連続
鋳造方法およびその連続鋳造方法に用いる鋳型を提供す
ることを目的とする。
According to the present invention, when casting a steel such as a medium carbon steel in which vertical cracks are likely to occur on the surface of the slab, it is possible to perform casting without lowering the casting speed, and the vertical surface generated on the slab surface can be cast. An object of the present invention is to provide a continuous casting method for steel capable of preventing surface defects such as cracks and a mold used in the continuous casting method.

【0015】[0015]

【課題を解決するための手段】本発明の要旨は、下記
(1)に示す鋼の連続鋳造方法および下記(2)に示す
その連続鋳造方法に用いる鋳型にある。
The gist of the present invention resides in the continuous casting method for steel shown in (1) below and the mold used in the continuous casting method shown in (2) below.

【0016】(1)鋳型の長辺側の冷却板内に温度セン
サを水平方向に挿入できる複数の温度センサ挿入用孔お
よび金属製の棒を冷却板の下端から上方に挿入できる複
数の棒挿入用孔を備えた鋳型を用い、温度センサで測定
した温度から求められる冷却板内を反溶鋼側に向かう熱
流束の値により、冷却板の下端から上方に挿入する金属
製の棒の挿入深さを調整する鋼の連続鋳造方法。
(1) A plurality of temperature sensor insertion holes into which a temperature sensor can be inserted horizontally in a cooling plate on the long side of a mold and a plurality of rods into which metal rods can be inserted upward from the lower end of the cooling plate. Insertion depth of the metal rod to be inserted upward from the lower end of the cooling plate by the value of the heat flux toward the anti-molten steel side inside the cooling plate, which is obtained from the temperature measured by the temperature sensor using the mold equipped with holes Adjusting steel continuous casting method.

【0017】なお、上記反溶鋼側とは、鋳型内の溶鋼と
接触する側(溶鋼側)の反対側を意味する。
The term "anti-molten steel side" means the side opposite to the side (molten steel side) in contact with the molten steel in the mold.

【0018】(2)下記〜に示す特徴を備える上記
(1)に記載の鋼の連続鋳造方法に用いる鋳型(図1参
照)。
(2) A mold used in the continuous casting method for steel according to (1) above, which has the following characteristics (see FIG. 1).

【0019】温度センサ挿入用孔7−1、7−2は、
鋳型1の長辺側の冷却板16の反溶鋼側表面と複数の棒
挿入用孔13との間に、水平方向に存在し、その開口部
は、冷却板16の反溶鋼側表面にあること。
The temperature sensor insertion holes 7-1 and 7-2 are
Between the surface of the cooling plate 16 on the long side of the mold 1 on the anti-melting steel side and the plurality of rod insertion holes 13 in the horizontal direction, and the opening is on the surface of the cooling plate 16 on the anti-melting steel side. .

【0020】上記複数の棒挿入用孔13は、鋳型1の
長辺側の冷却板16の溶鋼側表面と冷却板内の冷却水通
流路14との間に、鋳造方向に平行に存在し、その開口
部は、冷却板16の下端にあること。
The plurality of rod insertion holes 13 are present in parallel with the casting direction between the molten steel side surface of the cooling plate 16 on the long side of the mold 1 and the cooling water passage 14 in the cooling plate. The opening should be at the lower end of the cooling plate 16.

【0021】金属製の棒10を冷却板16の下端か
ら、それぞれ上記複数の棒挿入用孔13に挿入する棒の
挿入装置11を備えること。
A rod insertion device 11 for inserting the metal rod 10 into the plurality of rod insertion holes 13 from the lower end of the cooling plate 16 is provided.

【0022】本発明者は、中炭素鋼などの鋳片表面に縦
割れなどが発生しやすい鋼などを鋳造する際の、従来の
縦割れ発生防止方法における前述したような問題点を、
次に記すようにして解決した。すなわち、(a)本発明
の方法を実施する場合に、温度センサで測定した温度か
ら求められる冷却板内を反溶鋼側に向かう熱流束の値に
より、冷却板の下端から上方に挿入する金属製の棒の挿
入深さを調整することにより、鋳片表面の縦割れの発生
を防止する。このとき、鋳型の長辺側の冷却板内の冷却
水通流路には、冷却水を流しており、鋳型の冷却板を加
熱しない。したがって、中炭素鋼を鋳造する際に、鋳造
速度を下げる必要はない。
The inventor of the present invention has the above-mentioned problems in the conventional method for preventing the occurrence of vertical cracks when casting steel such as medium carbon steel which is liable to cause vertical cracks on the surface thereof.
I solved it as follows. That is, (a) when the method of the present invention is carried out, the value of the heat flux toward the anti-molten steel side inside the cooling plate, which is obtained from the temperature measured by the temperature sensor, is used to insert metal from above the lower end of the cooling plate. By adjusting the insertion depth of the rod, the occurrence of vertical cracks on the surface of the slab is prevented. At this time, cooling water is flowing through the cooling water passage in the cooling plate on the long side of the mold, and the cooling plate of the mold is not heated. Therefore, it is not necessary to reduce the casting speed when casting medium carbon steel.

【0023】(b)本発明の方法では、鋳型の長辺側の
冷却板の反溶鋼側表面と複数の棒挿入用孔との間にある
水平方向に沿った複数の温度センサ挿入用孔に備えた温
度センサからの熱流束の情報により、冷却板の下端から
上方に向けて複数の棒挿入用孔にそれぞれ挿入する金属
製の棒の挿入深さを調整する。この金属製の棒の挿入深
さを調整することにより、直接、棒挿入用孔の近傍の冷
却板の熱流束を制御する。
(B) In the method of the present invention, a plurality of temperature sensor insertion holes along the horizontal direction are provided between the anti-melting steel side surface of the cooling plate on the long side of the mold and the plurality of rod insertion holes. The insertion depth of the metal rod inserted into each of the plurality of rod insertion holes from the lower end of the cooling plate upward is adjusted based on the information on the heat flux from the provided temperature sensor. By adjusting the insertion depth of the metal rod, the heat flux of the cooling plate near the rod insertion hole is directly controlled.

【0024】すなわち、冷却板の材質と挿入する棒の材
質を同じにし、かつ、棒挿入用孔の断面の大きさと挿入
する棒の断面の大きさを、棒を挿入することが可能な程
度にまで同じ大きさとすることにより、棒挿入用孔の孔
がすべて塞がるように金属製の棒を冷却板の下端から上
方に挿入する場合には、この棒挿入用孔の近傍の冷却板
における熱伝達は、もともと棒挿入用孔のない部分の冷
却板の熱伝達と同じ程度になる。
That is, the material of the cooling plate is the same as that of the rod to be inserted, and the size of the cross section of the rod insertion hole and the size of the cross section of the rod to be inserted are set so that the rod can be inserted. If the metal rod is inserted upward from the lower end of the cooling plate so that all of the rod insertion holes are closed by setting the same size up to, the heat transfer in the cooling plate near the rod insertion hole Is essentially the same as the heat transfer of the cooling plate in the part without the rod insertion hole.

【0025】また、棒を挿入する深さを棒挿入用孔の深
さの途中までとし、孔の中に空気の存在する空間部分を
残すことにより、この棒挿入用孔の近傍の冷却板の熱伝
達の程度を調整できる。すなわち、空気は熱を伝え難い
ので、棒を挿入する深さを浅くする場合には、空気の存
在する棒挿入用孔の空間部分が長くなるので、その棒挿
入用孔の近傍の冷却板の熱伝達は小さくなる。
Further, the depth for inserting the rod is set to a midpoint of the depth of the rod inserting hole, and a space portion in which air is present is left in the hole, so that the cooling plate near the rod inserting hole is formed. The degree of heat transfer can be adjusted. That is, since it is difficult for heat to transfer heat to the air, when the depth of inserting the rod is made shallow, the space portion of the rod inserting hole where air is present becomes long, so that the cooling plate in the vicinity of the rod inserting hole is Heat transfer is reduced.

【0026】連続鋳造中に複数の温度センサにより測定
した冷却板の各位置の温度から求められる各位置の熱流
束が大きい場合には、その冷却板の位置に相当する位置
の棒の挿入深さを浅くし、逆に、各位置の熱流束が小さ
い場合には、その冷却板の位置に相当する位置の棒の挿
入深さを深くする。このようにそれぞれの位置の棒の挿
入深さを調整することにより、熱流束を鋳片の幅方向で
均一にすることができる。熱流束を鋳片の幅方向で均一
にすることにより、鋳型内の凝固殻の厚みは鋳片の幅方
向で均一になる。したがって、中炭素鋼などの鋳片の縦
割れ発生を防止できる。
When the heat flux at each position obtained from the temperature at each position of the cooling plate measured by a plurality of temperature sensors during continuous casting is large, the insertion depth of the rod at the position corresponding to the position of the cooling plate is large. On the contrary, when the heat flux at each position is small, the insertion depth of the rod at the position corresponding to the position of the cooling plate is deepened. By adjusting the insertion depth of the rod at each position in this way, the heat flux can be made uniform in the width direction of the slab. By making the heat flux uniform in the width direction of the slab, the thickness of the solidified shell in the mold becomes uniform in the width direction of the slab. Therefore, it is possible to prevent the occurrence of vertical cracks in a slab of medium carbon steel or the like.

【0027】なお、本発明の鋳型を用いて本発明の方法
を実施する場合に、鋳型内の溶鋼の流動の制御や結晶を
多く析出するパウダの化学組成の選択などの従来の技術
を用いれば、さらに効果的に中炭素鋼の鋳片の縦割れの
発生を防止できる。
When the method of the present invention is carried out using the mold of the present invention, conventional techniques such as controlling the flow of molten steel in the mold and selecting the chemical composition of powder that precipitates a large amount of crystals can be used. Further, it is possible to effectively prevent the occurrence of vertical cracks in the slab of medium carbon steel.

【0028】[0028]

【発明の実施の形態】本発明の鋼の連続鋳造方法および
その方法に用いる鋳型を、以下に説明する。図1は、本
発明の連続鋳造方法およびその方法に用いる鋳型の構造
の例を説明する模式図である。図1(a)は鋳型の片側
の長辺側の縦断面図で、図1(b)のB1−B2線の断
面図であり、図1(b)は図1(a)のA1−A2線の
断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION A continuous casting method for steel according to the present invention and a mold used in the method will be described below. FIG. 1 is a schematic diagram for explaining an example of the continuous casting method of the present invention and the structure of a mold used in the method. 1A is a vertical cross-sectional view of one long side of the mold, which is a cross-sectional view taken along line B1-B2 of FIG. 1B, and FIG. 1B is A1-A2 of FIG. 1A. It is sectional drawing of a line.

【0029】本発明の連続鋳造方法に用いる本発明の鋳
型について説明する。図1に示すように、本発明の鋳型
1には、鋳型の長辺側の冷却板16の反溶鋼側表面と複
数の棒挿入用孔13との間に、冷却板16の反溶鋼側表
面に開口部を有する水平方向に沿った複数の温度センサ
挿入用孔7−1、7−2を備える。ここで言う水平方向
とは、完全に水平方向でなくて、若干傾斜していても構
わない。後述するように、それぞれの温度センサ挿入用
孔7−1、7−2の冷却板内16での高さが、鋳型幅方
向で同じ高さであればよい。
The mold of the present invention used in the continuous casting method of the present invention will be described. As shown in FIG. 1, in the mold 1 of the present invention, the anti-melting steel side surface of the cooling plate 16 is provided between the anti-melting steel side surface of the cooling plate 16 on the long side of the mold and the plurality of rod insertion holes 13. A plurality of temperature sensor insertion holes 7-1 and 7-2 are provided along the horizontal direction having openings. The term "horizontal direction" as used herein does not mean to be completely horizontal and may be slightly inclined. As will be described later, the heights of the temperature sensor insertion holes 7-1 and 7-2 in the cooling plate 16 may be the same in the mold width direction.

【0030】この温度センサ挿入用孔7−1、7−2の
取り付ける冷却板16内での高さは、溶鋼メニスカス5
に相当する高さ近傍がよい。温度センサ挿入用孔7−
1、7−2の先端の位置は、後述する棒挿入用孔13よ
りも反溶鋼側の位置とする。また、お互いの先端の位置
が5〜10mm程度の距離となる2つの温度センサ挿入
用孔7−1、7−2を1セットとして、冷却板内に複数
セットを備える。図3は、図1に示す温度センサ挿入用
孔7−1、7−2の付近のみを拡大した図である。図3
に示す距離Lが上述する温度センサ挿入用孔7−1、7
−2のお互いの先端の位置の距離である。
The height of the temperature sensor insertion holes 7-1 and 7-2 in the cooling plate 16 to be mounted is determined by the molten steel meniscus 5
It is good to have a height near. Temperature sensor insertion hole 7-
The positions of the tips of 1 and 7-2 are on the anti-melting steel side with respect to the rod insertion hole 13 described later. In addition, a plurality of sets are provided in the cooling plate, with one set of the two temperature sensor insertion holes 7-1 and 7-2 having the respective tip positions at a distance of about 5 to 10 mm. FIG. 3 is an enlarged view of only the vicinity of the temperature sensor insertion holes 7-1 and 7-2 shown in FIG. Figure 3
The distance L shown in is the temperature sensor insertion holes 7-1 and 7 described above.
-2 is the distance between the respective tip positions.

【0031】図1および図3に示す例では、1セットの
2つの温度センサ挿入用孔を、同一垂直断面に備える例
で示しているが、同一水平断面に備えても良い。また、
2つの温度センサ挿入用孔でなく、1つの温度センサ挿
入用孔としてもよい。1つの温度センサ挿入用孔の場合
には、後述する熱電対などを、お互いに電気的に絶縁
し、かつ、お互いの熱電対の先端の距離を一定になるよ
うにすればよい。
In the example shown in FIGS. 1 and 3, one set of two temperature sensor insertion holes is shown in the same vertical section, but they may be provided in the same horizontal section. Also,
Instead of the two temperature sensor insertion holes, one temperature sensor insertion hole may be used. In the case of one temperature sensor insertion hole, thermocouples, which will be described later, may be electrically insulated from each other, and the distance between the tips of the thermocouples may be constant.

【0032】2つの温度センサ9を用いるのは、お互い
の距離Lの判明している2つの温度センサ9で測定した
温度から、熱流束を求めるためである。鋳型の幅方向に
は、上述するセットを複数セット配置するのがよい。こ
れら温度センサ挿入用孔7−1、7−2の先端に温度セ
ンサ9を挿入するが、温度センサ9は、通常の熱電対で
よい。また、本発明の鋳型1には、鋳型の長辺側の冷却
板16の溶鋼側表面と冷却板内の冷却水通流路14との
間に、冷却板16の下端に開口部を有する鋳型の鋳造方
向に沿った複数の棒挿入用孔13を備え、金属製の棒1
0を冷却板16の下端からそれぞれ複数の棒挿入用孔1
3に挿入する棒の挿入装置11を備える。冷却板16の
反溶鋼側には、通常の冷却水通流路14を備え、また、
冷却板16は鋳型のバックフレーム15内に配置され
る。制御装置12は、温度センサ9によって測定された
温度から熱流束を計算し、得られた熱流束の値からそれ
ぞれの金属製の棒10の挿入深さを指示して、熱流束を
調整する。冷却板16には、通常用いられる銅または銅
合金の材料を用いればよい。他の熱伝導性がよく、機械
的強度があり、経済的な金属材料でも構わない。
The reason why the two temperature sensors 9 are used is to obtain the heat flux from the temperatures measured by the two temperature sensors 9 whose distance L is known. It is preferable to arrange a plurality of sets described above in the width direction of the mold. The temperature sensor 9 is inserted into the tips of the temperature sensor insertion holes 7-1 and 7-2, but the temperature sensor 9 may be a normal thermocouple. Further, in the mold 1 of the present invention, a mold having an opening at the lower end of the cooling plate 16 between the molten steel side surface of the cooling plate 16 on the long side of the mold and the cooling water passage 14 in the cooling plate. Of a metal rod 1 having a plurality of rod insertion holes 13 along the casting direction of
0 from the lower end of the cooling plate 16 to a plurality of rod insertion holes 1
3 is provided with a rod insertion device 11. An ordinary cooling water passage 14 is provided on the anti-molten steel side of the cooling plate 16, and
The cooling plate 16 is arranged in the back frame 15 of the mold. The controller 12 calculates the heat flux from the temperature measured by the temperature sensor 9, and indicates the insertion depth of each metal rod 10 from the value of the obtained heat flux to adjust the heat flux. For the cooling plate 16, a commonly used copper or copper alloy material may be used. Other metallic materials having good thermal conductivity, mechanical strength, and economical may be used.

【0033】棒挿入用孔13の断面形状は、とくにこだ
わらないが、取り扱いやすいので円形がよい。孔の直径
は3〜15mmが望ましい。3mm未満の場合には、熱
流束を制御する効果が小さくなり、15mmを超えて大
きい場合には、冷却板の寿命が短くなり経済的でない。
なぜならば、冷却板16の溶鋼と接する表面は、通常、
規定する溶鋼量を鋳造した後に切削加工されるためであ
る。
The sectional shape of the rod insertion hole 13 is not particularly limited, but a circular shape is preferable because it is easy to handle. The diameter of the hole is preferably 3 to 15 mm. If it is less than 3 mm, the effect of controlling the heat flux becomes small, and if it exceeds 15 mm, the life of the cooling plate becomes short, which is not economical.
Because, the surface of the cooling plate 16 that contacts the molten steel is usually
This is because after the specified amount of molten steel is cast, it is cut.

【0034】また、冷却板16の溶鋼と接する表面から
棒挿入用孔の横断面の中心までの距離は7〜30mmが
望ましい。この距離が7mm未満では、上述のように冷
却板の寿命が短くなり、30mmを超えて離れる場合に
は、棒挿入用孔13が冷却水通流路14と干渉する。
The distance from the surface of the cooling plate 16 in contact with the molten steel to the center of the cross section of the rod insertion hole is preferably 7 to 30 mm. When the distance is less than 7 mm, the life of the cooling plate is shortened as described above, and when the distance exceeds 30 mm, the rod insertion hole 13 interferes with the cooling water passage 14.

【0035】さらに、棒挿入用孔13の鋳片の幅方向で
の間隔は、棒挿入用孔の中心軸の間隔で3〜30mmが
望ましい。この間隔とすることにより、冷却板の長辺方
向の長さに対する棒挿入用孔13の直径の合計長さの比
が10〜100%となり、ほぼ鋳片の幅方向で任意に、
鋳型の内部に向かう熱流束の制御ができる。孔の長さ
は、冷却板の溶鋼メニスカス5近傍から下端までがよ
い。
Further, it is desirable that the distance between the rod insertion holes 13 in the width direction of the cast piece is 3 to 30 mm, which is the distance between the center axes of the rod insertion holes. By setting this interval, the ratio of the total length of the diameters of the rod insertion holes 13 to the length of the cooling plate in the long side direction is 10 to 100%, and almost arbitrarily in the width direction of the cast piece.
The heat flux toward the inside of the mold can be controlled. The length of the holes is preferably from the vicinity of the molten steel meniscus 5 of the cooling plate to the lower end.

【0036】棒挿入用孔13に挿入する金属製の棒10
は、冷却板16と同じ材質とするのがよい。これらの棒
10を挿入する棒の挿入装置11には、とくにこだわら
ないが、油圧式または機械式の装置がよい。また、図1
に示すように、鋳型の構造や鋳造作業の容易さなどか
ら、鋳型の下部からこれらの棒を出し入れするものとす
る。
A metal rod 10 to be inserted into the rod insertion hole 13
Is preferably made of the same material as the cooling plate 16. The rod insertion device 11 for inserting the rods 10 is not particularly limited, but a hydraulic or mechanical device is preferable. Also, FIG.
As shown in, the rods are taken in and out from the lower part of the mold because of the structure of the mold and the ease of casting work.

【0037】次に、本発明の連続鋳造方法を説明する。
鋳片の幅方向に複数配置された温度センサの測定情報か
ら、鋳型内の冷却板の溶鋼と接する面から冷却板の内部
に向かう熱流束を制御装置を用いて演算する。その演算
された熱流束の値の大きさにより、冷却板の下端から上
方に向かって棒挿入用孔に挿入する金属製の棒の挿入深
さ、すなわち、溶鋼メニスカス近傍の位置に相当する棒
挿入用孔の空間部の長さ17を調整する。このとき、鋳
片の幅方向に備えたそれぞれの棒挿入用孔の空間部の長
さ17を独立に調整する。これにより、鋳型の内部に向
かう熱流束を鋳片の幅方向で任意に調整できる。
Next, the continuous casting method of the present invention will be described.
From the measurement information of a plurality of temperature sensors arranged in the width direction of the slab, the heat flux from the surface of the cooling plate in the mold that contacts the molten steel to the inside of the cooling plate is calculated using the controller. Depending on the magnitude of the calculated heat flux value, the insertion depth of the metal rod inserted into the rod insertion hole from the lower end of the cooling plate upwards, that is, the rod insertion corresponding to the position near the molten steel meniscus The length 17 of the space portion of the use hole is adjusted. At this time, the length 17 of the space portion of each rod insertion hole provided in the width direction of the slab is independently adjusted. Thereby, the heat flux toward the inside of the mold can be arbitrarily adjusted in the width direction of the slab.

【0038】熱流束は次のようにして求めることができ
る。溶鋼や凝固殻の熱は、この冷却板内を反溶鋼側に向
かって流れ、その後、冷却板内に備えた冷却水通流路内
を流れる冷却水によって抜熱される。したがって、冷却
板内の溶鋼メニスカス近傍に、5〜10mm程度離れた
位置に配置された2つの熱電対によって、冷却板の2カ
所の温度が測定される場合に、測定された2カ所の温度
には差が生じる。すなわち、溶鋼側に近い方の位置の温
度が高い。
The heat flux can be obtained as follows. The heat of the molten steel and the solidified shell flows in the cooling plate toward the anti-molten steel side, and then is removed by the cooling water flowing in the cooling water passage provided in the cooling plate. Therefore, when the temperature of two places of the cooling plate is measured by the two thermocouples arranged in the vicinity of the molten steel meniscus in the cooling plate at a position about 5 to 10 mm apart, Makes a difference. That is, the temperature at the position closer to the molten steel side is high.

【0039】熱流束(kcal/m2 h)は、この2カ
所の温度差(℃)を、測温した2カ所の距離(m)で除
した値に、金属に固有の熱伝導率(kcal/mh℃)
を掛けて得られる。さらに説明すれば、溶鋼や凝固殻の
熱を奪う冷却板の熱伝達の大きさは、冷却板の材質に固
有の熱伝導率と容積、棒挿入用孔の空間部に存在する空
気の熱伝導率と容積および冷却水の熱伝導率と水量など
に比例する。冷却板と冷却水の条件を一定とすれば、冷
却板が溶鋼や凝固殻の熱を奪う熱伝達の大きさは、棒挿
入用孔の空間部に存在する空気の容積に比例することに
なる。棒挿入用孔に挿入する金属製の棒の挿入深さを浅
くして、この孔の空間部の空気の容積を大きくすること
により、溶鋼や凝固殻から鋳型内の冷却板への熱流束が
小さくなる。
The heat flux (kcal / m 2 h) is a value obtained by dividing the temperature difference (° C.) between the two locations by the distance (m) between the two locations, and the thermal conductivity (kcal) peculiar to the metal. / Mh ° C)
It is obtained by multiplying by. To explain further, the magnitude of the heat transfer of the cooling plate that takes away the heat of the molten steel and the solidified shell depends on the thermal conductivity and volume peculiar to the material of the cooling plate and the heat transfer of the air existing in the space of the rod insertion hole. It is proportional to the rate and volume, and the thermal conductivity of cooling water and the amount of water. If the conditions of the cooling plate and cooling water are constant, the amount of heat transfer that the cooling plate takes away the heat of the molten steel or solidified shell is proportional to the volume of air existing in the space of the rod insertion hole. . By making the insertion depth of the metal rod inserted into the rod insertion hole shallow and increasing the volume of air in the space of this hole, the heat flux from the molten steel or solidified shell to the cooling plate in the mold can be increased. Get smaller.

【0040】熱流束を調整する具体的な方法として、鋳
片の幅方向での熱流束の差が±10%以内になるように
棒挿入用孔に挿入する金属製の棒の挿入深さを調整する
ことが望ましい。
As a specific method for adjusting the heat flux, the insertion depth of the metal rod to be inserted into the rod insertion hole is adjusted so that the difference in heat flux in the width direction of the slab is within ± 10%. It is desirable to adjust.

【0041】[0041]

【実施例】垂直曲げ型連続鋳造機に、従来の鋳型または
図1に示す装置構成の本発明の鋳型を搭載して、断面形
状が厚み250mm、幅1250mmのスラブの鋳造試
験を行った。C含有率が0.14重量%の中炭素鋼を、
鋳造速度1.0〜1.8m/分の高速で鋳造した。浸漬
ノズルは、吐出孔の角度が下向き20度の2孔ノズルを
用い、浸漬深さは、浸漬ノズルの先端が溶鋼メニスカス
の下方280mmに位置するようにした。鋳型における
溶鋼メニスカスの位置は、鋳型の上端から100mm下
の位置に設定して操業した。鋳型内の溶鋼メニスカスに
添加するモールドパウダは、通常のパウダを用いた。タ
ンディッシュ内の溶鋼の過熱度は5〜40℃とした。表
1に、用いた鋳型の仕様を示す。
EXAMPLE A conventional casting mold or the casting mold of the present invention having the apparatus configuration shown in FIG. 1 was mounted on a vertical bending type continuous casting machine, and a casting test of a slab having a cross-sectional shape of 250 mm in thickness and 1250 mm in width was conducted. Medium carbon steel with a C content of 0.14% by weight,
Casting was performed at a high casting speed of 1.0 to 1.8 m / min. As the immersion nozzle, a two-hole nozzle having a discharge hole with a downward angle of 20 degrees was used, and the immersion depth was such that the tip of the immersion nozzle was located 280 mm below the molten steel meniscus. The position of the molten steel meniscus in the mold was set to a position 100 mm below the upper end of the mold for operation. As a mold powder to be added to the molten steel meniscus in the mold, a normal powder was used. The degree of superheat of the molten steel in the tundish was 5 to 40 ° C. Table 1 shows the specifications of the mold used.

【0042】[0042]

【表1】 [Table 1]

【0043】本発明の方法に用いる本発明の鋳型では、
棒挿入用孔の直径を5mm、冷却板の溶鋼と接する表面
から棒挿入用孔の断面の中心軸までの距離を10mm、
幅方向の設置間隔を10mmとした。
In the mold of the present invention used in the method of the present invention,
The diameter of the rod insertion hole is 5 mm, the distance from the surface of the cooling plate in contact with the molten steel to the central axis of the cross section of the rod insertion hole is 10 mm,
The installation interval in the width direction was 10 mm.

【0044】また、冷却板内に次のように熱電対を配置
した。鋳片の幅方向には、幅中央部を基準に、両側に1
00mm間隔で、計13セット設置した。鋳型の高さ方
向には、溶鋼メニスカスの下方の50、100および2
00mmの位置に、3段に設置した。したがって、合計
39セットの熱電対を設置した。冷却板の溶鋼側の表面
から、冷却板内に向かって水平に13mmおよび18m
mの位置に2カ所設けた熱電対を1セットとしている。
A thermocouple was arranged in the cooling plate as follows. In the width direction of the slab, 1 on both sides with the center of the width as the reference
A total of 13 sets were installed at intervals of 00 mm. 50, 100 and 2 below the molten steel meniscus in the height direction of the mold.
Three stages were installed at a position of 00 mm. Therefore, a total of 39 sets of thermocouples were installed. 13 mm and 18 m horizontally from the surface of the cooling plate on the molten steel side into the cooling plate
One set of thermocouples provided at two positions at m.

【0045】本発明の鋳型を用いる本発明の方法による
本発明例の鋳造試験では、これら熱電対により測定され
る温度から、制御装置により鋳片の幅方向の各位置での
熱流束を演算し、各棒挿入用孔に挿入する銅合金製の棒
の挿入深さ、すなわち、棒挿入用孔の上部の空間部の長
さを変化させて試験した。従来の鋳型を用いた比較例の
鋳造試験では、とくに熱流束を測定しなかった。
In the casting test of the example of the present invention by the method of the present invention using the mold of the present invention, the heat flux at each position in the width direction of the slab is calculated from the temperature measured by these thermocouples. The test was performed by changing the insertion depth of the copper alloy rod inserted into each rod insertion hole, that is, the length of the space above the rod insertion hole. In the casting test of the comparative example using the conventional mold, the heat flux was not particularly measured.

【0046】得られた鋳片の表面を目視で観察し、中炭
素鋼に発生しやすい縦割れの発生の有無を調査した。後
述する表2に示す評価○は縦割れの発生のない場合、評
価△は縦割れが発生し、鋳片表面の手入れが必要な場
合、評価×は縦割れの発生が著しく、鋳片表面を手入れ
しても、その後の熱間圧延が困難な場合である。表2
に、試験条件および試験結果を示す。
The surface of the obtained slab was visually observed to examine whether or not vertical cracks, which are likely to occur in medium carbon steel, are generated. The evaluation ◯ shown in Table 2 described later indicates that vertical cracks do not occur, the evaluation Δ indicates that vertical cracks occur, and when the surface of the slab needs to be maintained, the evaluation x indicates that vertical cracks occur remarkably. This is the case when hot rolling is difficult even after maintenance. Table 2
Shows the test conditions and test results.

【0047】[0047]

【表2】 [Table 2]

【0048】本発明例の試験No.1〜No.4では、
個々の温度センサによって測定した温度から求めた熱流
束の値の大きさから、棒挿入用孔の上部の空間部の長さ
を100〜300mmの間で調整して鋳造した。そのた
め、鋳片の幅方向中央部で2段目の熱電対により得られ
た熱流束の値をベースとするとき、その他の位置の熱流
束の値との差が、最大でも、全て±10%以内になっ
た。なお、鋳型の幅中央部の2段目の位置の熱流束に対
して、熱流束の差の−は熱流束が小さいことを意味し、
+はその逆を意味する。
Test No. of the present invention example 1-No. In 4,
Casting was performed by adjusting the length of the space above the rod insertion hole within a range of 100 to 300 mm based on the magnitude of the value of the heat flux obtained from the temperature measured by each temperature sensor. Therefore, when the heat flux value obtained by the second-stage thermocouple in the widthwise center of the slab is used as the base, the difference from the heat flux values at other positions is ± 10% at the maximum. It was within. In addition, with respect to the heat flux at the position of the second stage in the center of the width of the mold, the difference − in the heat flux means that the heat flux is small,
+ Means the opposite.

【0049】熱流束が安定した時期以降の鋳造時期に相
当するスラブの表面を観察した。スラブ表面の評価は全
て評価○であり、縦割れが発生せず良好な鋳片が得られ
た。このように、中炭素鋼を1.0〜1.8m/分の高
速で鋳造しても、鋳片表面には縦割れが発生しなかっ
た。
The surface of the slab corresponding to the casting time after the time when the heat flux was stable was observed. All evaluations of the slab surface were evaluated as good, and good slabs were obtained without vertical cracking. Thus, even when medium carbon steel was cast at a high speed of 1.0 to 1.8 m / min, vertical cracks did not occur on the surface of the slab.

【0050】本発明例の試験No.5〜No.7では、
個々の温度センサによって測定した温度から求めた熱流
束の値の大きさから、棒挿入用孔の上部の空間部の長さ
を10〜30mmの間で調整した。鋳片の幅方向中央部
で2段目の熱電対により得られた熱流束の値をベースと
するとき、その他の位置の熱流束の値との差が、最大で
+12〜+33%と大きくなった。
Test No. of the present invention example 5 to No. In 7,
The length of the space above the rod insertion hole was adjusted within the range of 10 to 30 mm based on the magnitude of the heat flux value obtained from the temperature measured by each temperature sensor. When the heat flux value obtained by the second stage thermocouple is used as the base in the widthwise center of the slab, the difference from the heat flux values at other positions becomes as large as +12 to + 33%. It was

【0051】熱流束が安定した時期以降の鋳造時期に相
当するスラブの表面は、試験No.5では、評価は評価
○であったが、鋳造速度が1.5〜1.8m/分の高速
の試験No.6およびNo.7では、評価△であり、縦
割れが少し発生した。
The surface of the slab corresponding to the casting time after the time when the heat flux was stable was tested as No. In No. 5, the evaluation was “good”, but the casting speed was 1.5 to 1.8 m / min. 6 and No. 6 In No. 7, the evaluation was Δ, and some vertical cracking occurred.

【0052】従来の鋳型を用いた比較例の試験No.8
〜No.10では、鋳造速度が1.0m/分の試験N
o.8では、得られたスラブ表面には、評価△の縦割れ
が若干発生する程度であったが、鋳造速度が1.5〜
1.8m/分の高速で鋳造した試験No.9およびN
o.10では、得られたスラブ表面には、評価×の著し
い縦割れが観察された。
Test No. of a comparative example using a conventional mold. 8
~ No. In 10, the casting speed was 1.0 m / min for test N.
o. In No. 8, the obtained slab surface had a slight degree of vertical cracking of evaluation Δ, but the casting speed was 1.5 to
Test No. 1 cast at a high speed of 1.8 m / min. 9 and N
o. In No. 10, significant vertical cracks of rating x were observed on the obtained slab surface.

【0053】[0053]

【発明の効果】本発明の鋼の連続鋳造方法およびその方
法に用いる鋳型を適用することにより、とくに鋳片表面
に縦割れの発生しやすい中炭素鋼の高速鋳造において、
縦割れなどの表面欠陥の発生を防止することが可能であ
る。
INDUSTRIAL APPLICABILITY By applying the steel continuous casting method of the present invention and the mold used for the method, particularly in high-speed casting of medium carbon steel where vertical cracks are likely to occur on the surface of the slab,
It is possible to prevent the occurrence of surface defects such as vertical cracks.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の連続鋳造方法およびその方法に用いる
鋳型の構造の例を説明する模式図である。
FIG. 1 is a schematic view illustrating an example of a continuous casting method of the present invention and a structure of a mold used in the method.

【図2】鋳型内の溶鋼の流動を模式的に示す図である。FIG. 2 is a diagram schematically showing the flow of molten steel in a mold.

【図3】図1に示す温度センサ挿入用孔の付近のみを拡
大した図である。
FIG. 3 is an enlarged view of only the vicinity of a temperature sensor insertion hole shown in FIG.

【符号の説明】[Explanation of symbols]

1:鋳型 1a:鋳型の短辺 1b:鋳型の長辺 2:浸漬ノズル 3:溶鋼 4:吐出流 4a:上昇流 4b:下降流 4
c:溶鋼の流れ 5:溶鋼メニスカス 6:溶融パウダ
層 7−1、7−2:温度センサ挿入用孔 8:凝固殻 9:温度センサ 10:金属製の棒 11:棒の挿入装置 12:制御装置 13:棒挿入用孔 14:冷却水通
流路 15:鋳型のバックフレーム 16:冷却板 17:孔の空間部の長さ L:温度セン
サ挿入孔の距離
1: Mold 1a: Short side of mold 1b: Long side of mold 2: Immersion nozzle 3: Molten steel 4: Discharge flow 4a: Upflow 4b: Downflow 4
c: flow of molten steel 5: molten steel meniscus 6: molten powder layer 7-1, 7-2: temperature sensor insertion hole 8: solidified shell 9: temperature sensor 10: metal rod 11: rod insertion device 12: control Device 13: Rod insertion hole 14: Cooling water flow passage 15: Mold back frame 16: Cooling plate 17: Hole space length L: Temperature sensor insertion hole distance

フロントページの続き (56)参考文献 特開 昭56−53852(JP,A) 特開 平6−74837(JP,A) 特開 平1−278944(JP,A) 特開 昭62−22455(JP,A) 特開 平2−197352(JP,A) 特開 平2−192856(JP,A) 実開 平6−77952(JP,U) (58)調査した分野(Int.Cl.7,DB名) B22D 11/04 311 B22D 11/16 104 Continuation of the front page (56) Reference JP-A-56-53852 (JP, A) JP-A-6-74837 (JP, A) JP-A-1-278944 (JP, A) JP-A-62-22455 (JP , A) Japanese Patent Laid-Open No. 2-197352 (JP, A) Japanese Patent Laid-Open No. 2-192856 (JP, A) Actual Kaihei 6-77952 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB) Name) B22D 11/04 311 B22D 11/16 104

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鋳型の長辺側の冷却板内に温度センサを水
平方向に挿入できる複数の温度センサ挿入用孔および金
属製の棒を冷却板の下端から上方に挿入できる複数の棒
挿入用孔を備えた鋳型を用い、温度センサで測定した温
度から求められる冷却板内を反溶鋼側に向かう熱流束の
値により、冷却板の下端から上方に挿入する金属製の棒
の挿入深さを調整することを特徴とする鋼の連続鋳造方
法。
1. A plurality of temperature sensor insertion holes into which a temperature sensor can be inserted horizontally in a cooling plate on the long side of a mold, and a plurality of rods into which metal rods can be inserted upward from the lower end of the cooling plate. Using a mold equipped with holes, the depth of insertion of the metal rod to be inserted upward from the lower end of the cooling plate is determined by the value of the heat flux toward the anti-molten steel side inside the cooling plate, which is obtained from the temperature measured by the temperature sensor. A continuous casting method for steel, characterized by adjusting.
【請求項2】請求項1に記載の鋼の連続鋳造方法に用い
る鋳型であって、鋳型の長辺側の冷却板の反溶鋼側表面
と複数の棒挿入用孔との間に、冷却板の反溶鋼側表面に
開口部を有する水平方向に沿った複数の温度センサ挿入
用孔を備え、上記複数の棒挿入用孔は、鋳型の長辺側の
冷却板の溶鋼側表面と冷却板内の冷却水通流路との間
に、鋳造方向に平行に存在し、その開口部は冷却板の下
端にあり、さらに金属製の棒を冷却板の下端から、それ
ぞれ上記複数の棒挿入用孔に挿入する装置を備えること
を特徴とする鋳型。
2. A mold used in the continuous casting method for steel according to claim 1, wherein the cooling plate is provided between the surface of the cooling plate on the long side of the mold on the side of the molten steel and the plurality of rod insertion holes. A plurality of temperature sensor insertion holes along the horizontal direction having an opening on the anti-molten steel side surface of the mold, the plurality of rod insertion holes, the molten steel side surface of the cooling plate on the long side of the mold and the inside of the cooling plate Between the cooling water passage and the cooling water passage, the opening is at the lower end of the cooling plate, and a metal rod is inserted from the lower end of the cooling plate into the plurality of rod insertion holes. A mold comprising a device for inserting into a mold.
JP06332099A 1999-03-10 1999-03-10 Steel continuous casting method and mold Expired - Fee Related JP3362692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06332099A JP3362692B2 (en) 1999-03-10 1999-03-10 Steel continuous casting method and mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06332099A JP3362692B2 (en) 1999-03-10 1999-03-10 Steel continuous casting method and mold

Publications (2)

Publication Number Publication Date
JP2000254762A JP2000254762A (en) 2000-09-19
JP3362692B2 true JP3362692B2 (en) 2003-01-07

Family

ID=13225872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06332099A Expired - Fee Related JP3362692B2 (en) 1999-03-10 1999-03-10 Steel continuous casting method and mold

Country Status (1)

Country Link
JP (1) JP3362692B2 (en)

Also Published As

Publication number Publication date
JP2000254762A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
US4515204A (en) Continuous metal casting
EP1567296B1 (en) CONTROL SYSTEM, DEVICE AND METHOD for regulating the flow of liquid metal in a device for casting a metal
JP4462255B2 (en) Continuous casting method for medium carbon steel
CA1139529A (en) Method for continuous casting of metallic strands at exceptionally high speeds
US5799721A (en) Method of remelting metals to form an elongate portion and apparatus therefor
JP3362692B2 (en) Steel continuous casting method and mold
KR20190029757A (en) Continuous casting method of steel
EP0191586A1 (en) Electromagnetic levitation casting
JP3022211B2 (en) Mold for continuous casting of round billet slab and continuous casting method using the mold
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP3216476B2 (en) Continuous casting method
SU806236A1 (en) Method of continuous ingot casting
JPH0857584A (en) Production of stainless steel cast slab having good surface quality and workability
EP0780176A2 (en) Apparatus for and process of continuous casting
JP3398608B2 (en) Continuous casting method and mold for continuous casting
KR100228574B1 (en) Mould of continuous casting
EP0800880B1 (en) Method and apparatus for casting metal strip
JP3294987B2 (en) Continuous casting to prevent segregation and internal cracking
Mahapatra Mould behaviour and product quality in continuous casting of slabs
JP4735269B2 (en) Manufacturing method of continuous slab
JP3098699B2 (en) Supply method of molten alloy for manufacturing amorphous alloy ribbon and stopper for controlling supply amount
FI69972C (en) METAL CONTAINER CONTAINER
JPH0569090A (en) Method and apparatus for horizontal continuous casting
JP3098698B2 (en) Supply method of molten alloy for production of amorphous alloy ribbon
JPH08238541A (en) Method of making supplying quantity definite of molten metal and alloy to cooling base board

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees