JP3360772B2 - Connection structure of fine electrode and inspection method of electronic component having fine electrode - Google Patents

Connection structure of fine electrode and inspection method of electronic component having fine electrode

Info

Publication number
JP3360772B2
JP3360772B2 JP20971494A JP20971494A JP3360772B2 JP 3360772 B2 JP3360772 B2 JP 3360772B2 JP 20971494 A JP20971494 A JP 20971494A JP 20971494 A JP20971494 A JP 20971494A JP 3360772 B2 JP3360772 B2 JP 3360772B2
Authority
JP
Japan
Prior art keywords
conductive particles
electrode
fine
connection structure
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20971494A
Other languages
Japanese (ja)
Other versions
JPH0878075A (en
Inventor
泰史 後藤
共久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP20971494A priority Critical patent/JP3360772B2/en
Priority to TW084104387A priority patent/TW277152B/zh
Priority to KR1019950011298A priority patent/KR100377603B1/en
Priority to CNB021593922A priority patent/CN1230834C/en
Priority to EP95303147A priority patent/EP0691660B1/en
Priority to DE69535293T priority patent/DE69535293T2/en
Priority to CN95105708A priority patent/CN1118832C/en
Publication of JPH0878075A publication Critical patent/JPH0878075A/en
Priority to US08/890,342 priority patent/US6042894A/en
Priority to KR1020020044740A priority patent/KR100377992B1/en
Application granted granted Critical
Publication of JP3360772B2 publication Critical patent/JP3360772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はLCD、TAB型IC、
ベアチップIC等のほぼ同一平面上に微細電極を持つ電
子部品における、新規な微細電極接続構造およびこれを
利用した導通検査方法に関する。
The present invention relates to an LCD, a TAB type IC,
The present invention relates to a novel fine electrode connection structure for an electronic component such as a bare chip IC having fine electrodes on substantially the same plane, and a continuity inspection method using the same.

【0002】[0002]

【従来の技術】電子機器の小形薄形化に伴い、LCD
(液晶ディスプレイ)等のフラットパネルディスプレイ
が従来のCRTに代わり多くの製品に適用されてきた。
このLCDは表示画質の向上のため画素密度が大きくな
り、これに伴い画像信号を入力する電極も高密度、高精
細化している。また、LCDへの画像信号を出力するの
に用いられているTAB型ICの電極も同様に高密度、
高精細化している。これらの電子部品を実装する時の微
細電極の接続は従来の半田やゴムコネクタなどでは対応
が困難であることから、最近では異方導電性の接着剤や
フィルムからなる接続部材が多用されるようになってき
た。また、LCDや他の電子部品でベアチップを直接基
板に実装する製品も多くなってきている。これらのLC
D、TAB型IC、ベアチップIC等の電子部品を実装
する前の機能検査における微細電極の接続は、従来より
針状の電極を電子部品の電極に圧接し電気的な接続を得
る治具であるピンプローブで行われている。
2. Description of the Related Art As electronic devices become smaller and thinner, LCDs
Flat panel displays such as (liquid crystal displays) have been applied to many products instead of conventional CRTs.
In this LCD, the pixel density is increased in order to improve the display image quality, and accordingly, the electrodes for inputting image signals are also increased in density and definition. Similarly, TAB type IC electrodes used to output image signals to LCDs have a high density,
High definition. The connection of fine electrodes when mounting these electronic components is difficult with conventional solder or rubber connectors, so recently connection members made of anisotropically conductive adhesives or films have been used frequently. It has become In addition, many products that directly mount a bare chip on a substrate using an LCD or other electronic components are increasing. These LCs
The connection of fine electrodes in a function test before mounting electronic components such as D, TAB type ICs, bare chip ICs, etc. is a jig that obtains electrical connection by pressing a needle-like electrode against an electrode of an electronic component conventionally. This is done with a pin probe.

【0003】また、他に以下に先行技術文献として示し
たような接続構造が提案されている。実開昭53−15
6569号公報、特開昭54−67672号公報等に開
示されている接続構造は、被検査物である電子部品の電
極部と検査用基板との間に異方導電性のゴムシートを狭
持し電気的接続をするものである。この異方導電性ゴム
シートは導電性ゴムと絶縁性ゴムを積層したゼブラゴム
や絶縁性のゴムシートに導電性粒子を均一分散したも
の、絶縁性ゴムシートの厚さ方向に導電性短繊維を配向
させたものである。
[0003] In addition, there have been proposed other connection structures as shown in the prior art documents. 53-15
No. 6569, Japanese Unexamined Patent Publication No. Sho 54-67672 discloses a connection structure in which an anisotropic conductive rubber sheet is sandwiched between an electrode portion of an electronic component to be inspected and a substrate for inspection. Electrical connection. This anisotropic conductive rubber sheet is made of zebra rubber in which conductive rubber and insulating rubber are laminated or conductive rubber particles uniformly dispersed in an insulating rubber sheet, and conductive short fibers are oriented in the thickness direction of the insulating rubber sheet. It was made.

【0004】また特開平3−183974号公報に開示
されている接続構造は、上記の異方導電ゴムシートの精
細性を改善する目的で、導電性粒子を電極相当位置に極
在化させた接続構造も提案されている。特開昭59−1
55769号公報や実開昭59−163967号公報に
開示されている方法は、可撓性フィルムに形成した導電
パターンと被検査物である電子部品の電極部を直接接触
させて電気的接続を行うもので、特開昭61−2338
号公報、特開平1−128381号公報、特公平2−4
4747号公報、特公平3−22367号公報等に開示
されているように上記導電パターン上に導電性の突起を
設け、この突起と電子部品の電極部を直接接触させて電
気的接続を行うものも知られている。また、実開平5−
18031号公報に開示されているように、電気絶縁性
の高分子フィルムを貫通して突起電極が設けられた異方
導電性フィルムを被検査物と特性検査用のプリント基板
の間で狭持し電気的な接続を得る接続構造も提案されて
いる。
A connection structure disclosed in Japanese Patent Application Laid-Open No. Hei 3-183974 has a connection structure in which conductive particles are localized at positions corresponding to electrodes for the purpose of improving the definition of the anisotropic conductive rubber sheet. Structures have also been proposed. JP-A-59-1
The methods disclosed in Japanese Patent Application No. 55679 and Japanese Utility Model Application Laid-Open No. 59-163967 perform an electrical connection by directly contacting a conductive pattern formed on a flexible film with an electrode part of an electronic component to be inspected. And JP-A-61-2338.
JP, JP-A-1-128381, JP-B2-4
Japanese Patent Application Laid-Open No. 4747/1995, Japanese Patent Publication No. 3-22367, etc. provide a conductive projection on the conductive pattern and make an electrical connection by directly contacting the projection with an electrode portion of an electronic component. Is also known. In addition,
As disclosed in Japanese Patent Publication No. 18031, an anisotropic conductive film provided with a protruding electrode through an electrically insulating polymer film is sandwiched between an object to be inspected and a printed circuit board for characteristic inspection. A connection structure for obtaining an electrical connection has also been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
従来技術による接続構造では、高精細な電極に対応でき
ない、高価である、電極の高さのばらつきを吸収できず
電気的接続性が劣る等の問題点があった。具体的には、
プローブを用いた接続構造では各電極にプローブを圧接
しなければならないので電極の高精細化に伴いプローブ
も微細なものが必要になり、プローブ製造に高度の技術
が必要となる。また、多数のプローブを電極の位置に合
わせて配列させることも容易ではなく製造コストも大き
なものとなってしまう等の問題点があった。ゼブラゴム
や導電体を均一分散した異方導電性のゴムシートを用い
る方法でも高精細な電極に対応することが困難で、隣接
電極間の絶縁性が保持できなくなる、接続抵抗が高い等
の問題点があった。導電性粒子を電極相当位置に極在化
した異方導電性ゴムシートは電極表面が有機物で汚染さ
れていたり、酸化物層がある場合にこの表面の絶縁層を
除去しにくく接続抵抗が高くなるという問題点があっ
た。
However, the connection structure according to the prior art described above cannot cope with high-definition electrodes, is expensive, cannot absorb variations in electrode height, and has poor electrical connectivity. There was a problem. In particular,
In a connection structure using a probe, the probe must be pressed into contact with each electrode. Therefore, a finer probe is required as the definition of the electrode is increased, and a high level of technology is required for the manufacture of the probe. Further, there is a problem that it is not easy to arrange a large number of probes in accordance with the positions of the electrodes, and the manufacturing cost becomes large. Even with the method of using a zebra rubber or an anisotropically conductive rubber sheet in which conductors are uniformly dispersed, it is difficult to cope with high-definition electrodes, the insulation between adjacent electrodes cannot be maintained, and the connection resistance is high. was there. The anisotropic conductive rubber sheet, in which conductive particles are poled at the position corresponding to the electrode, makes it difficult to remove the insulating layer on the surface of the electrode if the electrode surface is contaminated with organic matter or has an oxide layer, and the connection resistance increases. There was a problem.

【0006】可撓性フィルムに形成した導電パターンと
被検査物である電子部品の電極部を直接接触させて電気
的接続を行う接続構造や電気絶縁性の高分子フィルムを
貫通して突起電極が設けられた異方導電性フィルムを被
検査物と特性検査用のプリント基板の間で狭持し電気的
な接続を得る接続構造では、導電パターンや突起電極が
銅、金等の金属でできており、弾性変形量が小さいので
被検査物の電極間の高さのばらつきは接続する基板の可
撓性とフィルム基材の可撓性によるたわみ変形で追従す
る必要があり、このばらつきが大きい場合には接続性が
低下するという問題点があった。また、一般のプリント
配線板やIC等では電極間にソルダーレジストや絶縁保
護膜があるために電極がこれらの面よりも低い場合が多
く、電極部のみに限定して突起電極を設けなければなら
ないという問題があった。本発明はかかる状況に鑑みて
なされたもので、微細電極でも確実に低抵抗の電気的な
接続が得られる新規な接続構造体を提供せんとするもの
である。
A conductive structure formed on a flexible film and an electrode portion of an electronic component to be inspected are brought into direct contact with each other to make an electrical connection, and a protruding electrode penetrates through an electrically insulating polymer film. In the connection structure in which the provided anisotropic conductive film is sandwiched between the object to be inspected and the printed circuit board for characteristic inspection to obtain an electrical connection, the conductive pattern and the protruding electrodes are made of a metal such as copper or gold. Since the amount of elastic deformation is small, it is necessary to follow the variation in the height between the electrodes of the inspection object by the bending deformation due to the flexibility of the connecting substrate and the flexibility of the film base material. Has a problem that the connectivity is reduced. Further, in general printed wiring boards and ICs, since there is a solder resist or an insulating protective film between the electrodes, the electrodes are often lower than these surfaces, and a protruding electrode must be provided only in the electrode portion. There was a problem. The present invention has been made in view of such a situation, and an object of the present invention is to provide a novel connection structure capable of reliably obtaining a low-resistance electrical connection even with a fine electrode.

【0007】[0007]

【課題を解決するための手段】かかる目的は本発明によ
れば、電子部品の電極部とこの電極と相対峙した電極を
持つ電子部品の間に、表裏に露出した弾性を有する導電
性粒子を介して厚み方向にのみ導電性を有する異方導電
性樹脂フィルム状成形物を狭持して電気的な接続を得る
ことを特徴とした微細電極接続構造とすることで達成さ
れる。すなわち、この微細電極の接続構造を非検査物で
ある微細電極を持つ電子部品と検査装置に接続された検
査用基板の接続構造として用いることで、従来の方法で
は困難であったLCDの表示検査、LCDを構成してい
る素子の動作検査、ベアチップIC、TAB型ICの動
作検査あるいはプリント配線板の導通検査等を行うこと
ができるようになった。
According to the present invention, according to the present invention, elastic conductive particles exposed on the front and back surfaces are provided between an electrode part of an electronic component and an electronic component having an electrode facing the electrode. This is achieved by providing a fine electrode connection structure characterized by obtaining an electrical connection by sandwiching an anisotropic conductive resin film-shaped molded product having conductivity only in the thickness direction through the intermediary. In other words, by using the connection structure of the fine electrodes as a connection structure between an electronic component having a fine electrode which is a non-inspection object and an inspection substrate connected to an inspection device, an LCD display inspection which has been difficult by the conventional method. In addition, it has become possible to perform an operation inspection of an element constituting an LCD, an operation inspection of a bare chip IC, a TAB type IC, a conduction inspection of a printed wiring board, and the like.

【0008】本発明で用いられる異方導電性樹脂フィル
ム状成形物は樹脂フィルムの面方向に弾性を有する導電
性粒子が単層で分散配置されており、個々の導電性粒子
の表面の一部が樹脂フィルムの両面から露出または突出
した構造を持つ。この導電性粒子の種類は弾性を有して
いれば特に限定されるものではなく、導電性ゴムや導電
性プラスチックからなる粒子、およびゴムやプラスチッ
ク粒子の表面に金属のめっき層を形成した粒子等を単独
または複合して用いることができる。弾性は導電性が低
下することなく、弾性変形域が広いほど電極高さのばら
つきや導電性粒子の粒径のばらつきを吸収し良好な電気
的接続が可能となる。プラスチック粒子の表面に金属の
めっき層を形成した粒子は種々の弾性率を持ったプラス
チック粒子が市販されており、めっきも種々の金属が選
択できるので好ましい。めっきは種々の金属を単独ある
いは複合した構成で用いられ、例えばNi−Auめっき
やはんだ合金等が使用できるが、特に導電性粒子の弾性
変形に追従しやすい展延性の大きな金属が好ましく、A
u、Pt等の展延性の大きな合金が好ましい。
[0008] The anisotropic conductive resin film-like molded product used in the present invention has a single layer of conductive particles having elasticity dispersed in the surface direction of the resin film, and a part of the surface of each conductive particle. Has a structure exposed or projected from both sides of the resin film. The type of the conductive particles is not particularly limited as long as it has elasticity, such as particles made of conductive rubber or conductive plastic, and particles formed by forming a metal plating layer on the surface of rubber or plastic particles. Can be used alone or in combination. Elasticity does not decrease the conductivity, and the wider the elastic deformation region, the more the variation in the electrode height and the variation in the particle size of the conductive particles are absorbed, and good electrical connection becomes possible. As the particles having a metal plating layer formed on the surface of the plastic particles, plastic particles having various elastic moduli are commercially available, and various metals can be selected for plating. Plating is used in a configuration in which various metals are used alone or in combination. For example, Ni-Au plating, a solder alloy, or the like can be used. In particular, a metal having large extensibility that easily follows elastic deformation of conductive particles is preferable.
Alloys with high extensibility such as u and Pt are preferable.

【0009】めっきで導電性を付与した導電性粒子は、
表面に微細な孔を持つプラスチック粒子を用い、この孔
の内面にめっきを施すことで表面のめっき層が粒子変形
時に容易に剥離することがなくなり好ましい。さらに、
この孔をプラスチック粒子の表面と内部で互いに連通し
たスポンジ状とし、孔内部にめっきを施すことで粒子内
部に導電経路をもつ導電性粒子ができる。この導電性粒
子は、めっき粒子表面の導電層の剥離による導電性低下
がなく、導電フィラーを分散した導電ゴム粒子よりも抵
抗が小さく好ましい。
The conductive particles provided with conductivity by plating include:
It is preferable to use plastic particles having fine pores on the surface and to apply plating to the inner surfaces of the pores, since the plating layer on the surface does not easily peel off when the particles are deformed. further,
The holes are formed in a sponge shape communicating with each other on the surface and inside of the plastic particles, and the inside of the holes is plated to form conductive particles having a conductive path inside the particles. The conductive particles do not have a decrease in conductivity due to peeling of the conductive layer on the surface of the plating particles, and have a smaller resistance than the conductive rubber particles in which the conductive filler is dispersed, and thus are preferable.

【0010】また、接続する電極の表面に有機物や金属
酸化物等からなる絶縁性薄膜が存在する時、導電性粒子
の表面に微細な突起を設けることで接続時に絶縁性薄膜
を押し破り抵抗が小さく安定した接続が得られる。この
微細な突起は堅く展延性の小さな物質が適していること
から、導電性粒子のめっき金属とは異なる物質を粒子表
面に固着させることで導電性に優れた導電性粒子が得ら
れる。製法は導電性粒子のめっき処理時にめっき金属粒
子を析出させ導電性粒子表面に固着させる方法や導電性
粒子のめっき処理をシリカ等の無機微粒子やNi等の金
属微粒子を分散しためっき浴中で行い、導電性粒子表面
に固着させる方法等が可能である。
Further, when an insulating thin film made of an organic substance, a metal oxide, or the like is present on the surface of the electrode to be connected, fine protrusions are provided on the surface of the conductive particles to push the insulating thin film at the time of connection to reduce resistance. A small and stable connection is obtained. Since these fine protrusions are made of a material that is hard and has small spreadability, a conductive material having excellent conductivity can be obtained by fixing a material different from the plating metal of the conductive particles on the particle surface. The production method is a method of depositing plating metal particles during the plating treatment of the conductive particles and fixing them to the surface of the conductive particles, and performing the plating treatment of the conductive particles in a plating bath in which inorganic fine particles such as silica or metal fine particles such as Ni are dispersed. And a method of fixing the conductive particles to the surface of the conductive particles.

【0011】導電性粒子の粒径は接続する電極の細かさ
により選択されるが、各粒子の粒径はできるだけ均一で
ある必要がある。本考案は微細電極の接続で有用である
ことから特に5〜100μmの粒径が好ましい。粒径分
布は標準偏差が粒径の10%以下の均一粒径のものが好
ましい。形状は微細電極の接続のために粒子の大きさを
均一にする上で真球状が好ましい。
Although the particle size of the conductive particles is selected depending on the fineness of the electrode to be connected, the particle size of each particle needs to be as uniform as possible. Since the present invention is useful for connecting fine electrodes, a particle size of 5 to 100 μm is particularly preferable. The particle size distribution preferably has a uniform particle size with a standard deviation of 10% or less of the particle size. The shape is preferably spherical in order to make the particle size uniform for connection of the fine electrode.

【0012】フィルム面での導電性粒子の配列は接続す
る電極の位置に対応して1個以上の導電性粒子を配置し
たり、定ピッチの格子状や千鳥状等にして導電性粒子と
電極の位置合わせを不要とすることもできるが、電極の
精細性と導電性粒子の粒径や分布密度に応じて選択す
る。フィルム形成樹脂は、導電性粒子のバインダーとし
て作用しフィルム状に成形可能なものである。具体的に
は溶剤に可溶な各種合成樹脂やエラストマーの他、ポリ
エチレン、酢酸ビニル、ポリプロピレン等の熱可塑性樹
脂や高耐熱性を有したポリエーテルスルホン、ポリエー
テルイミド、ポリイミド等の樹脂やエポキシ樹脂、フェ
ノール樹脂等の熱硬化性樹脂、アクリロイル基を有する
ウレタンアクリレート、エポキシアクリレート等の光硬
化性樹脂を用いることができる。これらのフィルム形成
樹脂のうちでも特に熱硬化性樹脂や光硬化性樹脂は、網
状構造を形成して硬化しているので耐熱性に優れてお
り、高い接続信頼性が得られることからフィルム形成樹
脂の一部として使用されることが望ましい。樹脂フィル
ム成形物の厚みは特に限定するものではないが、前記の
通り、厚くなると使用する導電性粒子の粒径が大きくな
り、分解能が低下するため微細な電極の接続に不向きで
ある。また、薄くなると取り扱いが容易ではなく、しわ
の発生等により製造が困難になってくることから1〜1
00μmが適当である。
[0012] The arrangement of the conductive particles on the film surface is such that one or more conductive particles are arranged corresponding to the position of the electrode to be connected, or the conductive particles and the electrode are arranged in a lattice or staggered pattern at a constant pitch. Although it is possible to eliminate the need for alignment, the selection is made in accordance with the fineness of the electrode and the particle size and distribution density of the conductive particles. The film-forming resin acts as a binder for the conductive particles and can be formed into a film. Specifically, in addition to various synthetic resins and elastomers soluble in solvents, thermoplastic resins such as polyethylene, vinyl acetate, and polypropylene, and resins having high heat resistance, such as polyether sulfone, polyetherimide, and polyimide, and epoxy resins , A thermosetting resin such as a phenolic resin, or a photocurable resin such as an urethane acrylate or an epoxy acrylate having an acryloyl group. Among these film-forming resins, thermosetting resins and photo-curing resins are particularly excellent in heat resistance because they form a network structure and are cured, and high connection reliability is obtained. Is desirably used as part of Although the thickness of the resin film molded product is not particularly limited, as described above, as the thickness increases, the particle size of the conductive particles to be used increases, and the resolution is reduced, so that it is not suitable for connection of fine electrodes. Further, when the thickness is reduced, the handling is not easy, and the production becomes difficult due to generation of wrinkles and the like.
00 μm is appropriate.

【0013】本発明の接続構造を電子部品の検査装置に
利用する場合、検査用基板は被検査物である電子部品の
微細電極と、この被検査物の入力信号を出力したり出力
信号を取り込む装置の電極とを電気的に接続するための
ものである。一般にPCB、FPC等の電極基板が使用
できるが、平面性に優れ、電極高さのばらつきが少な
く、微細な電極が容易に形成でき、温度や湿度の寸法安
定性に優れたガラス基板やセラミック基板に薄膜の電極
を形成したものが最も好ましい。また透明なガラス基板
は電極間の位置合わせも容易にできる利点を有してい
る。隣接した電極間の高さのばらつきはおよそ10μm
以下が好ましく1μm以下はより好ましい。電極の作製
には金属箔のエッチング、めっき、蒸着、スパッタ等の
方法がとれ、これらを組み合わせた方法でもよい。微細
な電極部はめっき、蒸着、スパッタが適しているが、粗
い回路や電極部は電極厚みが厚く抵抗の低い金属箔のエ
ッチングが良い。
When the connection structure of the present invention is used in an inspection device for an electronic component, the inspection substrate includes a fine electrode of the electronic component to be inspected, and outputs an input signal or an output signal of the inspection object. It is for electrically connecting the electrodes of the device. Generally, electrode substrates such as PCBs and FPCs can be used, but glass substrates and ceramic substrates with excellent flatness, small variations in electrode height, easy formation of fine electrodes, and excellent temperature and humidity dimensional stability. It is most preferable that a thin film electrode is formed thereon. Further, a transparent glass substrate has an advantage that alignment between electrodes can be easily performed. Height variation between adjacent electrodes is about 10 μm
Or less, more preferably 1 μm or less. The electrode may be manufactured by a method such as etching, plating, vapor deposition, or sputtering of a metal foil, or a combination of these methods. Plating, vapor deposition, and sputtering are suitable for fine electrode portions, but etching of a metal foil having a large electrode thickness and low resistance is preferable for a rough circuit or an electrode portion.

【0014】接続する電子部品は液晶表示パネル、ベア
チップIC、TAB型IC、プリント配線板等に適応で
きるが、特に電極が微細で多数有り、隣接する電極高さ
のばらつきが小さいLCD、ベアチップICやTAB型
IC電子部品に有用である。これらの隣接する電極高さ
のばらつきは10μm以下が好ましく1μm以下はより
好ましい。
The electronic components to be connected can be applied to a liquid crystal display panel, a bare chip IC, a TAB type IC, a printed wiring board, etc. In particular, there are LCDs, bare chip ICs, It is useful for TAB type IC electronic components. The variation in the height of these adjacent electrodes is preferably 10 μm or less, more preferably 1 μm or less.

【0015】本発明の接続構造は電極間を押圧状態で保
持したり、接着剤で接着したりして永続的な実装形態に
用いることができるが、接触で導通し接続の着脱が容易
に行えることから、電子部品の動作検査等の一時的な接
続に適している。この時、検査用基板側のみの電極部に
異方導電性樹脂フィルム状成形物を接着し、取り扱い性
を向上させることも可能である。
The connection structure of the present invention can be used for permanent mounting by holding the electrodes in a pressed state or bonding them with an adhesive. However, the connection is made conductive and the connection can be easily attached and detached. Therefore, it is suitable for temporary connection such as operation inspection of electronic components. At this time, it is also possible to improve the handleability by bonding the anisotropic conductive resin film-shaped molded product to the electrode portion only on the inspection substrate side.

【0016】異方導電性樹脂フィルム状成形物の製造方
法は特に限定しないが、一例として以下の方法で作製で
きる。導電性粒子を粘着剤面に散布することにより粘着
剤面に導電性粒子を面方向に配列した状態で固定した
後、フィルム形成樹脂を塗布し導電性粒子間に充填す
る。この後フィルム形成樹脂を乾燥あるいは硬化し、粒
子上のフィルム形成樹脂を除去することによりフィルム
の厚さ方向にのみ導電性を有する樹脂フィルム成形物と
する。本発明で粘着剤面上に透孔を有するマスクを載置
し、導電性粒子を散布することにより透孔内の粘着剤面
にのみ導電性粒子を付着させることができる。これによ
り導電性粒子を格子状や千鳥格子状に配列させてフィル
ムの面方向の絶縁性を制御したり、電極位置にのみ導電
性粒子を配列したりすることができる。例えば透孔を導
電性粒子が2個以上粘着剤面に付着しない大きさにすれ
ば、個々の粒子間で絶縁性が保持される異方導電性樹脂
フィルム状成形物が得られる。また、本発明の接続構造
は、上記した電極の接続構造だけではなくスイッチ部
材、多層回路部材等への応用が可能である。
The method for producing the anisotropic conductive resin film-shaped molded product is not particularly limited, but it can be produced by the following method as an example. After the conductive particles are dispersed on the pressure-sensitive adhesive surface and fixed in a state where the conductive particles are arranged in the plane direction, a film-forming resin is applied and filled between the conductive particles. Thereafter, the film-forming resin is dried or cured, and the film-forming resin on the particles is removed to obtain a resin film molded product having conductivity only in the thickness direction of the film. In the present invention, a mask having a through-hole is placed on the surface of the pressure-sensitive adhesive, and the conductive particles are sprayed, whereby the conductive particles can be attached only to the surface of the pressure-sensitive adhesive in the hole. This makes it possible to arrange the conductive particles in a lattice shape or a staggered lattice shape to control the insulating property in the plane direction of the film, or to arrange the conductive particles only at the electrode positions. For example, if the size of the through-hole is such that two or more conductive particles do not adhere to the surface of the pressure-sensitive adhesive, an anisotropic conductive resin film-like molded product in which insulation between individual particles is maintained can be obtained. Further, the connection structure of the present invention can be applied not only to the above-described electrode connection structure but also to a switch member, a multilayer circuit member, and the like.

【0017】[0017]

【作用】本発明の微細電極接続構造によれば、従来に比
べ高精細な電極間の確実な電気的接続が可能となる。以
下に、より詳細に本発明の作用を説明する。図1は本発
明の微細電極接続構造の一例の断面図を示したものであ
る。図1(A)に示したように電極5−5間に異方導電
性樹脂フィルム状成形物3を狭持することで電極間が導
通する。この時導電性粒子1は加圧により変形する弾性
粒子であるので、電極間の高さのばらつきがあっても導
電性粒子が変形して確実に導通することができる。ま
た、図1(B)に示したように、電極間にソルダーレジ
スト等の絶縁層6があり電極が凸でなくても導電性粒子
が変形するので電極部のみに導電性粒子を配置する必要
がない。図2は従来の金属粒子を用いた時の接続断面図
を示した。図2(A)に示したように金属粒子7は電極
間の高さのばらつきや金属粒子の大きさのばらつきを吸
収できるほど弾性変形しないので、これらは接続する基
板の可撓性と金属粒子間のバインダーであるフィルム基
材の可撓性による変形で吸収しなければならず、電極間
のピッチが小さくなり、電極高さのばらつきが大きい場
合には金属粒子が電極に接触しない場合が生じる。ま
た、図2(B)に示したように、電極間にソルダーレジ
スト等の絶縁層6があり電極が凸でない場合には、電極
間に導電性粒子が存在すると電極と導電性粒子の接触が
できなくなるので、電極部のみに導電性粒子を配置する
必要がある。
According to the fine electrode connection structure of the present invention, reliable electrical connection between the electrodes can be achieved with higher definition than before. Hereinafter, the operation of the present invention will be described in more detail. FIG. 1 is a sectional view showing an example of the fine electrode connection structure of the present invention. As shown in FIG. 1A, the electrodes are electrically connected by sandwiching the anisotropic conductive resin film-shaped molded product 3 between the electrodes 5-5. At this time, since the conductive particles 1 are elastic particles that are deformed by pressurization, the conductive particles can be reliably deformed to conduct even if there is a variation in height between the electrodes. Further, as shown in FIG. 1 (B), since there is an insulating layer 6 such as a solder resist between the electrodes and the conductive particles are deformed even if the electrodes are not convex, it is necessary to dispose the conductive particles only in the electrode portion. There is no. FIG. 2 shows a cross-sectional view of connection when using conventional metal particles. As shown in FIG. 2A, the metal particles 7 do not deform elastically enough to absorb variations in height between the electrodes and variations in the size of the metal particles. It must be absorbed by the deformation due to the flexibility of the film base material that is the binder between them, the pitch between the electrodes becomes small, and when the variation in the electrode height is large, the metal particles may not contact the electrodes . In addition, as shown in FIG. 2B, when there is an insulating layer 6 such as a solder resist between the electrodes and the electrodes are not convex, the contact between the electrodes and the conductive particles is caused by the presence of the conductive particles between the electrodes. Therefore, it is necessary to dispose conductive particles only in the electrode portion.

【0018】導電性粒子の粒径は均一である方が変形量
が電極間の高さのばらつき量のみを変形により吸収すれ
ばよくなるので好ましい。この導電性粒子の材質は導電
性高分子や樹脂中に導電性充填剤を分散したもの等が適
用できるが、均一粒径のプラスチック粒子の表面にめっ
きにより金属薄膜を生成したものが市販で容易に入手可
能である。この時導電性は表面の金属薄膜で調整でき、
変形性や弾性はプラスチック粒子の材質で調整できるの
で、適切な組み合わせが広い範囲で選択できる利点があ
る。また、導電性粒子の変形に伴い表面の金属薄層も変
形しなければならないので、PtやAu等の展延性が大
きな金属や合金は導電性粒子の変形時の剥離や割れが発
生しにくく好ましい。
It is preferable that the particle size of the conductive particles be uniform because the deformation amount can be absorbed only by the deformation amount of the height difference between the electrodes. As the material of the conductive particles, a material in which a conductive filler is dispersed in a conductive polymer or a resin can be used, and a material in which a metal thin film is formed by plating the surface of plastic particles having a uniform particle size is easily commercially available. Is available at At this time, the conductivity can be adjusted by the metal thin film on the surface,
Since the deformability and elasticity can be adjusted by the material of the plastic particles, there is an advantage that an appropriate combination can be selected in a wide range. In addition, since the thin metal layer on the surface must also be deformed in accordance with the deformation of the conductive particles, a metal or alloy having a large spreadability such as Pt or Au is preferable because peeling or cracking of the conductive particles during deformation is less likely to occur. .

【0019】導電性粒子表面の金属薄層の剥離や割れの
防止は、導電性粒子の表面の凹凸によるアンカー効果で
密着力を高める方法が有効である。よって、表面に微細
な孔を持つプラスチック粒子にめっきをすると孔の内面
に金属薄層が生成し高い密着性が得られる。さらに、こ
の孔が表面のみでなく内部まで存在し、それぞれの孔が
互いに連結した状態であればプラスチック粒子内部に導
電路が形成され、表面の金属薄層の割れや剥離を懸念す
ることのない変形性の導電性粒子が得られる。このよう
な変形性の導電性粒子を用いると接続圧接時に電極を導
電性粒子で変形させてしまうことがなく、電子部品の検
査等に用いるのに適している。
In order to prevent the thin metal layer on the surface of the conductive particles from peeling or cracking, it is effective to increase the adhesion by the anchor effect due to the unevenness of the surface of the conductive particles. Therefore, when plating is performed on plastic particles having fine holes on the surface, a thin metal layer is formed on the inner surface of the holes, and high adhesion is obtained. Furthermore, if these holes exist not only on the surface but also inside, if the holes are connected to each other, a conductive path is formed inside the plastic particles, and there is no concern about cracking or peeling of the thin metal layer on the surface. Deformable conductive particles are obtained. When such deformable conductive particles are used, the electrodes are not deformed by the conductive particles at the time of connection pressure welding, and are suitable for use in inspection of electronic components and the like.

【0020】また、通常の電子部品の取り扱いで電極の
表面が有機物で汚染されてしまっていたり、金属酸化物
の絶縁性薄膜で被覆されてしまっていることはよくある
ことであり、この絶縁層に貫入して清浄な電極部同士を
接続しなければ抵抗が大きくなり良好な接続が得られな
い場合がある。この絶縁層を貫入した接続は導電性粒子
の堅さを調節することでも可能であるが、前記のように
電極の損傷しない範囲内で適切な堅さを選択しなければ
ならない。しかし、導電性粒子表面の金属薄層に絶縁層
に貫入する硬度を持った微細な突起を設けることで、接
続時に突起部に大きな圧力がかかり導電性粒子の堅さに
よることなく良好な接続が得られる。この微細な突起は
表面が導電性であればこの目的を達成できるので突起内
部は非導電性のものであってもよく、例えば硬度の大き
なシリカ微粒子やガラス微粒子を導電性粒子表面に付
け、この絶縁性微粒子表面をめっきで覆うことで達成で
きる。導電性の微粒子を付けて突起を設ける場合には、
例えば、表面に刺状の突起があり堅いNi微粒子を用い
ると電極表面の絶縁層に貫入しやすく良好な接続が得ら
れる。この突起は微粒子を付着させる方法以外にも、め
っき条件によりめっき表面に凹凸を生成させる方法や一
度酸化させ突起状の酸化物を形成してから還元する方法
等を用いることができる。
It is common that the surface of an electrode is contaminated with an organic substance or covered with an insulating thin film of a metal oxide in the usual handling of electronic parts. If the electrodes are not penetrated and clean electrode portions are not connected to each other, the resistance may increase and good connection may not be obtained. The connection penetrating the insulating layer can be made by adjusting the hardness of the conductive particles, but as described above, an appropriate hardness must be selected within a range where the electrode is not damaged. However, by providing fine protrusions with hardness that penetrates the insulating layer on the thin metal layer on the surface of the conductive particles, a large pressure is applied to the protrusions at the time of connection, and good connection can be achieved without depending on the hardness of the conductive particles. can get. If the surface of the fine projections is electrically conductive, this object can be achieved if the surface is electrically conductive, so the interior of the projections may be non-conductive.For example, silica fine particles or glass fine particles having high hardness are attached to the surface of the conductive particles. This can be achieved by covering the surface of the insulating fine particles with plating. When providing projections with conductive fine particles,
For example, when hard Ni fine particles having barbed protrusions on the surface are used, it is easy to penetrate into the insulating layer on the electrode surface, and good connection can be obtained. In addition to the method of attaching fine particles to the projections, a method of forming irregularities on the plating surface depending on plating conditions, a method of once oxidizing to form a projection-like oxide, and then reducing the same can be used.

【0021】本発明の接続構造では、異方導電性樹脂フ
ィルム状成形物の表面に接着剤層を設けて基板間を接着
固定した接続構造とすることができるが、接触のみで導
電する特徴を利用して接着せずに着脱可能な接続構造と
してもよい。この着脱可能な接続構造を、例えば電子部
品の検査に用いる場合には、導電性粒子が変形性がある
ためFPC等の可撓性のある基板の他に、PCB、ガラ
ス、セラミック等の変形性の小さな堅い検査用基板を使
用することができる。これらの堅い基板は表面の研磨等
で高い平面性を持たせることが可能である。また、この
基板の電極は一般的な金属箔のエッチングにより作製し
た電極が使用できるが、導電体のめっき、蒸着、スパッ
タ等による薄膜電極とすることで、検査用基板の電極高
さのばらつきを小さくすることが可能となり、より好ま
しい。また、この検査用基板に異方導電性樹脂フィルム
状成形物を接着して使用することで微細電極に対応した
薄いフィルムでも繰り返しの接続操作において損傷しに
くくなり、より取り扱い性を改善することができる。L
CD、ベアチップIC、TAB型IC、プリント配線板
等は、電極高さのばらつきが小さいので、これらの検査
時における接続構造として特に適している。
In the connection structure of the present invention, an adhesive layer can be provided on the surface of the anisotropic conductive resin film-like molded product to form a connection structure in which the substrates are bonded and fixed. The connection structure may be detachable without using and bonding. When this detachable connection structure is used, for example, for inspection of electronic components, the conductive particles are deformable because of the deformability of the conductive particles. Small rigid test substrates can be used. These rigid substrates can have high flatness by polishing the surface or the like. The electrode of this substrate can be an electrode produced by etching a general metal foil.However, by using a thin-film electrode formed by plating, vapor deposition, sputtering or the like of a conductor, variations in the electrode height of the inspection substrate can be reduced. It is possible to reduce the size, which is more preferable. In addition, by using an anisotropic conductive resin film-shaped molded product bonded to this inspection substrate, even a thin film corresponding to a fine electrode is less likely to be damaged by repeated connection operations, and it is possible to further improve the handleability. it can. L
CDs, bare chip ICs, TAB type ICs, printed wiring boards, and the like have a small variation in electrode height, and thus are particularly suitable as a connection structure at the time of inspection.

【0022】[0022]

【実施例】以下、本発明の実施例に基づいて詳細を説明
するが、本発明はこれに限定されるものではない。以下
に示した実施例と比較例の評価結果は第1表に示した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to embodiments, but the present invention is not limited thereto. Table 1 shows the evaluation results of the examples and comparative examples shown below.

【0023】実施例1 導電性粒子は平均粒径40μmのポリスチレン球状粒子
の表面に0.2μmのAu層を設けたプラスチック導電
性粒子を用いた。この導電性粒子の粒径分布の標準偏差
は2μm以下であった。異方導電性樹脂フィルム状成形
物の作製は、以下の方法で行った。目開き80μmのふ
るいを通して粉体を散布する乾式の粒子散布装置を用い
て、導電性粒子をPETフィルム上のシリコーン粘着剤
塗布面に散布した。このシリコーン粘着剤面にはあらか
じめ目開き50μmピッチ85μmのメッシュをマスク
として密着させておき、導電性粒子が格子状に配列する
ようにした。この粒子散布面に光硬化剤を添加したウレ
タンアクリレートオリゴマー溶液を塗工し、これを乾燥
後に紫外線を照射しフィルム形成樹脂を硬化した。これ
をイソプロパノール中に浸漬し未硬化のウレタンアクリ
レートオリゴマーを溶解除去したのち乾燥し、フィルム
形成樹脂とシリコーン粘着剤の界面から剥離した。接続
する基板は、ライン巾50μm、ピッチ100μm、高
さ約0.8μm、隣接した電極間の高さのばらつきの最
大値は約0.3μm以下のAuめっき電極を有する電極
長さ2mm、全電極巾50mmのガラス基板を使用し
た、この基板同士の電極を対峙して位置合わせを行った
後、この電極間に作製した異方導電性樹脂フィルム状成
形物を挿入し、10kg/cm2 の加圧より電極を圧接
した状態で接続抵抗を測定した。測定条件は、1対のガ
ラス基板間の接続抵抗を測定電流1mAで測定した。
Example 1 As conductive particles, plastic conductive particles having a polystyrene spherical particle having an average particle diameter of 40 μm and an Au layer of 0.2 μm provided on the surface were used. The standard deviation of the particle size distribution of the conductive particles was 2 μm or less. Preparation of the anisotropic conductive resin film-shaped molded product was performed by the following method. The conductive particles were sprayed on the surface of the PET film coated with the silicone adhesive, using a dry particle spraying device that sprays the powder through a sieve having openings of 80 μm. A mesh having openings of 50 μm and a pitch of 85 μm was brought into close contact with the surface of the silicone pressure-sensitive adhesive in advance as a mask so that the conductive particles were arranged in a lattice. A urethane acrylate oligomer solution to which a photo-curing agent was added was applied to the particle-dispersed surface, dried, and irradiated with ultraviolet rays to cure the film-forming resin. This was immersed in isopropanol to dissolve and remove uncured urethane acrylate oligomer, dried, and peeled from the interface between the film-forming resin and the silicone adhesive. The connecting substrate has a line width of 50 μm, a pitch of 100 μm, a height of about 0.8 μm, and a maximum variation in height between adjacent electrodes of about 2 μm. Using a glass substrate having a width of 50 mm, the electrodes of the substrates are opposed to each other and aligned. Then, an anisotropic conductive resin film-like molded product produced between the electrodes is inserted, and a 10 kg / cm 2 application is performed. The connection resistance was measured with the electrodes pressed against the pressure. The measurement conditions were such that a connection resistance between a pair of glass substrates was measured at a measurement current of 1 mA.

【0024】実施例2 実施例1の一方のガラス基板を、電極表面よりも平均で
約2μm高いソルダーレジスト層を持つプリント基板と
した。この電極は高さ18μmのCu電極とした。
Example 2 One of the glass substrates of Example 1 was a printed circuit board having a solder resist layer on average about 2 μm higher than the electrode surface. This electrode was a Cu electrode having a height of 18 μm.

【0025】実施例3 実施例1の導電性粒子を約0.01μmの孔を持つスポ
ンジ状のポリスチレン粒子の表面にAuめっきをした導
電性粒子とした。
Example 3 The conductive particles of Example 1 were formed by sponging polystyrene particles having pores of about 0.01 μm with Au plating applied to the surface thereof.

【0026】実施例4 実施例1の導電性粒子を一次粒径0.04μmのシリカ
微粒子を分散しためっき液中でプラスチック粒子の表面
にAuめっきをし、表面に付着したシリカ微粒子と導電
性粒子の表面がAuめっきで被覆された導電性粒子とし
た。また、実施例1のガラス基板の電極を高さ約0.7
μmのAl電極とした。
Example 4 The conductive particles of Example 1 were Au-plated on the surface of plastic particles in a plating solution in which silica fine particles having a primary particle size of 0.04 μm were dispersed, and the silica fine particles and the conductive particles adhered to the surface were plated. Were made into conductive particles coated with Au plating. Further, the electrode of the glass substrate of Example 1 was set to a height of about 0.7.
A μm Al electrode was used.

【0027】実施例5 実施例1の導電性粒子を一次粒径約3μmのNi微粒子
を分散しためっき液中でプラスチック粒子の表面にAu
めっきを行い、表面に付着したNi微粒子と導電性粒子
の表面がAuめっきで被覆された導電性粒子とした。ま
た、実施例1の一方のガラス基板を電極表面よりも平均
で約2μm高いソルダーレジスト層を持つプリント基板
とした。この電極は高さ18μmのCu電極とした。
Example 5 The conductive particles of Example 1 were plated with Au on the surface of plastic particles in a plating solution in which Ni fine particles having a primary particle size of about 3 μm were dispersed.
Plating was performed to obtain conductive particles in which the surfaces of the Ni fine particles and the conductive particles adhered to the surface were covered with Au plating. Further, one of the glass substrates of Example 1 was a printed circuit board having a solder resist layer that was higher than the electrode surface by about 2 μm on average. This electrode was a Cu electrode having a height of 18 μm.

【0028】実施例6 実施例1の異方導電性樹脂フィルム状成形物を一方のガ
ラス基板にエポキシ系接着剤で押圧しながら硬化して接
着した後、他方のガラス基板と接触押圧状態で保持し
た。
Example 6 The anisotropic conductive resin film-shaped molded article of Example 1 was cured and adhered to one glass substrate while being pressed with an epoxy adhesive, and then held in contact with the other glass substrate in a pressed state. did.

【0029】実施例7 異方導電性樹脂フィルム状成形物の両面にエポキシ系接
着剤を塗布し、ガラス基板間で押圧しながら硬化して両
方のガラス基板を接着固定した。
Example 7 An epoxy-based adhesive was applied to both surfaces of an anisotropically conductive resin film-shaped molded product, and cured by pressing between glass substrates to bond and fix both glass substrates.

【0030】比較例1 実施例1の導電性粒子をNi粒子とした。Comparative Example 1 The conductive particles of Example 1 were Ni particles.

【0031】比較例2 実施例1の導電性粒子をNi粒子とし、一方のガラス基
板を電極表面よりも平均で約2μm高いソルダーレジス
ト層を持つプリント基板とした。この電極は高さ18μ
mのCu電極とした。
Comparative Example 2 The conductive particles of Example 1 were Ni particles, and one glass substrate was a printed circuit board having a solder resist layer on average about 2 μm higher than the electrode surface. This electrode is 18μ high
m Cu electrode.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、来に比べ高精細な微細電極間の確実な電気的
接続が可能になった。
Effect of the Invention] As described above in detail, according to the present invention, reliable electrical connection between the high-resolution fine electrode compared to traditional becomes available.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる微細電極接続構造の一例におけ
る断面図を示したものである。
FIG. 1 is a sectional view showing an example of a fine electrode connection structure according to the present invention.

【図2】従来技術による微細電極接続構造の一例におけ
る断面図を示したものである。
FIG. 2 is a cross-sectional view illustrating an example of a fine electrode connection structure according to the related art.

【符号の説明】[Explanation of symbols]

1.導電性粒子 2.フィルム
形成樹脂 3.異方導電性樹脂フィルム状成形物 4.基板 5.電極 6.絶縁層 7.金属粒子 8.間隙によ
る導通不良部
1. 1. conductive particles 2. film-forming resin 3. Anisotropic conductive resin film-shaped molded product Substrate 5. Electrode 6. Insulating layer 7. Metal particles 8. Conduction failure due to gap

フロントページの続き (56)参考文献 特開 平6−51337(JP,A) 特開 平5−347464(JP,A) 特開 平2−306558(JP,A) 特開 平5−334912(JP,A) 特開 昭62−76215(JP,A) 特開 昭61−173471(JP,A) 特開 昭61−77278(JP,A) 実開 平5−79875(JP,U) 実開 昭61−201207(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01R 11/01 Continuation of front page (56) References JP-A-6-51337 (JP, A) JP-A-5-347464 (JP, A) JP-A-2-306558 (JP, A) JP-A-5-334912 (JP) , A) JP-A-62-76215 (JP, A) JP-A-61-173471 (JP, A) JP-A-61-77278 (JP, A) Japanese Utility Model No. 5-79875 (JP, U) Japanese Utility Model Application 61-201207 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01R 11/01

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 隣接する電極高さのばらつきが10μm
以下でほぼ同一平面上に微細電極を配した複数の電子部
品の電極部を相対峙させ、この対峙した電極間に樹脂フ
ィルムの面方向に弾性を有する導電性粒子が単層で直接
に分散配置され、導電性粒子の表面の一部が樹脂フィル
ムの両面から露出または突出した構造を有し、その導電
性粒子の粒径分布の標準偏差が平均粒径の10%以下で
ある導電粒子を介して厚み方向にのみ導電性を有する異
方導電性樹脂フィルム状成形物を狭持して、電気的な接
続を得ることを特徴とする微細電極接続構造。
1. A variation in height of adjacent electrodes is 10 μm.
In the following, the electrode portions of a plurality of electronic components having fine electrodes arranged on substantially the same plane are opposed to each other, and a resin foil is provided between the opposed electrodes.
Conductive particles that have elasticity in the plane of the film
And a part of the surface of the conductive particles is filled with resin.
Has a structure that is exposed or protrudes from both sides of the
When the standard deviation of the particle size distribution of the conductive particles is 10% or less of the average particle size
A microelectrode connection structure characterized in that an anisotropic conductive resin film-shaped molded product having conductivity only in the thickness direction is sandwiched via certain conductive particles to obtain electrical connection.
【請求項2】 導電性粒子が表面に微細な孔を持つか、
表面及び内部に互いに連通した微細な孔を持つプラスチ
ック粒子を用い孔の内面の一部または全部が金属で被覆
されるか、孔の一部または全部が金属で充填した導電性
粒子である請求項1に記載の微細電極接続構造。
2. The method according to claim 1, wherein the conductive particles have fine pores on the surface,
A part or all of the inner surface of the hole is coated with metal, or a part or all of the hole is conductive particles filled with metal, using plastic particles having fine holes communicating with each other on the surface and inside. 2. The fine electrode connection structure according to 1.
【請求項3】 導電性粒子が表面に微細な突起を設けた
導電性粒子である請求項1に記載の微細電極接続構造。
3. The fine electrode connection structure according to claim 1, wherein the conductive particles are conductive particles having fine projections on the surface.
【請求項4】 微細な突起が、導電性粒子の粒径の1/
10以下の粒径であるシリカ、ガラス、Ni等の微粒子
を導電性粒子表面に付着させ、表面を導電性薄膜で被覆
した構造である請求項に記載の微細電極接続構造。
4. The method according to claim 1, wherein the fine projections have a diameter of 1/100 of a particle diameter of the conductive particles.
4. The fine electrode connection structure according to claim 3 , wherein fine particles of silica, glass, Ni or the like having a particle size of 10 or less are adhered to the surface of the conductive particles, and the surface is covered with a conductive thin film.
【請求項5】 異方導電性樹脂フィルム状成形物が接続
する電極の配置に対応して導電性粒子を配列したもので
ある請求項1乃至のいずれか記載の微細電極接続構
造。
5. A micro-electrode connecting structure according to any one of claims 1 to 4 in which the anisotropic conductive resin film-like molded product is an array of conductive particles corresponding to the arrangement of the electrodes to be connected.
【請求項6】 電子部品の少なくとも一方がガラス、セ
ラミック等の高弾性を有する基板である請求項1乃至5
のいずれかに記載の微細電極接続構造。
6. At least one of the electronic component is a substrate having a glass, a high elasticity, such as ceramic claims 1 to 5
The microelectrode connection structure according to any one of the above.
【請求項7】 相対峙した基板のいずれか一方または両
方の基板の電極が基板面より凹んでいることを特徴とす
る請求項1乃至6のいずれかに記載の微細電極接続構
造。
7. One or both of the substrates facing each other.
Characterized in that the electrode of the other substrate is recessed from the substrate surface.
The microelectrode connection structure according to claim 1.
Build.
【請求項8】 相対峙した電極のいずれか一方または両
方がめっき、蒸着、スパッタ等で作製した薄膜電極であ
る請求項1乃至7のいずれかに記載の微細電極接続構
造。
Either or both the plating of 8. Phase confronting electrodes, deposition, fine electrode connection structure according to any one of claims 1 to 7 is a thin film electrode prepared by sputtering or the like.
【請求項9】 相対峙した基板のうち少なくとも一方の
基板と異方導電性フィル ム状成形物を挟持、接着等の手
段で固定したことを特徴とする請求項1乃至8のいずれ
かに記載の微細電極接続構造。
9. At least one of the substrates facing each other.
Hands substrate and anisotropic conductive fill arm-like molding clamping, adhesive, etc.
9. The method according to claim 1, wherein the step is fixed by a step.
The fine electrode connection structure according to any one of the above.
【請求項10】 電子部品がLCD、ベアチップIC、
TAB型ICあるいはプリント配線板のいずれかである
請求項1乃至のいずれかに記載の微細電極接続構造。
10. The electronic component is an LCD, a bare chip IC,
The microelectrode connection structure according to any one of claims 1 to 9 , wherein the microelectrode connection structure is one of a TAB type IC and a printed wiring board.
【請求項11】 請求項1乃至10のいずれかに記載の
電極接続構造を用いてLCDの表示検査、LCDを構成
している素子の動作検査、ベアチップIC、TAB型I
Cの動作検査あるいはプリント配線板の導通検査をする
ことを特徴とする検査方法。
11. The display inspection of the LCD using the electrode connecting structure according to any one of claims 1 to 10, the operation inspection of elements constituting the LCD, bare chip IC, TAB type I
An inspection method characterized by performing an operation inspection of C or a continuity inspection of a printed wiring board.
JP20971494A 1994-05-10 1994-09-02 Connection structure of fine electrode and inspection method of electronic component having fine electrode Expired - Fee Related JP3360772B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP20971494A JP3360772B2 (en) 1994-09-02 1994-09-02 Connection structure of fine electrode and inspection method of electronic component having fine electrode
TW084104387A TW277152B (en) 1994-05-10 1995-05-02
KR1019950011298A KR100377603B1 (en) 1994-05-10 1995-05-09 Anisotropic Conductive Resin Film
EP95303147A EP0691660B1 (en) 1994-05-10 1995-05-10 Anisotropically electroconductive resin film
CNB021593922A CN1230834C (en) 1994-05-10 1995-05-10 Electrode member
DE69535293T DE69535293T2 (en) 1994-05-10 1995-05-10 Anistropically conductive resin film
CN95105708A CN1118832C (en) 1994-05-10 1995-05-10 Anisotropically electroconductive resin film
US08/890,342 US6042894A (en) 1994-05-10 1997-07-09 Anisotropically electroconductive resin film
KR1020020044740A KR100377992B1 (en) 1994-05-10 2002-07-29 Anisotropically electroconductive resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20971494A JP3360772B2 (en) 1994-09-02 1994-09-02 Connection structure of fine electrode and inspection method of electronic component having fine electrode

Publications (2)

Publication Number Publication Date
JPH0878075A JPH0878075A (en) 1996-03-22
JP3360772B2 true JP3360772B2 (en) 2002-12-24

Family

ID=16577435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20971494A Expired - Fee Related JP3360772B2 (en) 1994-05-10 1994-09-02 Connection structure of fine electrode and inspection method of electronic component having fine electrode

Country Status (1)

Country Link
JP (1) JP3360772B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537459B2 (en) 2004-05-11 2009-05-26 Omron Corporation Anisotropic conductive film
JP2009124076A (en) * 2007-11-19 2009-06-04 Asahi Kasei Electronics Co Ltd Connection structure and manufacturing method of connection structure

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116455A (en) * 2000-08-01 2002-04-19 Kyodo Printing Co Ltd Liquid crystal display device, electrode substrate for the same device and method of manufacturing the same device
JP2002373751A (en) * 2001-06-14 2002-12-26 Sekisui Chem Co Ltd Method for arranging particulates in micro-hole, thin layer element with conductive particulates arranged, and conductive laminate structure
JP4669635B2 (en) * 2001-07-12 2011-04-13 積水化学工業株式会社 Method for producing fine particle arrangement conductive connection film
JP5143329B2 (en) * 2002-02-28 2013-02-13 日立化成工業株式会社 Manufacturing method of circuit connection body
JP2004207689A (en) * 2002-12-12 2004-07-22 Tokyo Electron Ltd Anisotropic conductive film, method for manufacturing the same, and probe
JP2004342764A (en) * 2003-05-14 2004-12-02 Sekisui Chem Co Ltd Conductive connection film and conductive connection structure
JP4593302B2 (en) * 2005-02-03 2010-12-08 積水化学工業株式会社 Conductive fine particles and anisotropic conductive materials
JP4890053B2 (en) * 2006-03-02 2012-03-07 旭化成イーマテリアルズ株式会社 Anisotropic conductive film for microcircuit inspection
JP5338513B2 (en) 2009-06-24 2013-11-13 富士通株式会社 Pattern drawer structure and semiconductor device
JP5690648B2 (en) * 2011-04-28 2015-03-25 デクセリアルズ株式会社 Anisotropic conductive film, connection method and connection structure
JP2013055045A (en) * 2011-08-05 2013-03-21 Sekisui Chem Co Ltd Manufacturing method of connection structure, connection structure and anisotropic conductive material
JP5833959B2 (en) * 2011-09-28 2015-12-16 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
CN203134778U (en) 2011-10-26 2013-08-14 日立化成株式会社 Circuit component
WO2017191772A1 (en) 2016-05-05 2017-11-09 デクセリアルズ株式会社 Filler alignment film
KR102187881B1 (en) * 2018-07-26 2020-12-07 주식회사 에이엔케이 Method for manufacturing probe socket device for micro LED inspection
KR102479250B1 (en) * 2020-09-07 2022-12-21 아주대학교산학협력단 Probe socket and micro led inspecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537459B2 (en) 2004-05-11 2009-05-26 Omron Corporation Anisotropic conductive film
JP2009124076A (en) * 2007-11-19 2009-06-04 Asahi Kasei Electronics Co Ltd Connection structure and manufacturing method of connection structure

Also Published As

Publication number Publication date
JPH0878075A (en) 1996-03-22

Similar Documents

Publication Publication Date Title
JP3360772B2 (en) Connection structure of fine electrode and inspection method of electronic component having fine electrode
EP0691660B1 (en) Anisotropically electroconductive resin film
US5624268A (en) Electrical connectors using anisotropic conductive films
JPH09312176A (en) Connecting member, and structure and method for connecting electrodes using this connecting member
JPH03131089A (en) Connecting method for circuit board
JP3788258B2 (en) Anisotropic conductive connector and its application products
JPH08279371A (en) Connecting member and connecting structure and connecting method of electrode by using the connecting member
JP2004031555A (en) Circuit board device and connection method between substrates
JP2006245140A (en) Connection structure and method of connection of circuit terminal
JP3219140B2 (en) Electrical and electronic equipment
JP4661914B2 (en) Electrode connection method
JPH0628121B2 (en) Anisotropic conductive film
JPH0362411A (en) Manufacture of aeolotropic conductive film
JP3833084B2 (en) Manufacturing method of film carrier tape for mounting electronic components
JP3743716B2 (en) Flexible wiring board and semiconductor element mounting method
JPH02877B2 (en)
JP2003336016A (en) Anisotropically electrically conductive double-sided tape and method of mounting electronic part by using the same
JP3783785B2 (en) Method for manufacturing anisotropic conductive resin film adhesive and method for connecting between fine circuits
KR100251675B1 (en) Connection sheet for interconnecting electrodes facing each other, and electrode connection structure and method using the connection sheet
JP2001004700A (en) Interposer board
JPH09147928A (en) Connecting member
JP2007191674A (en) Adhesive with wiring
JPH11121073A (en) Connecting member and its manufacture
JP3836002B2 (en) Manufacturing method and manufacturing apparatus for film carrier tape for electronic component mounting
KR101117768B1 (en) Anisotropic Conductive Film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071018

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131018

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131018

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees