JP3360568B2 - Adsorbent HC adsorption amount detection device and engine exhaust purification device using this detection device - Google Patents

Adsorbent HC adsorption amount detection device and engine exhaust purification device using this detection device

Info

Publication number
JP3360568B2
JP3360568B2 JP14238097A JP14238097A JP3360568B2 JP 3360568 B2 JP3360568 B2 JP 3360568B2 JP 14238097 A JP14238097 A JP 14238097A JP 14238097 A JP14238097 A JP 14238097A JP 3360568 B2 JP3360568 B2 JP 3360568B2
Authority
JP
Japan
Prior art keywords
adsorbent
temperature
adsorption
heat
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14238097A
Other languages
Japanese (ja)
Other versions
JPH10331625A (en
Inventor
彰 田山
和彦 兼利
博文 土田
圭司 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14238097A priority Critical patent/JP3360568B2/en
Publication of JPH10331625A publication Critical patent/JPH10331625A/en
Application granted granted Critical
Publication of JP3360568B2 publication Critical patent/JP3360568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は吸着剤のHC吸着
量検出装置およびこの検出装置を用いたエンジンの排気
浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting the amount of HC adsorbed on an adsorbent and a device for purifying exhaust gas of an engine using the device.

【0002】[0002]

【従来の技術】エンジン冷間始動直後は排気温度が低く
三元触媒が活性化する温度(300℃前後)に達しない
ことから、HC(炭化水素)の浄化がほとんど行われな
い。このため、排気系に吸着剤を設けておき、冷間始動
直後に浄化されずに排出されるHCをこの吸着剤に吸着
させ、その後に吸着剤よりHCを離脱させて燃焼させる
ようにしたものがある。
2. Description of the Related Art Immediately after a cold start of an engine, the exhaust gas temperature is low and does not reach the temperature at which the three-way catalyst is activated (around 300 ° C.), so that HC (hydrocarbon) is hardly purified. For this reason, an adsorbent is provided in the exhaust system, and HC discharged without being purified immediately after the cold start is adsorbed by the adsorbent, and thereafter, HC is released from the adsorbent and burned. There is.

【0003】この場合、吸着剤は、高温の排気に晒され
たり、排気中に含まれるオイル分が付着堆積したりする
ことによって劣化し、HCの吸着性能が低下することが
あるので、吸着熱(吸着剤がHCを吸着するときに発生
する熱)を利用して吸着剤に劣化が生じたかどうかの判
定を行うものが提案されている(特開平6−10145
2号公報参照)。
[0003] In this case, the adsorbent is deteriorated by being exposed to high-temperature exhaust gas or adhering and depositing oil contained in the exhaust gas, so that the adsorbing performance of HC may be reduced. Japanese Patent Application Laid-Open No. 6-10145 proposes a method for determining whether or not the adsorbent has deteriorated by using (heat generated when the adsorbent adsorbs HC).
No. 2).

【0004】このものでは、吸着剤の入口と出口の各排
気温度を検出し、この温度差に吸入空気量を乗じた値か
ら所定期間当たりの吸着熱量を算出し、この吸着熱量を
所定期間にわたって積算することによって総吸着熱量を
求め、この総吸着熱量と目標総吸着熱量とを比較する。
吸着剤の劣化が進むほど吸着熱の発生量が減ってくるの
で、総吸着熱量が目標総吸着熱量以下となったとき吸着
剤に劣化が生じたと判定するわけである。
In this method, the temperature of each exhaust gas at the inlet and the outlet of the adsorbent is detected, the amount of heat of adsorption per predetermined period is calculated from a value obtained by multiplying the difference between the temperature and the amount of intake air, and the amount of heat of adsorption is calculated over a predetermined period. The total amount of heat of adsorption is obtained by integrating, and the total amount of heat of adsorption is compared with the target total amount of heat of adsorption.
Since the amount of heat of adsorption decreases as the deterioration of the adsorbent progresses, it is determined that the adsorbent has deteriorated when the total heat of adsorption becomes less than or equal to the target total heat of adsorption.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
従来装置では、加速時やホットリスタート時など吸着剤
の入口排気温度が吸着剤の出口排気温度(あるいは吸着
剤出口部の内部温度)より高くなる場合に、吸着熱を求
めることができないので、総吸着熱量の演算精度が悪
く、その分だけ劣化判定の精度が低下する。
However, in the above-mentioned conventional apparatus, the inlet exhaust temperature of the adsorbent is higher than the outlet exhaust temperature of the adsorbent (or the internal temperature of the adsorbent outlet) during acceleration or hot restart. In such a case, since the heat of adsorption cannot be obtained, the calculation accuracy of the total heat of adsorption is poor, and the accuracy of the deterioration determination is accordingly reduced.

【0006】これは、吸着条件において吸着剤の入口排
気温度よりも吸着熱の発生する分だけ吸着剤出口温度が
高くなることを前提とする従来装置では、吸着剤の入口
排気温度よりも吸着剤出口温度が低い場合に、そのとき
の温度差と吸入空気量を乗じた値が吸着熱に応じた値と
ならないからである。これをさらに詳述すると、たとえ
ば冷間始動直後の吸着条件で急加速を行ったとき、吸着
剤に流入する排気の温度が高温となり、これに対して吸
着剤そのものの温度はまだ低い状態にある。この場合、
排気の熱は吸着剤に熱伝達し、吸着剤の昇温に奪われる
ため、吸着剤の出口排気温度が入口排気温度に対して低
下してしまう。温度的に安定した条件であれば吸着熱に
より吸着剤の入口排気温度よりも出口排気温度が高くな
り、その差が吸着熱に対応するのであるが、吸着剤の昇
温に排気の熱が奪われる条件では、入口と出口の排気温
度差が吸着熱に応じた値とならないのである。
[0006] This is because, in a conventional apparatus on the premise that the adsorbent outlet temperature is higher than the adsorbent inlet exhaust temperature by the amount of heat of adsorption generated under the adsorbing conditions, the adsorbent inlet exhaust temperature is higher than the adsorbent inlet exhaust temperature. This is because, when the outlet temperature is low, the value obtained by multiplying the temperature difference at that time by the intake air amount does not become a value corresponding to the heat of adsorption. To describe this in more detail, for example, when rapid acceleration is performed under the adsorption condition immediately after the cold start, the temperature of the exhaust gas flowing into the adsorbent becomes high, whereas the temperature of the adsorbent itself is still low. . in this case,
The heat of the exhaust is transferred to the adsorbent and is taken away by the temperature rise of the adsorbent, so that the outlet exhaust temperature of the adsorbent is lower than the inlet exhaust temperature. Under conditions that are stable in temperature, the outlet exhaust gas temperature becomes higher than the inlet exhaust gas temperature of the adsorbent due to heat of adsorption, and the difference corresponds to the heat of adsorption. Under such conditions, the difference between the exhaust gas temperature at the inlet and the outlet is not a value corresponding to the heat of adsorption.

【0007】そこで本発明は、吸着熱が発生しないとし
たときの吸着剤温度(内部温度や出口温度)を予測し、
この吸着剤温度の予測値と吸着剤温度の実測値の差から
算出した吸着熱に応じてHC吸着量を算出することによ
り、吸着条件において吸着剤の入口排気温度より吸着剤
出口温度が低くなることがあっても、HC吸着量を精度
よく算出することを第1の目的とし、さらにこの算出し
たHC吸着量を用いて吸着剤の劣化判定や吸着剤からの
HCの離脱制御を行うことにより、吸着条件において吸
着剤入口温度よりも吸着剤出口温度が低くなることがあ
っても、劣化判定精度や離脱制御の制御性を高めること
を第2の目的とする。
Accordingly, the present invention predicts the adsorbent temperature (internal temperature and outlet temperature) when heat of adsorption is not generated,
By calculating the HC adsorption amount according to the heat of adsorption calculated from the difference between the predicted value of the adsorbent temperature and the measured value of the adsorbent temperature, the adsorbent outlet temperature becomes lower than the adsorbent inlet exhaust temperature under the adsorption conditions. In any case, the first object is to accurately calculate the HC adsorption amount, and further, by using the calculated HC adsorption amount to determine the deterioration of the adsorbent and control the desorption of HC from the adsorbent. It is a second object of the present invention to enhance the accuracy of deterioration determination and the controllability of desorption control even when the adsorbent outlet temperature becomes lower than the adsorbent inlet temperature under the adsorption conditions.

【0008】[0008]

【課題を解決するための手段】第1の発明は、図10に
示すように、エンジン低温時に排気中のHCを吸着する
吸着剤21と、この吸着剤21の入口排気温度Tinを検
出する手段22と、前記吸着剤21の実際の温度TKJを
検出する手段23と、前記吸着剤21が前記HCを吸着
する条件にあるかどうかを判定する手段24と、この判
定結果より吸着条件にあるとき前記入口排気温度Tinと
エンジンの負荷(たとえば吸入空気量QA)に基づいて
吸着熱が生じないとしたときの前記吸着剤温度を予測す
る手段25と、この吸着剤温度の予測値と前記吸着剤温
度の検出値の差に応じて吸着熱を算出する手段26と、
この吸着熱に応じてHC吸着量を算出する手段27とを
設けた。
According to a first aspect of the present invention, as shown in FIG. 10, an adsorbent 21 for adsorbing HC in exhaust gas at the time of low temperature of an engine and a means for detecting an inlet exhaust gas temperature Tin of the adsorbent 21 are provided. 22, means 23 for detecting the actual temperature TKJ of the adsorbent 21, means 24 for determining whether the adsorbent 21 is in a condition for adsorbing the HC, Means 25 for predicting the adsorbent temperature when no heat of adsorption is generated based on the inlet exhaust gas temperature Tin and the load of the engine (for example, the intake air amount QA), a predicted value of the adsorbent temperature and the adsorbent Means 26 for calculating the heat of adsorption according to the difference between the detected values of the temperature;
Means 27 for calculating the amount of HC adsorption according to the heat of adsorption is provided.

【0009】第2の発明では、第1の発明において前記
吸着熱が正の値のとき前記吸着条件であると判定する。
According to a second aspect, in the first aspect, when the heat of adsorption is a positive value, it is determined that the condition for the adsorption is satisfied.

【0010】第3の発明では、第1または第2の発明に
おいて前記吸着熱算出手段26が、図11に示すよう
に、吸入空気量QAと設定空燃比A/Fに基づいて排気
の熱容量NHを算出する手段31と、この排気の熱容量
NH、前記吸着剤の熱容量NK、前記入口排気温度Tinお
よび前回の吸着剤温度の予測値TKn-1を用いて今回の吸
着剤温度の予測値TKnを算出する手段32と、この今回
の吸着剤温度の予測値TKnと前記吸着剤温度の検出値T
KJの差を前記排気の熱容量NHと前記吸着剤の熱容量NK
の和に乗算した値を所定期間(たとえば所定時間)当た
りの吸着熱量Knとして算出する手段33と、この所定
期間当たりの吸着熱量Knを前記吸着条件のあいだ積算
する手段34と、前記今回の吸着剤温度の予測値TKnを
次回の吸着剤温度の予測値の算出まで記憶する手段35
とからなる。
According to a third aspect of the present invention, in the first or second aspect, the heat-of-adsorption calculating means 26 determines the heat capacity NH of the exhaust gas based on the intake air amount QA and the set air-fuel ratio A / F as shown in FIG. Using the heat capacity NH of the exhaust gas, the heat capacity NK of the adsorbent, the inlet exhaust gas temperature Tin, and the previous predicted value of the adsorbent temperature TKn-1 to calculate the current predicted value TKn of the adsorbent temperature. Calculating means 32, the current predicted value TKn of the adsorbent temperature and the detected value T of the adsorbent temperature.
The difference between KJ is determined by calculating the heat capacity NH of the exhaust gas and the heat capacity NK of the adsorbent.
Means 33 for calculating a value obtained by multiplying the sum of the heat of heat as the heat of adsorption Kn per predetermined period (for example, a predetermined time); means 34 for integrating the heat of adsorption Kn per predetermined period during the adsorption condition; Means 35 for storing the predicted value TKn of the adsorbent temperature until the calculation of the next predicted value of the adsorbent temperature
Consists of

【0011】第4の発明では、第3の発明において前記
今回の吸着剤温度の予測値と前記所定期間当たりの吸着
熱量の各算出に前記吸着剤から外気への放熱量を考慮す
る。
According to a fourth aspect of the present invention, in the third aspect, the heat release amount from the adsorbent to the outside air is taken into account in the calculation of the current predicted value of the adsorbent temperature and the calculation of the heat of adsorption per predetermined period.

【0012】第5の発明では、第1から第4までのいず
れか一つの発明において、前記吸着剤温度が前記吸着剤
の内部温度または出口温度である。
According to a fifth aspect, in any one of the first to fourth aspects, the adsorbent temperature is an internal temperature or an outlet temperature of the adsorbent.

【0013】第6の発明は、図12に示すように、エン
ジン低温時に排気中のHCを吸着する吸着剤21と、こ
の吸着剤21の入口排気温度Tinを検出する手段22
と、前記吸着剤21の実際の温度TKJを検出する手段2
3と、前記吸着剤21が前記HCを吸着する条件にある
かどうかを判定する手段24と、この判定結果より吸着
条件にあるとき前記入口排気温度Tinとエンジンの負荷
(たとえば吸入空気量QA)に基づいて吸着熱を生じな
いとしたときの前記吸着剤温度を予測する手段25と、
この吸着剤温度の予測値と前記吸着剤温度の検出値の差
に応じて吸着熱を算出する手段26と、この吸着熱に応
じてHC吸着量を算出する手段27と、このHC吸着量
と目標吸着量との比較から前記吸着剤21に劣化が生じ
たかどうかを判定する手段41とを設けた。
As shown in FIG. 12, the sixth aspect of the present invention relates to an adsorbent 21 for adsorbing HC in exhaust gas at a low temperature of an engine, and a means 22 for detecting an inlet exhaust gas temperature Tin of the adsorbent 21.
Means 2 for detecting the actual temperature TKJ of the adsorbent 21
3, means 24 for determining whether or not the adsorbent 21 is in a condition for adsorbing the HC, and based on the result of this judgment, when the adsorbent 21 is in the adsorbent condition, the inlet exhaust gas temperature Tin and the engine load (for example, the intake air amount QA) Means 25 for predicting the adsorbent temperature when heat of adsorption is not generated based on
Means 26 for calculating the heat of adsorption according to the difference between the predicted value of the adsorbent temperature and the detected value of the temperature of the adsorbent; means 27 for calculating the amount of HC adsorption according to the heat of adsorption; Means 41 is provided for determining whether or not the adsorbent 21 has deteriorated based on a comparison with the target adsorption amount.

【0014】第7の発明では、第6の発明において前記
吸着熱が正の値のとき前記吸着条件であると判定する。
According to a seventh aspect, in the sixth aspect, when the heat of adsorption is a positive value, it is determined that the condition for the adsorption is satisfied.

【0015】第8の発明では、第6または第7の発明に
おいて前記吸着熱算出手段26が、図13に示すよう
に、吸入空気量QAと設定空燃比A/Fに基づいて排気
の熱容量NHを算出する手段31と、この排気の熱容量
NH、前記吸着剤の熱容量NK、前記入口排気温度Tinお
よび前回の吸着剤温度の予測値TKn-1を用いて今回の吸
着剤温度の予測値TKnを算出する手段32と、この今回
の吸着剤温度の予測値TKnと前記吸着剤温度の検出値T
KJの差を前記排気の熱容量NHと前記吸着剤の熱容量NK
の和に乗算した値を所定期間(たとえば所定時間)当た
りの吸着熱量Knとして算出する手段33と、この所定
期間当たりの吸着熱量Knを所定期間のあいだだけ積算
する手段51と、前記今回の吸着剤温度の予測値TKnを
次回の吸着剤温度の予測値の算出まで記憶する手段35
とからなる。
According to an eighth aspect of the present invention, in the sixth or seventh aspect, the heat-of-adsorption calculating means 26 calculates the heat capacity NH of the exhaust gas based on the intake air amount QA and the set air-fuel ratio A / F as shown in FIG. Using the heat capacity NH of the exhaust gas, the heat capacity NK of the adsorbent, the inlet exhaust gas temperature Tin, and the previous predicted value of the adsorbent temperature TKn-1 to calculate the current predicted value TKn of the adsorbent temperature. Calculating means 32, the current predicted value TKn of the adsorbent temperature and the detected value T of the adsorbent temperature.
The difference between KJ is determined by calculating the heat capacity NH of the exhaust gas and the heat capacity NK of the adsorbent.
Means 33 for calculating a value obtained by multiplying the sum of the heat of heat as the heat of adsorption per predetermined period (for example, predetermined time), means 51 for integrating the heat of adsorption Kn per predetermined period only during the predetermined period, and Means 35 for storing the predicted value TKn of the adsorbent temperature until the calculation of the next predicted value of the adsorbent temperature
Consists of

【0016】第9の発明では、第8の発明において前記
今回の吸着剤温度の予測値と前記所定期間当たりの吸着
熱量の各算出に前記吸着剤から外気への放熱量を考慮す
る。
In a ninth aspect, in the eighth aspect, the heat release amount from the adsorbent to the outside air is taken into consideration in the calculation of the current estimated value of the adsorbent temperature and the calculation of the amount of heat of adsorption per predetermined period.

【0017】第10の発明では、第8または第9の発明
において前記目標吸着量を算出する手段が、吸入空気量
QAに応じて所定期間(たとえば所定時間)当たりのH
C量を算出する手段と、この所定期間当たりのHC量を
前記積算期間と同じ期間のあいだだけ積算する手段と、
このHC積算量RSnに目標吸着率CKを乗算した値を目
標吸着量RMSとして設定する手段とからなる。
According to a tenth aspect, in the eighth or ninth aspect, the means for calculating the target amount of adsorption is determined by detecting the amount of H per predetermined period (for example, a predetermined time) according to the intake air amount QA.
Means for calculating the C amount; means for integrating the HC amount per predetermined period only during the same period as the integration period;
Means for setting a value obtained by multiplying the integrated HC amount RSn by the target adsorption rate CK as the target adsorption amount RMS.

【0018】第11の発明では、第10の発明において
前記所定期間当たりのHC量を冷却水温TWに応じて補
正する。
According to an eleventh aspect, in the tenth aspect, the HC amount per predetermined period is corrected according to the cooling water temperature TW.

【0019】第12の発明では、第10の発明において
前記所定期間当たりのHC量を前記設定空燃比A/Fに
応じて補正する。
In a twelfth aspect, in the tenth aspect, the HC amount per the predetermined period is corrected according to the set air-fuel ratio A / F.

【0020】第13の発明では、第8から第12までの
いずれか一つの発明において前記所定期間がエンジン始
動からの短い期間である。
In a thirteenth aspect, in any one of the eighth to twelfth aspects, the predetermined period is a short period from the start of the engine.

【0021】第14の発明では、第8から第12までの
いずれか一つの発明において前記所定期間がエンジン始
動に続くアイドル期間である。
In a fourteenth aspect, in the one of the eighth to twelfth aspects, the predetermined period is an idle period following engine start.

【0022】第15の発明は、図14に示すように、エ
ンジン低温時に排気中のHCを吸着する吸着剤21と、
この吸着剤21の入口排気温度Tinを検出する手段22
と、前記吸着剤21の実際の温度TKJを検出する手段2
3と、前記吸着剤21が前記HCを吸着する条件にある
かどうかを判定する手段24と、この判定結果より吸着
条件にあるとき前記入口排気温度Tinとエンジンの負荷
(たとえば吸入空気量QA)に基づいて吸着熱を生じな
いとしたときの前記吸着剤温度を予測する手段25と、
この吸着剤温度の予測値と前記吸着剤温度の検出値の差
に応じて吸着熱を算出する手段26と、この吸着熱に応
じてHC吸着量を算出する手段27と、前記吸着剤21
の上流に供給する二次空気量を調整可能な手段61と、
前記吸着剤21から前記HCを離脱させる条件であるか
どうかを判定する手段62と、この判定結果より離脱条
件にあるとき前記HC吸着量に応じて前記二次空気量を
制御する手段63とを設けた。
According to a fifteenth aspect, as shown in FIG. 14, an adsorbent 21 for adsorbing HC in exhaust gas at the time of low temperature of an engine,
Means 22 for detecting the inlet exhaust gas temperature Tin of the adsorbent 21
Means 2 for detecting the actual temperature TKJ of the adsorbent 21
3, means 24 for determining whether or not the adsorbent 21 is in a condition for adsorbing the HC, and based on the result of this judgment, when the adsorbent 21 is in the adsorbent condition, the inlet exhaust gas temperature Tin and the engine load (for example, the intake air amount QA) Means 25 for predicting the adsorbent temperature when heat of adsorption is not generated based on
A means 26 for calculating the heat of adsorption according to the difference between the predicted value of the adsorbent temperature and the detected value of the temperature of the adsorbent; a means 27 for calculating the amount of HC adsorption according to the heat of adsorption;
Means 61 capable of adjusting the amount of secondary air supplied upstream of
A means 62 for determining whether or not the condition for desorbing the HC from the adsorbent 21 and a means 63 for controlling the amount of secondary air according to the HC adsorption amount when the desorption condition is satisfied based on the determination result. Provided.

【0023】第16の発明は、図15に示すように途中
より主通路71とバイパス通路72とに分岐された排気
管と、前記バイパス通路72に流れる排気量を調整可能
な手段73と、前記バイパス通路72に介装され、エン
ジン低温時に排気中のHCを吸着する吸着剤21と、こ
の吸着剤21の入口排気温度Tinを検出する手段22
と、前記吸着剤21の実際の温度TKJを検出する手段2
3と、前記吸着剤21が前記HCを吸着する条件にある
かどうかを判定する手段24と、この判定結果より吸着
条件にあるとき前記バイパス通路72に排気が流れるよ
うに前記排気量調整手段73に指示する手段74と、前
記判定結果より吸着条件にあるとき前記入口排気温度T
inとエンジンの負荷(たとえば吸入空気量QA)に基づ
いて吸着熱を生じないとしたときの前記吸着剤温度を予
測する手段25と、この吸着剤温度の予測値と前記吸着
剤温度の検出値の差に応じて吸着熱を算出する手段26
と、この吸着熱に応じてHC吸着量を算出する手段27
と、前記吸着剤21から前記HCを離脱させる条件であ
るかどうかを判定する手段62と、この判定結果より離
脱条件にあるとき前記HC吸着量に応じた排気量が前記
バイパス通路72に流れるように前記排気量調整手段7
3に指示する手段75とを設けた。
According to a sixteenth aspect of the present invention, as shown in FIG. 15, an exhaust pipe branched from the middle into a main passage 71 and a bypass passage 72, a means 73 capable of adjusting the amount of exhaust flowing through the bypass passage 72, An adsorbent 21 interposed in the bypass passage 72 for adsorbing HC in the exhaust gas when the engine temperature is low, and means 22 for detecting the inlet exhaust gas temperature Tin of the adsorbent 21
Means 2 for detecting the actual temperature TKJ of the adsorbent 21
3, a means 24 for determining whether or not the adsorbent 21 is in a condition for adsorbing the HC, and an exhaust amount adjusting means 73 for allowing exhaust gas to flow into the bypass passage 72 when the adsorbent 21 is in an adsorption condition based on the result of the determination. Means 74 for instructing the inlet exhaust temperature T
means 25 for predicting the adsorbent temperature when no heat of adsorption is generated based on in and the load of the engine (for example, intake air amount QA); a predicted value of the adsorbent temperature and a detected value of the adsorbent temperature Means for calculating the heat of adsorption according to the difference between
Means for calculating the amount of HC adsorption according to the heat of adsorption 27
Means 62 for determining whether or not the condition is such that the HC is released from the adsorbent 21. Based on the determination result, the exhaust amount corresponding to the HC adsorption amount flows to the bypass passage 72 when the release condition is satisfied. The displacement adjusting means 7
3 is provided with means 75 for instructing.

【0024】第17の発明では、第15または第16の
発明において前記吸着熱が正の値のとき前記吸着条件で
あると判定する。
According to a seventeenth aspect, in the fifteenth or sixteenth aspect, when the heat of adsorption is a positive value, it is determined that the condition for the adsorption is satisfied.

【0025】第18の発明では、第15から第17まで
のいずれか一つの発明において前記吸着熱算出手段26
が、図16に示すように、吸入空気量QAと設定空燃比
A/Fに基づいて排気の熱容量NHを算出する手段31
と、この排気の熱容量NH、前記吸着剤の熱容量NK、前
記入口排気温度Tinおよび前回の吸着剤温度の予測値T
Kn-1を用いて今回の吸着剤温度の予測値TKnを算出する
手段32と、この今回の吸着剤温度の予測値TKnと前記
吸着剤温度の検出値TKJの差を前記排気の熱容量NHと
前記吸着剤の熱容量NKの和に乗算した値を所定期間
(たとえば所定時間)当たりの吸着熱量Knとして算出
する手段33と、この所定期間当たりの吸着熱量Knを
前記吸着条件のあいだ積算する手段34と、前記今回の
吸着剤温度の予測値TKnを次回の吸着剤温度の予測値の
算出まで記憶する手段35とからなる。
According to an eighteenth aspect of the present invention, in any one of the fifteenth to seventeenth aspects, the heat of adsorption calculating means 26 is used.
Means 31 for calculating heat capacity NH of exhaust gas based on intake air amount QA and set air-fuel ratio A / F as shown in FIG.
And the heat capacity NH of the exhaust gas, the heat capacity NK of the adsorbent, the inlet exhaust gas temperature Tin and the previous predicted value T of the adsorbent temperature.
A means 32 for calculating a predicted value TKn of the current adsorbent temperature using Kn-1; and a difference between the predicted value TKn of the current temperature of the adsorbent and the detected value TKJ of the temperature of the adsorbent is calculated as the heat capacity NH of the exhaust gas. Means 33 for calculating the value obtained by multiplying the sum of the heat capacities NK of the adsorbents as the heat of adsorption Kn per predetermined period (for example, predetermined time), and means 34 for integrating the heat of adsorption Kn per predetermined period during the adsorption condition. Means 35 for storing the predicted value TKn of the current adsorbent temperature until the calculation of the predicted value of the next adsorbent temperature.

【0026】第19の発明では、第18の発明において
前記今回の吸着剤温度の予測値と前記所定期間当たりの
吸着熱量の各算出に前記吸着剤から外気への放熱量を考
慮する。
According to a nineteenth aspect, in the eighteenth aspect, the amount of heat released from the adsorbent to the outside air is taken into account in the calculation of the current predicted value of the adsorbent temperature and the calculation of the heat of adsorption per predetermined period.

【0027】第20の発明では、第6から第19までの
いずれか一つの発明において前記吸着剤温度が前記吸着
剤の内部温度または出口温度である。
In a twentieth aspect, in any one of the sixth to nineteenth aspects, the adsorbent temperature is an internal temperature or an outlet temperature of the adsorbent.

【0028】[0028]

【発明の効果】第1の発明では、吸着条件において吸着
剤入口排気温度とエンジン負荷から吸着熱が発生しない
としたときの吸着剤温度を予測し、この吸着剤温度の予
測値と吸着剤温度の検出値(吸着熱が発生しているとき
の温度)の差に応じて吸着熱を算出し、この吸着熱に応
じてHC吸着量を算出するので、吸着剤の入口排気温度
が吸着剤出口温度より高い場合においても、HC吸着量
を精度よく算出することができる。
According to the first aspect of the present invention, the adsorbent temperature when the heat of adsorption is not generated from the adsorbent inlet exhaust temperature and the engine load under the adsorption condition is predicted, and the predicted value of the adsorbent temperature and the adsorbent temperature are predicted. Is calculated according to the difference between the detected values (temperature at which heat of adsorption is generated), and the amount of HC adsorbed is calculated according to the heat of adsorption. Even when the temperature is higher than the temperature, the HC adsorption amount can be accurately calculated.

【0029】第6の発明では、このようにして算出され
たHC吸着量と目標吸着量との比較から劣化判定を行う
ので、吸着剤の入口排気温度が吸着剤出口温度より高い
場合においても、劣化判定の精度が低下することがな
い。
In the sixth aspect, the deterioration is determined by comparing the HC adsorption amount calculated in this way with the target adsorption amount. Therefore, even when the adsorbent inlet exhaust gas temperature is higher than the adsorbent outlet temperature, the deterioration judgment is made. The accuracy of the deterioration determination does not decrease.

【0030】第2、第7、第17の各発明では、吸着熱
が0の値のときが吸着限界のタイミング(吸着できなく
なったタイミング)となるので、エンジンの負荷が小さ
く、吸着剤の入口排気温度が低温となる状態が長時間続
いたときにも正確に吸着終了のタイミングを判定するこ
とができる。
In each of the second, seventh and seventeenth aspects of the present invention, when the heat of adsorption is zero, the timing of the adsorption limit (timing at which adsorption becomes impossible) is achieved, so that the load on the engine is small and the inlet of the adsorbent is reduced. Even when the exhaust gas temperature is low for a long time, it is possible to accurately determine the end timing of the adsorption.

【0031】冷間始動時にはエンジンの始動とともに吸
着条件になる。第13の発明では、HC量の算出をエン
ジン始動からの短い期間に限定するので、吸着剤から外
気への放熱量の影響を無視でき、これによって吸着剤温
度の予測が簡単になる。
At the time of a cold start, an adsorption condition is set when the engine is started. In the thirteenth aspect, since the calculation of the HC amount is limited to a short period from the start of the engine, the influence of the amount of heat released from the adsorbent to the outside air can be ignored, thereby simplifying the prediction of the adsorbent temperature.

【0032】第14の発明では、HC吸着量の算出を、
始動に続くアイドル期間だけに限定するので、さらにH
C吸着量の算出負荷を軽減することができる。
In the fourteenth aspect, the calculation of the amount of adsorbed HC is
Since it is limited only to the idle period following the start,
The calculation load of the C adsorption amount can be reduced.

【0033】吸着剤より離脱させたHCを浄化するため
必要以上に二次空気を導入したのでは、下流に位置する
触媒を冷やすことになり、触媒の浄化性能を落とすおそ
れがあるが、第15の発明では、吸着剤より離脱させる
HC量に応じた量だけの二次空気量を導入することがで
き、これによって、二次空気の過大な導入による触媒の
冷やし過ぎを避けることができる。
If the secondary air is introduced more than necessary to purify the HC desorbed from the adsorbent, the catalyst located downstream will be cooled, and the purification performance of the catalyst may be reduced. According to the invention, it is possible to introduce an amount of secondary air in an amount corresponding to the amount of HC desorbed from the adsorbent, thereby avoiding excessive cooling of the catalyst due to excessive introduction of the secondary air.

【0034】高温の排気をバイパス通路に設けた吸着剤
に導いてHCを離脱させるとともに、この離脱したHC
を二次空気とともに、下流の三元触媒に導いて浄化する
ようにしている場合に、二次空気量が一定であると、吸
着剤に導入される排気量が多い場合に、吸着剤における
HCの離脱速度(離脱HC濃度)が大きくて触媒に流入
する排気の空燃比が理論空燃比よりもリッチ化すること
があり、このとき触媒でのHCの浄化性能が低下するの
であるが、第16の発明では、HCの離脱条件において
排気量調整手段を介し、吸着剤に導入される排気量をH
C吸着量(したがってHC離脱量)に応じて制御するの
で、触媒のリッチ化を防止し、これによって触媒の浄化
性能の低下を防止することができる。
The high-temperature exhaust gas is guided to the adsorbent provided in the bypass passage to release HC, and the released HC is removed.
Is introduced to the downstream three-way catalyst together with the secondary air for purification.If the amount of secondary air is constant, if the amount of exhaust gas introduced into the adsorbent is large, HC The desorption speed (desorption HC concentration) of the exhaust gas is high, and the air-fuel ratio of the exhaust gas flowing into the catalyst may become richer than the stoichiometric air-fuel ratio. At this time, the purification performance of HC by the catalyst is reduced. According to the invention, the amount of exhaust gas introduced into the adsorbent through the exhaust gas amount adjusting means under the condition of HC desorption is H
Since the control is performed in accordance with the amount of C adsorbed (therefore, the amount of desorbed HC), the enrichment of the catalyst can be prevented, and thus the purification performance of the catalyst can be prevented from lowering.

【0035】[0035]

【発明の実施の形態】図1において、1はエンジン本
体、2は排気管、3は三元触媒、4は三元触媒3の内部
温度を検出するセンサである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, 1 is an engine body, 2 is an exhaust pipe, 3 is a three-way catalyst, and 4 is a sensor for detecting the internal temperature of the three-way catalyst 3.

【0036】三元触媒3の上流で排気管2が主通路2a
とバイパス通路2bに分岐され、両通路の分岐部に排気
の流れを主通路2aとバイパス通路2bとに切換えるた
めの弁5を備える。この切換弁5はコントロールユニッ
ト11により直接にあるいは図示しないアクチュエータ
を介して駆動される。
The exhaust pipe 2 is connected to the main passage 2a upstream of the three-way catalyst 3.
A valve 5 for switching the flow of exhaust gas between the main passage 2a and the bypass passage 2b. The switching valve 5 is driven by the control unit 11 directly or via an actuator (not shown).

【0037】上記のバイパス通路2bには、HCの吸着
剤6が、またこの吸着剤6のすぐ上流側に空気を供給す
るため、空気供給通路8と空気ポンプ9からなる二次空
気供給装置を備える。
In the bypass passage 2b, a secondary air supply device comprising an air supply passage 8 and an air pump 9 is provided to supply an adsorbent 6 for HC and air just upstream of the adsorbent 6. Prepare.

【0038】ここで、吸着剤6はゼオライト粉末を主成
分とするスラリーをハニカム単体にコーティングしたも
ので、吸着剤には低温時にHCを吸着し一定温度(約2
00℃)を超えるとHCを離脱するという性質がある。
Here, the adsorbent 6 is formed by coating a honeycomb body with a slurry containing zeolite powder as a main component.
(00 ° C.), there is a property that HC is released.

【0039】吸着剤6の入口排気温度を検出するため、
吸着剤6のすぐ上流に温度センサ12を備える。このセ
ンサ12からの温度信号はマイコンからなるコントロー
ルユニット11に入力され、この温度信号と上記センサ
3からの温度信号に基づいてコントロールユニット11
では切換弁5と空気ポンプ9を制御することで、HCの
吸着と離脱および離脱したHCの浄化の3つの処理を行
う。
In order to detect the inlet exhaust gas temperature of the adsorbent 6,
A temperature sensor 12 is provided immediately upstream of the adsorbent 6. The temperature signal from the sensor 12 is input to a control unit 11 comprising a microcomputer, and based on the temperature signal and the temperature signal from the sensor 3, the control unit 11
By controlling the switching valve 5 and the air pump 9, three processes of adsorbing and releasing HC and purifying the released HC are performed.

【0040】これらの処理を図2のフローチャートによ
り説明する。このフローは一定時間毎(たとえば100
ms毎)に実行する。
These processes will be described with reference to the flowchart of FIG. This flow is performed at regular intervals (for example, 100
ms).

【0041】ステップ1ではセンサ4により検出される
触媒内部温度TCと所定値Kcを比較する。ここで、Kc
は三元触媒3が活性化する温度(たとえば350℃)で
ある。したがって、冷間始動時であればTC<Kcであ
り、このとき触媒3がまだ活性状態にないと判断してス
テップ2以降の吸着処理に進む。
In step 1, the catalyst internal temperature TC detected by the sensor 4 is compared with a predetermined value Kc. Where Kc
Is the temperature at which the three-way catalyst 3 is activated (for example, 350 ° C.). Therefore, if it is a cold start, TC <Kc, and at this time, it is determined that the catalyst 3 is not yet in the active state, and the process proceeds to the adsorption process of step 2 and subsequent steps.

【0042】ステップ2では、センサ12により検出さ
れる吸着剤6の入口排気温度Tinと所定値Kk(たとえ
ば200℃)を比較し、Tin≦Kkであれば、吸着剤6
がHCを吸着可能であると判断し、ステップ3、4に進
む。ステップ3では切換弁5を駆動して排気をバイパス
通路2b側に流し、排気中のHCを吸着剤6に吸着させ
る。ステップ4では吸着フラグ(始動時に“0”に初期
設定)FKに“1”を入れる。FK=1により吸着条件に
あることを表すのである。
In step 2, the inlet exhaust gas temperature Tin of the adsorbent 6 detected by the sensor 12 is compared with a predetermined value Kk (for example, 200 ° C.).
Determines that HC can be adsorbed, and proceeds to steps 3 and 4. In step 3, the switching valve 5 is driven to flow exhaust gas to the bypass passage 2b side, and HC in the exhaust gas is adsorbed by the adsorbent 6. In step 4, "1" is set to the suction flag FK (initial setting to "0" at startup). FK = 1 indicates that the condition is the adsorption condition.

【0043】これに対して、排気温度が上昇しTin<K
kになると、吸着剤6がHCを吸着できなくなるので、
ステップ5、6に進み、切換弁5を駆動して排気をバイ
パス通路2bに流さないようにするとともに、吸着フラ
グFKに“0”を入れる。TC<Kcであるとき、空気ポ
ンプ9は非作動状態である。
On the other hand, when the exhaust gas temperature rises and Tin <K
At k, the adsorbent 6 can no longer adsorb HC,
Proceeding to steps 5 and 6, the switching valve 5 is driven to prevent the exhaust gas from flowing into the bypass passage 2b, and "0" is set to the adsorption flag FK. When TC <Kc, the air pump 9 is not operating.

【0044】一方、排気温度がさらに上昇してTC≧K
cになると、触媒3が活性化したと判断し、ステップ1
よりステップ7に進んでフラグFKをみる。FK=1のと
き(つまり吸着剤6にHCが吸着されている)は、ステ
ップ8以降の離脱処理を行う。
On the other hand, when the exhaust gas temperature further rises and TC ≧ K
When it becomes c, it is determined that the catalyst 3 has been activated, and step 1
The process proceeds to step 7 to check the flag FK. When FK = 1 (that is, HC is adsorbed on the adsorbent 6), the desorption process from step 8 is performed.

【0045】ステップ8では、吸着剤6の入口排気温度
Tinと所定値Kdを比較する。ここで、KdはHCが吸着
剤6より完全に離脱する温度(たとえば350℃)であ
る。したがって、Tin<Kdのときはステップ9、10
に進み、切換弁5を駆動して排気をバイパス通路2bに
再び流すとともに、空気ポンプ9を作動する。高温の排
気を導いて吸着剤6からHCを離脱させるとともに、こ
の離脱したHCを二次空気中に多く存在する酸素を用い
て触媒3内で酸化処理により浄化するわけである。
In step 8, the inlet exhaust temperature Tin of the adsorbent 6 is compared with a predetermined value Kd. Here, Kd is a temperature (for example, 350 ° C.) at which HC is completely released from the adsorbent 6. Therefore, when Tin <Kd, steps 9 and 10 are performed.
Then, the switching valve 5 is driven to discharge the exhaust gas to the bypass passage 2b again, and the air pump 9 is operated. The high-temperature exhaust gas is led to desorb HC from the adsorbent 6, and the desorbed HC is purified by oxidation treatment in the catalyst 3 using oxygen present in a large amount in the secondary air.

【0046】FK=1である場合に、排気温度の上昇に
よりTin≧Kdになると、HCが吸着剤6より完全に離
脱したと判断し、離脱処理を終了するためステップ8よ
りステップ11、12、13に進み、切換弁5を駆動し
てバイパス通路2bへの排気流れを遮断し、空気ポンプ
9を作動を止め、吸着フラグFKに“0”を入れる。こ
のフラグFKの“0”へのセットにより、次回以降ステ
ップ1、7からステップ8以降の離脱処理に進むことが
できないのである。
When Tin ≧ Kd due to a rise in the exhaust gas temperature when FK = 1, it is determined that HC has completely desorbed from the adsorbent 6, and steps 11, 12, and 11 are performed to complete the desorption process. In step 13, the switching valve 5 is driven to shut off the exhaust gas flow to the bypass passage 2b, the operation of the air pump 9 is stopped, and the suction flag FK is set to "0". Due to the setting of the flag FK to "0", it is impossible to proceed from the steps 1 and 7 to the departure processing from the step 8 onward.

【0047】さて、吸着触媒5は、高温の排気に晒され
たり、排気中に含まれるオイル分が付着堆積したりする
ことによって劣化し、吸着性能が低下することがあるの
で、吸着熱を利用して吸着剤に劣化が生じたかどうかを
判定するようにした従来装置があるが、このものでは、
加速時やホットリスタート時など吸着剤の入口排気温度
が吸着剤の出口排気温度より高くなる場合に、吸着熱を
求めることができないので、その分だけ劣化判定の精度
が低下する。
The adsorption catalyst 5 is deteriorated by being exposed to high-temperature exhaust gas or adhering and accumulating oil contained in the exhaust gas, and the adsorption performance may be reduced. There is a conventional device that determines whether or not the adsorbent has deteriorated.
If the inlet exhaust temperature of the adsorbent is higher than the outlet exhaust temperature of the adsorbent, such as during acceleration or hot restart, the heat of adsorption cannot be determined, and the accuracy of the deterioration determination is reduced accordingly.

【0048】これに対処するため本発明の第1実施形態
では、吸着熱が発生しないとしたときの吸着剤の内部温
度(または吸着剤の出口温度)を予測し、この吸着剤の
内部温度の予測値と吸着剤の内部温度の実測値(つまり
吸着熱が発生しているときの温度)の差から算出した吸
着熱に応じてHC吸着量を算出し、この算出したHC吸
着量を用いて吸着剤の劣化判定を行う。
In order to cope with this, in the first embodiment of the present invention, the internal temperature of the adsorbent (or the outlet temperature of the adsorbent) when the heat of adsorption is not generated is predicted, and the internal temperature of the adsorbent is calculated. The HC adsorption amount is calculated in accordance with the heat of adsorption calculated from the difference between the predicted value and the actually measured value of the internal temperature of the adsorbent (that is, the temperature when the heat of adsorption is generated), and the calculated HC adsorption amount is used. The deterioration of the adsorbent is determined.

【0049】まず、吸着熱が発生しないと仮定したとき
の吸着剤の内部温度の予測方法について説明する。
First, a method of predicting the internal temperature of the adsorbent when it is assumed that no heat of adsorption is generated will be described.

【0050】吸着剤6は一般的にハニカム担体に担持さ
れており、表面積が広い構造である。吸着剤6に排気が
流れると排気と吸着剤6との温度差によって熱の授受が
行われるが、吸着剤6の表面積が広いために熱伝達率が
非常に高く、排気温度と吸着剤温度がほぼ一致するまで
熱の授受が行われる。このことを前提に吸着熱が発生し
ないと仮定したときの吸着剤6の内部温度を予測する。
The adsorbent 6 is generally carried on a honeycomb carrier, and has a structure with a large surface area. When the exhaust gas flows into the adsorbent 6, heat is transferred due to the temperature difference between the exhaust gas and the adsorbent 6, but the heat transfer coefficient is very high because the surface area of the adsorbent 6 is large, and the exhaust temperature and the adsorbent temperature are low. The transfer of heat is performed until almost coincident. Based on this, the internal temperature of the adsorbent 6 is estimated when it is assumed that heat of adsorption is not generated.

【0051】なお、吸着剤6の内部温度の予測は、図6
のフローチャートで後述するように、一定の周期(一定
時間毎に)でサイクリックに実行するので、n回目の演
算タイミングにおける吸着剤の内部温度を考える。
The prediction of the internal temperature of the adsorbent 6 is shown in FIG.
As will be described later with reference to the flowchart of the above, the cyclic operation is performed at a fixed cycle (every fixed time), so the internal temperature of the adsorbent at the n-th calculation timing is considered.

【0052】吸着剤内部の今回(つまりn回目)の予測
温度TKnは前回(つまりn−1回目)の予測温度TKn-1
に、吸着剤6に与えられた熱量QKnより計算される温度
上昇分ΔTKnを足したものであるため、 TKn=TKn-1+ΔTKn=TKn-1+QKn/NK …(1) ただし、NK:吸着剤の熱容量 の式により表すことができる。なお、TKnの記号のうち
最後のnがn回目を、またTKn-1の記号のうち最後のn
−1がn−1回目を表している。NKは吸着剤入口より
吸着剤の内部温度を予測する位置までの熱容量である。
The current (ie, n-th) predicted temperature TKn inside the adsorbent is the previous (ie, (n−1) -th) predicted temperature TKn−1.
TKn = TKn-1 + .DELTA.TKn = TKn-1 + QKn / NK (1) where NK is the heat capacity of the adsorbent. Can be represented by the following equation. Note that the last n of the symbols of TKn is the n-th time, and the last n of the symbols of TKn-1 is
-1 represents the (n-1) th time. NK is the heat capacity from the adsorbent inlet to the position where the internal temperature of the adsorbent is predicted.

【0053】また、吸着剤6に与えられた熱量QKnは排
気からもらったので、吸着剤6の入口排気温度Tinと吸
着剤6の内部温度を予測する位置での排気温度Toutの
差に排気の熱容量をかけたものから、吸着剤6より外気
への放熱量QHnを引いたものがQKn、つまり QKn=NH×(Tin−Tout)−QHn …(2) ただし、NH:排気の熱容量 である。
Since the heat quantity QKn given to the adsorbent 6 is obtained from the exhaust gas, the difference between the exhaust gas temperature Tout at the position where the inlet exhaust gas temperature Tin of the adsorbent 6 is predicted and the internal temperature of the adsorbent 6 is estimated. QKn, ie, QKn = NH × (Tin−Tout) −QHn (2) where NH is the heat capacity of the exhaust gas.

【0054】(2)式のToutはほぼTKnに等しく、ま
た、吸着剤6より外気への放熱量QHnは QHn=HK×(TKn-1−T外) …(3) ただし、HK:放熱率 T外:外気温 の式で表されるため、この(3)式を(2)式に代入す
ると、(2)式は、 QKn=NH×(Tin−TKn)−HK×(TKn-1−T外) …(4) となる。この(4)式を(1)式に入れると、 TKn=TKn-1+{NH×(Tin−TKn)−HK×(TKn-1−T外)}/NK となり、これをTKnについて式変形すると、 TKn={NH×Tin+(NK−HK)×TKn-1+HK×T外}/(NK+NH) …(5) の式を得る。(5)式によれば、吸着剤内部の前回の予
測温度TKn-1(初期値TK0はセンサ13による実測値を
用いる)、吸着剤6の入口排気温度Tin、排気の熱容量
NH、吸着剤6の熱容量NK、放熱率HK(定数)、外気
温であるT外(吸入空気温度で代用する)を与えること
で、吸着熱が発生しないと仮定したときの吸着剤の内部
温度を予測できるわけである。
Tout in the equation (2) is substantially equal to Tkn, and the heat release amount QHn from the adsorbent 6 to the outside air is: QHn = HK × (TKn−1−T outside) (3) where HK is the heat release rate Since outside of T is expressed by the equation of outside air temperature, when this equation (3) is substituted into the equation (2), the equation (2) becomes: QKn = NH × (Tin−TKn) −HK × (TKn−1− Outside T) (4) When this equation (4) is put into the equation (1), TKn = TKn−1 + {NH × (Tin−TKn) −HK × (outside of TKn−1−T)} / NK. TKn = {NH × Tin + (NK−HK) × TKn−1 + HK × T outside} / (NK + NH) (5) According to the equation (5), the previous predicted temperature TKn-1 inside the adsorbent (the initial value TK0 uses the actual value measured by the sensor 13), the inlet exhaust temperature Tin of the adsorbent 6, the heat capacity NH of the exhaust, the adsorbent 6 By giving the heat capacity NK, the heat radiation rate HK (constant), and the outside temperature outside T (substituting with the intake air temperature), it is possible to predict the internal temperature of the adsorbent when it is assumed that no heat of adsorption is generated. is there.

【0055】この場合、排気の熱容量NHは吸入空気の
熱容量NAと燃料の熱容量NNを足したものであるから、 NH=NA+NN=QA×ρA×CA+{QA/(A/F)}×ρN×CN…(6) ただし、QA:吸入空気量 ρA:空気の密度(定数) CA:空気の比熱(定数) A/F:設定空燃比 ρN:燃料の密度(定数) CN:燃料の比熱(定数) の式で求めることができる。
In this case, since the heat capacity NH of the exhaust gas is the sum of the heat capacity NA of the intake air and the heat capacity NN of the fuel, NH = NA + NN = QA × ρA × CA + {QA / (A / F)} × ρN × CN: (6) where QA: intake air amount ρA: density of air (constant) CA: specific heat of air (constant) A / F: set air-fuel ratio ρN: density of fuel (constant) CN: specific heat of fuel (constant) ).

【0056】次に、今回までの積算吸着熱量Knの求め
方について説明する。
Next, a method of obtaining the accumulated heat of adsorption Kn up to this time will be described.

【0057】今回(n回目)までの積算吸着熱量Knは
前回(n−1回目)までの積算吸着熱量Kn-1に、前回
から今回までに吸着剤6から発生した熱量ΔKnを足し
たものであるため、 Kn=Kn-1+ΔKn …(7) の式で表すことができる。
The accumulated heat of adsorption Kn up to this time (n-th time) is obtained by adding the heat amount ΔKn generated from the adsorbent 6 from the previous time to the current time to the accumulated heat of adsorption Kn-1 up to the previous time (n-1 time). Therefore, Kn = Kn−1 + ΔKn (7)

【0058】ここで、(7)式のΔKnは、排気と吸着
剤6の両方を、吸着熱が発生しなかったとしたときの温
度TKnより吸着熱が発生したときの温度TKJ(吸着剤6
の内部温度の実測値)まで上昇させるための熱量と吸着
剤6から外気への放熱量とを足したもの、つまり ΔKn=(NK+NH)×(TKJ−TKn)+HK×(TKJ−T外) …(8) である。この(8)式を(7)式に代入すると、n回目
までの積算吸着熱量Knは、 Kn=Kn-1+(NK+NH)×(TKJ−TKn)+HK×(TKJ−T外)…(9) の式により計算することができる。(9)式の演算を吸
着期間のあいだ繰り返せば、吸着剤6に排気を流さなく
なったときまでの合計の吸着熱量を求めることができる
のである。
Here, ΔKn in the equation (7) indicates a temperature TKJ (adsorbent 6) when both the exhaust gas and the adsorbent 6 generate heat of adsorption from a temperature TKn when no heat of adsorption is generated.
The sum of the amount of heat for raising the temperature up to the measured internal temperature) and the amount of heat released from the adsorbent 6 to the outside air, that is, ΔKn = (NK + NH) × (TKJ−TKn) + HK × (TKJ−T) (8) By substituting equation (8) into equation (7), the accumulated heat of adsorption Kn up to the n-th time is given by: Kn = Kn-1 + (NK + NH) * (TKJ-TKn) + HK * (outside of TKJ-T) (9) Can be calculated by the following equation. By repeating the calculation of the expression (9) during the adsorption period, the total heat of adsorption until the exhaust gas does not flow through the adsorbent 6 can be obtained.

【0059】なお、(9)式において、必ず(TKJ−T
Kn)≧0、(TKJ−T外)≧0である。
Note that in equation (9), (TKJ-T
Kn) ≧ 0 and (outside TKJ−T) ≧ 0.

【0060】吸着熱とHC吸着量との間には図3に示す
比例関係があるので、 RK=C×Kn …(10) ただし、C:定数 の式によりHC吸着量RKを算出することができる。つ
まり、HCを吸着するときに吸着剤6が吸着熱を発生
し、この発熱量は吸着剤6に吸着されたHC量に比例す
るため、発熱量を計測することによりHC吸着量を定量
化できたわけである。したがって、このHC吸着量RK
と目標吸着量RMとの比較によりRKがRM未満であれ
ば、吸着剤に劣化が生じたと判定することができる。
Since there is a proportional relationship between the heat of adsorption and the amount of adsorbed HC as shown in FIG. 3, RK = C × Kn (10) where the HC adsorbed amount RK can be calculated by the equation of C: constant. it can. That is, the adsorbent 6 generates heat of adsorption when adsorbing HC, and the calorific value is proportional to the amount of HC adsorbed on the adsorbent 6, so that the amount of HC adsorption can be quantified by measuring the calorific value. That's it. Therefore, this HC adsorption amount RK
If RK is smaller than RM by comparing the target adsorption amount RM with the target adsorption amount RM, it can be determined that the adsorbent has deteriorated.

【0061】次に、上記の目標吸着量RMの求め方につ
いて説明する。
Next, a method for obtaining the target adsorption amount RM will be described.

【0062】今回(n回目)の演算までに吸着剤に流し
たHC量、つまりHC積算量RSnは、前回(n−1回
目)までのHC積算量RSn-1に、前回から今回までに流
れたHC量ΔRSnを足したものであるため、 RSn=RSn-1+ΔRSn …(11) の式によりで表すことができる。
The amount of HC that has flowed into the adsorbent up to the current (n-th) calculation, that is, the accumulated HC amount RSn, is the same as the HC accumulated amount RSn-1 up to the previous (n-1) th operation and from the previous to the present. Since the calculated HC amount ΔRSn is added, it can be expressed by the following equation: RSn = RSn−1 + ΔRSn (11)

【0063】(11)式のΔRSnは、吸入空気量QAに
HC濃度をかけたものにほぼ等しいため、 RSn=RSn-1+QA×HC濃度 …(12) と表すことができる。
Since ΔRSn in the equation (11) is substantially equal to the intake air amount QA multiplied by the HC concentration, it can be expressed as: RSn = RSn−1 + QA × HC concentration (12)

【0064】ここで、(12)式のHC濃度は設定空燃
比A/Fおよび冷却水温TWとの間に図4、図5に示す
相関があるため、設定空燃比A/Fと冷却水温TWによ
る各々のHC濃度補正係数をKaf 、Ktwとすれば、
(12)式は、 RSn=RSn-1+QA×Kaf×Ktw …(13) の式により表すことができる。吸着剤6にHCを吸着さ
せている間、この演算を繰り返すことによって、吸着剤
6に流したHCの総量を求めることができる。
Here, since the HC concentration in equation (12) has a correlation shown in FIGS. 4 and 5 between the set air-fuel ratio A / F and the cooling water temperature TW, the set air-fuel ratio A / F and the cooling water temperature TW Assuming that the respective HC concentration correction coefficients according to are Kaf and Ktw,
Equation (12) can be represented by the following equation: RSn = RSn-1 + QA × Kaf × Ktw (13) By repeating this calculation while the adsorbent 6 is adsorbing HC, the total amount of HC that has flowed into the adsorbent 6 can be obtained.

【0065】実際には、総量のうちの一部が吸着される
のであるから、吸着剤6の許容できる劣化後の吸着率
(たとえば30%)をHC積算量RSnにかけて、つまり RMS=CK×RSn …(14) ただし、CK:目標吸着率(定数) の式により目標吸着量RMSを算出する。
Actually, a part of the total amount is adsorbed, so that the adsorbable rate (for example, 30%) of the adsorbent 6 after the allowable deterioration is multiplied by the integrated HC amount RSn, that is, RMS = CK × RSn (14) where CK is a target adsorption rate (constant), and the target adsorption amount RMS is calculated.

【0066】ただし、吸着できる条件が長いとHC積算
量RSnが大きくなり、(14)式のように単純に吸着率
をかけるだけだと目標吸着量が過大になるおそれがある
ので、固定の目標吸着量RMCを定数として与えておき、
RMSとRMCとの比較により小さい方を目標吸着量RMと
する。
However, if the condition for adsorbing is long, the integrated amount of HC RSn becomes large, and if the adsorption rate is simply multiplied as in the equation (14), the target adsorbing amount may become excessively large. Given the adsorption amount RMC as a constant,
The smaller of RMS and RMC is set as the target adsorption amount RM.

【0067】これで本発明によるHC吸着量の算出と吸
着剤の劣化判定の各原理説明を終える。
This concludes the description of each principle of the calculation of the HC adsorption amount and the determination of the deterioration of the adsorbent according to the present invention.

【0068】コントロールユニット11で実行されるこ
うした制御の内容を、以下のフローチャートに従って説
明する。
The contents of such control executed by the control unit 11 will be described with reference to the following flowchart.

【0069】図6のフローチャートは吸着剤6の劣化判
定を行うためのもので、一定時間毎(たとえば100m
s毎)に実行する。
The flowchart of FIG. 6 is for determining the deterioration of the adsorbent 6, and is performed at regular intervals (for example, 100 m).
s).

【0070】なお、吸着剤6の実際の内部温度TKJを検
出するため、吸着剤6の中央部に温度センサ13が設け
られ、このセンサ13からの温度信号が、吸入空気量Q
A、冷却水温TW、吸入空気温度TAを検出するセンサ
(図示しない)からの信号とともに、コントロールユニ
ット11に入力されている。
In order to detect the actual internal temperature TKJ of the adsorbent 6, a temperature sensor 13 is provided at the center of the adsorbent 6, and a temperature signal from the sensor 13 is used to detect the intake air amount Q
A, a signal from a sensor (not shown) for detecting the cooling water temperature TW and the intake air temperature TA are input to the control unit 11.

【0071】ステップ21ではフラグFKより吸着条件
であるかどうかをみる。FK=1のとき(吸着条件のと
き)はステップ21よりステップ22以降の積算吸着熱
量Knの演算に進む。
In step 21, it is determined from the flag FK whether or not the suction condition is satisfied. When FK = 1 (under the adsorption condition), the process proceeds from step 21 to the calculation of the accumulated heat of adsorption Kn from step 22 onward.

【0072】ステップ22では吸入空気量QA、吸着剤
6の入口排気温度Tin、吸着剤6の実際の内部温度TK
J、外気温T外(吸入空気温度TAで代用する)を各セン
サから、またステップ23ではエンジンの運転条件から
判定される設定空燃比A/Fをそれぞれ読み込み、QA
とA/Fからステップ24において上記(6)式を用い
て排気の熱容量NHを算出する。
In step 22, the intake air amount QA, the inlet exhaust temperature Tin of the adsorbent 6, and the actual internal temperature TK of the adsorbent 6
J, the outside air temperature T (substitute with the intake air temperature TA) is read from each sensor, and in step 23, the set air-fuel ratio A / F determined from the engine operating conditions is read, and QA is read.
In step 24, the heat capacity NH of the exhaust gas is calculated from the A / F and the A / F using the above equation (6).

【0073】なお、上記の設定空燃比A/Fについて
は、図示しないフローにおいて、 Ti=TP×TFBYA×α×2+TS …(15) ただし、TP:基本噴射パルス幅 TFBYA:目標燃空比相当量 α:空燃比フィードバック補正係数 TS:無効パルス幅 の式(公知)によりシーケンシャル噴射方式の燃料噴射
パルス幅Tiを求めているものでは、TFBYA=1の
ときが理論空燃比の値に相当するので、 A/F=14.7×TFBYA …(16) の式により求めればよい。
The above-mentioned set air-fuel ratio A / F is calculated by the following equation: Ti = TP × TFBYA × α × 2 + TS (15) where TP: basic injection pulse width TFBYA: target fuel-air ratio equivalent α: air-fuel ratio feedback correction coefficient TS: invalid pulse width In the case of obtaining the fuel injection pulse width Ti of the sequential injection system by the formula (known), when TFBYA = 1 corresponds to the value of the stoichiometric air-fuel ratio, A / F = 14.7 × TFBYA (16)

【0074】ステップ25ではこの排気の熱容量NH、
入口排気温度Tin、吸着剤内部の前回の予測温度Tkn-
1、T外から上記(5)式を用いて吸着熱が発生しなか
ったとしたときの吸着剤内部の予測温度TKnを算出し、
この吸着剤内部の予測温度Tkn、吸着剤の実際の内部温
度TKJ、T外からステップ26において上記(9)式を
用い積算吸着熱量(始動時に0に初期設定)Knを算出
する。ステップ27では次回演算のためTknの値をTkn
-1(始動時に0に初期設定)に、またKnの値をKn-1
(始動時に0に初期設定)にそれぞれ移して今回の処理
を終了する。
In step 25, the heat capacity of the exhaust gas NH,
Inlet exhaust temperature Tin, previous predicted temperature Tkn- inside the adsorbent
1. Calculate the predicted temperature TKn inside the adsorbent assuming that no heat of adsorption is generated from outside T using the above equation (5),
In step 26, from the predicted temperature Tkn inside the adsorbent, the actual internal temperature TKJ of the adsorbent, and outside T, an integrated heat of adsorption (initial setting to 0 at the time of starting) Kn is calculated using the above equation (9). In step 27, the value of Tkn is set to Tkn for the next calculation.
-1 (initial setting to 0 at startup) and the value of Kn to Kn-1
(Initial setting to 0 at start-up), and the current process ends.

【0075】ステップ22よりステップ27の処理は吸
着条件の間(吸着の処理が終わるまで)繰り返す。
The processing from step 22 to step 27 is repeated during the adsorption condition (until the adsorption processing is completed).

【0076】一方、FK=0のとき(吸着条件でないと
き)はステップ28に進んで、前回は吸着条件であった
かどうかみる。前回は吸着条件であったとき(つまり吸
着を終了したとき)は、ステップ29で積算吸着熱量K
nから上記(10)式を用いてHC吸着量RKを算出し、
このHC吸着量RKと目標吸着量RMをステップ30にお
いて比較する。RKがRMに満たない場合は吸着剤6に許
容以上の劣化が生じていると判断し、その結果をドライ
バーに知らせるためステップ31に進んで警告灯を点灯
する。これに対してRKがRM以上(吸着剤に劣化が生じ
ていない)のときはそのまま図6のフローを終了する。
On the other hand, when FK = 0 (when the condition is not the suction condition), the process proceeds to step 28, and it is determined whether or not the previous condition was the suction condition. If the last time was the adsorption condition (that is, when the adsorption was completed), at step 29, the integrated adsorption heat amount K
The HC adsorption amount RK is calculated from n using the above equation (10),
The HC adsorption amount RK and the target adsorption amount RM are compared in step 30. If RK is less than RM, it is determined that the adsorbent 6 has deteriorated more than allowable, and the process proceeds to step 31 to turn on the warning lamp to inform the driver of the deterioration. On the other hand, when RK is equal to or higher than RM (the adsorbent is not deteriorated), the flow of FIG.

【0077】図7のフローチャートは、目標吸着量RM
を算出するためのもので、これも一定時間毎(たとえば
100ms毎)に実行する。なお、目標吸着量RMは、
前述した図6の処理に必要となるので、図6に示した処
理を行う直前に図7の処理を行っておく必要がある。
The flowchart of FIG. 7 shows the target suction amount RM.
This is also executed at regular intervals (for example, every 100 ms). Note that the target adsorption amount RM is
Since it is necessary for the above-described processing of FIG. 6, it is necessary to perform the processing of FIG. 7 immediately before performing the processing shown in FIG.

【0078】ステップ41ではフラグFKより吸着条件
であるかどうかみて、FK=1(吸着条件)のときは、
ステップ42以降のHC積算量RSnの演算に進む。
In step 41, it is determined whether or not the suction condition is satisfied based on the flag FK. When FK = 1 (adsorption condition),
The process proceeds to the calculation of the HC integrated amount RSn after step 42.

【0079】ステップ42では吸入空気量QA、冷却水
温TWを各センサから、またステップ43ではエンジン
の運転条件から判断される設定空燃比A/Fを読み込
み、冷却水温TW、設定空燃比A/Fからステップ4
4、45において図8、図9のテーブルをそれぞれ検索
して設定空燃比A/Fに応じたHC濃度補正係数Kaf、
冷却水温TWに応じたHC濃度補正係数Ktwを求める。
In step 42, the intake air amount QA and the cooling water temperature TW are read from each sensor. In step 43, the set air-fuel ratio A / F determined from the engine operating conditions is read, and the cooling water temperature TW and the set air-fuel ratio A / F are read. To Step 4
4 and 45, the HC concentration correction coefficient Kaf corresponding to the set air-fuel ratio A / F is searched by searching the tables of FIGS.
An HC concentration correction coefficient Ktw corresponding to the cooling water temperature TW is obtained.

【0080】ステップ46ではこれらのHC濃度補正係
数Kaf、Ktwと吸入空気量QAから上記(13)式を用
いてHC積算量RSn(始動時に0に初期設定)を算出
し、ステップ47において次回演算のためRSnの値をR
Sn-1(始動時に0に初期設定)に移して今回の処理を終
了する。
In step 46, the HC integrated amount RSn (initial setting to 0 at start-up) is calculated from the HC concentration correction coefficients Kaf and Ktw and the intake air amount QA using the above equation (13). The value of RSn for R
The process proceeds to Sn-1 (initial setting to 0 at startup) and the current process ends.

【0081】ステップ42よりステップ47の処理は吸
着条件の間(吸着の処理が終わるまで)繰り返す。
The processing from step 42 to step 47 is repeated during the suction condition (until the suction processing is completed).

【0082】一方、FK=0のとき(吸着条件でないと
き)はステップ48に進んで、前回は吸着条件であった
かどうかみる。前回は吸着条件であったとき(つまり吸
着を終了したとき)、ステップ49に進み、HC積算量
RSnから上記(14)式を用いて目標吸着量RMSを算出
し、この算出された目標吸着量RMSと固定の目標値RMC
をステップ50において比較する。RMSの方がRMCより
小さい間はステップ51でRMSの値を吸着目標値RMに
入れ、RMS≧RMCになるとステップ52に進み、RMCに
制限するためRMCの値を吸着目標値RMに入れる。
On the other hand, when FK = 0 (when the condition is not the suction condition), the routine proceeds to step 48, where it is checked whether or not the previous condition was the suction condition. If the last time was the adsorption condition (that is, when the adsorption was completed), the routine proceeds to step 49, where the target adsorption amount RMS is calculated from the integrated HC amount RSn using the above equation (14), and the calculated target adsorption amount is calculated. RMS and fixed target value RMC
Are compared in step 50. While RMS is smaller than RMC, the value of RMS is entered into the adsorption target value RM in step 51, and if RMS ≧ RMC, the process proceeds to step 52, where the value of RMC is entered into the adsorption target value RM to limit to RMC.

【0083】このように本発明の第1実施形態では、H
C吸着条件において吸着剤6の入口排気温度Tinと吸入
空気量QAから吸着熱が発生しないとしたときの吸着剤
6の内部温度を予測し、この予測温度TKnと吸着剤6の
実際の内部温度(吸着熱が発生しているときの温度)T
KJの差に基づいて所定時間当たり(100ms当たり)
の吸着熱量を求め、この所定時間当たりの吸着熱量を吸
着条件のあいだ積算し、この積算吸着熱量Knに比例さ
せてHC吸着量RKを算出するので、吸着剤6の入口排
気温度が吸着剤の出口排気温度より高い場合において
も、HC吸着量を精度よく算出することができる。
As described above, in the first embodiment of the present invention, H
Under the C adsorption condition, the internal temperature of the adsorbent 6 when the heat of adsorption is assumed not to be generated is predicted from the inlet exhaust temperature Tin of the adsorbent 6 and the intake air amount QA, and the predicted temperature TKn and the actual internal temperature of the adsorbent 6 are estimated. (Temperature when heat of adsorption is generated) T
Per predetermined time (per 100ms) based on KJ difference
And the amount of heat of adsorption per predetermined time is integrated under the adsorption conditions, and the amount of HC adsorption RK is calculated in proportion to the integrated amount of heat of adsorption Kn. Even when the temperature is higher than the outlet exhaust gas temperature, the HC adsorption amount can be accurately calculated.

【0084】また、このHC吸着量RKと目標吸着量RM
との比較から吸着剤6の劣化判定を行うので、吸着剤6
の入口排気温度が吸着剤の出口排気温度より高い場合に
おいても、劣化判定の精度が低下することがない。
The HC adsorption amount RK and the target adsorption amount RM
The deterioration of the adsorbent 6 is determined based on the comparison with
Even if the inlet exhaust gas temperature is higher than the outlet exhaust gas temperature of the adsorbent, the accuracy of the deterioration determination does not decrease.

【0085】次に説明する3つの実施形態は第1実施形
態と同じに吸着剤の劣化判定を行うものが前提である。
The following three embodiments are based on the assumption that the deterioration of the adsorbent is determined in the same manner as in the first embodiment.

【0086】1)第2実施形態 上記(9)式によれば、所定時間当たりの吸着熱量
((9)式右辺の第2項と第3項を足したもの)は、正
の値である間が吸着条件となり、0となったタイミング
が吸着限界のタイミング(吸着できなくなったタイミン
グ)となる。そこで、第2実施形態では、このタイミン
グをHCの吸着終了時期と判定し、切換弁5を駆動して
排気を主通路2aに流す。これによって、吸着限界を超
えているのに、吸着剤6に排気を流し続けた場合に加速
等により吸着剤6の入口排気温度が急激に上昇したり排
気量が急激に増加することによる、吸着剤6からHCの
離脱を回避できる。
1) Second Embodiment According to the above equation (9), the heat of adsorption per predetermined time (the sum of the second and third terms on the right side of equation (9)) is a positive value. The interval becomes the suction condition, and the timing at which it becomes 0 is the timing of the suction limit (the timing at which the suction becomes impossible). Therefore, in the second embodiment, this timing is determined as the end time of the adsorption of HC, and the switching valve 5 is driven to flow the exhaust gas to the main passage 2a. As a result, when the exhaust gas continues to flow through the adsorbent 6 even though it exceeds the adsorption limit, the adsorbent 6 has an adsorbent due to a sudden increase in the exhaust temperature at the inlet or a rapid increase in the exhaust amount due to acceleration or the like. Withdrawal of HC from the agent 6 can be avoided.

【0087】これを以下に詳述する。長時間吸着剤6の
入口排気温度が低温となる状態が続くと、吸着剤6の吸
着能力(キャパシティ)を越えることがあり、この吸着
限界(温度からくる吸着能力の限界ではない)を越えた
場合に加速等により吸着剤の入口排気温度が急激に上昇
したり排気量が急激に増加したのでは、吸着剤6からH
Cが離脱する可能性がある。しかしながら、従来装置で
は、吸着期間を吸着剤温度(入口排気温度や内部温度)
と所定値の比較により吸着剤温度が所定値を超えたとき
あるいは触媒が活性化した時点で吸着終了であると判定
するシステムがほとんどであり、触媒が未活性の状態で
吸着期間が長くなったときの吸着終了時期を判定するこ
とはしていない。つまり、従来装置によれば、長時間吸
着剤6の入口排気温度が低温となる状態が続いたとき、
吸着剤6からHCが離脱してしまう可能性があるのであ
る。これに対して、第2実施形態では、長時間吸着剤6
の入口排気温度が低温となる状態が続いたときにも正確
に吸着限界となったタイミング(吸着できなくなったタ
イミング)を判定し、このタイミングをHCの吸着終了
時期として、切換弁5を駆動して排気を主通路2aに流
すので、このような問題が生じなくなるのである。
This will be described in detail below. If the inlet exhaust temperature of the adsorbent 6 continues to be low for a long time, the adsorbent 6 may exceed its adsorbing capacity (capacity), and may exceed this adsorbing limit (not the adsorbing ability that is derived from the temperature). If the temperature of the exhaust gas at the inlet of the adsorbent suddenly rises or the amount of exhaust gas suddenly increases due to acceleration or the like,
C may be detached. However, in the conventional apparatus, the adsorption period is set to the adsorbent temperature (inlet exhaust temperature or internal temperature).
In most systems, when the adsorbent temperature exceeds the predetermined value or when the catalyst is activated, the system determines that the adsorption has been completed by comparing the adsorbent temperature with the predetermined value. The end time of the adsorption at this time is not determined. That is, according to the conventional apparatus, when the state where the inlet exhaust gas temperature of the adsorbent 6 is kept low for a long time continues,
There is a possibility that HC may be released from the adsorbent 6. On the other hand, in the second embodiment, the long-term adsorbent 6
The timing at which the adsorption limit is reached (timing at which adsorption becomes impossible) is accurately determined even when the inlet exhaust gas temperature remains low, and the switching valve 5 is driven using this timing as the HC adsorption end timing. As a result, the exhaust gas flows through the main passage 2a, so that such a problem does not occur.

【0088】2)第3実施形態 冷間始動時にはエンジンの始動とともに吸着条件にな
る。第1実施形態では、この吸着条件の全期間にわたる
HC吸着量Rn(したがって、これと比較するための目
標吸着量RMSも)を算出する場合で説明したが、この算
出をエンジンの始動から所定の期間(たとえば10秒)
だけに限定し、この限定した期間でのHC吸着量とこれ
に対応する目標吸着量との比較から劣化判定を行うよう
にすることもできる。始動からの短い期間に限定するこ
とで放熱量QHnの影響を無視できるので、上記(5)式
の吸着剤内部の予測温度TKnと上記(9)式の積算吸着
熱量Knの算出が簡単になる。
2) Third Embodiment At the time of the cold start, the adsorption condition is set together with the start of the engine. In the first embodiment, the case has been described in which the HC adsorption amount Rn over the entire period of the adsorption conditions (and therefore, the target adsorption amount RMS for comparison with this) is also calculated. Duration (for example, 10 seconds)
It is also possible to determine the deterioration by comparing the HC adsorption amount during this limited period with the corresponding target adsorption amount. Since the influence of the heat release amount QHn can be ignored by limiting the period to a short period from the start, the calculation of the predicted temperature TKn inside the adsorbent in the above equation (5) and the integrated adsorption heat quantity Kn in the above equation (9) can be simplified. .

【0089】3)第4実施形態 さらに、HC吸着量とこれに対応する目標吸着量の算出
を、始動に続くアイドル期間だけに限定してもよい。ア
イドル期間に限定するときは放熱量QHnの影響を無視で
きるほか、排気の熱容量と吸着剤に導入されるHC量を
それぞれ始動時水温に応じたテーブルを用いて容易に求
めることができるので、HC吸着量とこれに対応する目
標吸着量の各算出負荷を大幅に軽減することができる。
3) Fourth Embodiment Further, the calculation of the HC adsorption amount and the corresponding target adsorption amount may be limited to only the idle period following the start. When limited to the idle period, the influence of the heat release amount QHn can be ignored, and the heat capacity of the exhaust gas and the amount of HC introduced into the adsorbent can be easily obtained using a table corresponding to the water temperature at the time of starting. Each calculation load of the suction amount and the corresponding target suction amount can be greatly reduced.

【0090】次の2つの実施形態は第1実施形態で算出
したHC吸着量を、HCの離脱処理に用いるものであ
る。
The following two embodiments use the HC adsorption amount calculated in the first embodiment for the HC desorption process.

【0091】4)第5実施形態 第1実施形態で説明したように、吸着剤6より離脱させ
たHCを浄化するため空気ポンプ9を作動させて二次空
気を吸着剤6の上流に導入しているが、必要以上に二次
空気を導入したのでは、吸着剤6の下流に位置する三元
触媒3を冷やすことになり、触媒3の浄化性能を落とす
おそれがあるので、吸着剤6より離脱させるHC量に応
じた量だけの二次空気量を導入してやればよい.この場
合、第1実施形態で算出したHC吸着量RKが、吸着剤
6より離脱するHC量になると予測することができる。
4) Fifth Embodiment As described in the first embodiment, the air pump 9 is operated to purify HC desorbed from the adsorbent 6, and secondary air is introduced upstream of the adsorbent 6. However, if the secondary air is introduced more than necessary, the three-way catalyst 3 located downstream of the adsorbent 6 is cooled, and the purification performance of the catalyst 3 may be reduced. In this case, it is sufficient to introduce an amount of secondary air corresponding to the amount of HC to be desorbed. In this case, it is predicted that the HC adsorption amount RK calculated in the first embodiment will be the amount of HC desorbed from the adsorbent 6. it can.

【0092】そこで、この第1実施形態で算出したHC
吸着量RKに応じて二次空気量をコントロールすること
により、二次空気の過大な導入による触媒3の冷やし過
ぎを避けることができる。
Therefore, the HC calculated in the first embodiment is
By controlling the amount of secondary air in accordance with the amount of adsorption RK, it is possible to avoid excessive cooling of the catalyst 3 due to excessive introduction of secondary air.

【0093】5)第6実施形態 二次空気量が一定であると、吸着剤6に導入される排気
量が多い場合に、吸着剤におけるHCの離脱速度(離脱
HC濃度)が大きくて三元触媒3に流入する排気の空燃
比が理論空燃比よりもリッチ化することがあり、このと
き触媒3でのHCの浄化性能が低下する。
5) Sixth Embodiment If the amount of exhaust air introduced into the adsorbent 6 is large when the amount of secondary air is constant, the desorption speed of HC (desorption HC concentration) in the adsorbent is large and the three-way The air-fuel ratio of the exhaust gas flowing into the catalyst 3 may become richer than the stoichiometric air-fuel ratio, and at this time, the purification performance of the catalyst 3 for HC is reduced.

【0094】この場合、吸着剤6に導入する排気量を調
整することができれば、吸着剤6におけるHCの離脱速
度(離脱HC濃度)を変化させることができる。
In this case, if the amount of exhaust gas introduced into the adsorbent 6 can be adjusted, it is possible to change the desorption speed of HC in the adsorbent 6 (desorption HC concentration).

【0095】そこで、第1実施形態で説明した単なる切
換弁5に代えて、バイパス通路2bへの排気量を調整可
能な弁を設けておき、HCの離脱条件においてこの流量
調整弁を介し、吸着剤6に導入される排気量を、第1実
施形態で算出したHC吸着量RKに応じて制御すること
により、触媒3のリッチ化を防止し、これによって触媒
3の浄化性能の低下を防止できる。
Therefore, instead of the mere switching valve 5 described in the first embodiment, a valve capable of adjusting the amount of exhaust gas to the bypass passage 2b is provided, and under the condition for desorbing HC, the adsorption through the flow regulating valve is performed. By controlling the amount of exhaust gas introduced into the agent 6 in accordance with the HC adsorption amount RK calculated in the first embodiment, the enrichment of the catalyst 3 can be prevented, thereby preventing the purification performance of the catalyst 3 from lowering. .

【0096】図6、図7に示した実施形態では、演算周
期が時間である場合で説明したが、エンジン回転に同期
させることもできることはいうまでもない。
In the embodiments shown in FIGS. 6 and 7, the case where the calculation cycle is time has been described, but it is needless to say that the calculation can be synchronized with the engine rotation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態の制御システム図である。FIG. 1 is a control system diagram of a first embodiment.

【図2】排気システムの作動を説明するためのフローチ
ャートである。
FIG. 2 is a flowchart illustrating the operation of the exhaust system.

【図3】吸着熱とHC吸着量の関係を示す特性図であ
る。
FIG. 3 is a characteristic diagram showing a relationship between heat of adsorption and an amount of adsorbed HC.

【図4】空燃比とHC濃度の関係を示す特性図である。FIG. 4 is a characteristic diagram showing a relationship between an air-fuel ratio and an HC concentration.

【図5】冷却水温とHC濃度の関係を示す特性図であ
る。
FIG. 5 is a characteristic diagram showing a relationship between cooling water temperature and HC concentration.

【図6】吸着剤の劣化判定を説明するためのフローチャ
ートである。
FIG. 6 is a flowchart for explaining a deterioration determination of an adsorbent.

【図7】目標吸着量の算出を説明するためのフローチャ
ートである。
FIG. 7 is a flowchart for explaining calculation of a target suction amount.

【図8】空燃比によるHC濃度補正係数Kafの特性図で
ある。
FIG. 8 is a characteristic diagram of an HC concentration correction coefficient Kaf depending on an air-fuel ratio.

【図9】冷却水温によるHC濃度補正係数Ktwの特性図
である。
FIG. 9 is a characteristic diagram of an HC concentration correction coefficient Ktw depending on a cooling water temperature.

【図10】第1の発明のクレーム対応図である。FIG. 10 is a diagram corresponding to the claims of the first invention.

【図11】第3の発明のクレーム対応図である。FIG. 11 is a diagram corresponding to claims of the third invention.

【図12】第6の発明のクレーム対応図である。FIG. 12 is a diagram corresponding to a claim of the sixth invention.

【図13】第8の発明のクレーム対応図である。FIG. 13 is a diagram corresponding to the claims of the eighth invention.

【図14】第15の発明のクレーム対応図である。FIG. 14 is a diagram corresponding to a claim of the fifteenth invention.

【図15】第16の発明のクレーム対応図である。FIG. 15 is a diagram corresponding to a claim of the sixteenth invention.

【図16】第18の発明のクレーム対応図である。FIG. 16 is a diagram corresponding to the claims of the eighteenth invention.

【符号の説明】[Explanation of symbols]

2 排気管 2a バイパス通路 3 三元触媒 6 吸着剤 11 コントロールユニット 12 入口排気温度センサ 13 吸着剤内部温度センサ 2 exhaust pipe 2a bypass passage 3 three-way catalyst 6 adsorbent 11 control unit 12 inlet exhaust gas temperature sensor 13 adsorbent internal temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 圭司 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (56)参考文献 特開 平6−101452(JP,A) 特開 平6−93847(JP,A) 特開 平7−189669(JP,A) 特開 平8−14035(JP,A) 特開 平6−93840(JP,A) (58)調査した分野(Int.Cl.7,DB名) F01N 3/08 - 3/36 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Keiji Okada 2 Nissan Motor Co., Ltd. 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture (56) References JP-A-6-101452 (JP, A) JP-A-6-101 93847 (JP, A) JP-A-7-189669 (JP, A) JP-A-8-14035 (JP, A) JP-A-6-93840 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F01N 3/08-3/36

Claims (20)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エンジン低温時に排気中のHCを吸着する
吸着剤と、 この吸着剤の入口排気温度を検出する手段と、 前記吸着剤の実際の温度を検出する手段と、 前記吸着剤が前記HCを吸着する条件にあるかどうかを
判定する手段と、 この判定結果より吸着条件にあるとき前記入口排気温度
とエンジンの負荷に基づいて吸着熱が生じないとしたと
きの前記吸着剤温度を予測する手段と、 この吸着剤温度の予測値と前記吸着剤温度の検出値の差
に応じて吸着熱を算出する手段と、 この吸着熱に応じてHC吸着量を算出する手段とを設け
たことを特徴とする吸着剤のHC吸着量検出装置。
1. An adsorbent for adsorbing HC in exhaust gas at a low temperature of an engine, a means for detecting an exhaust gas temperature at an inlet of the adsorbent, a means for detecting an actual temperature of the adsorbent, and the adsorbent comprising: Means for determining whether or not the condition for adsorbing HC is determined; and, based on the determination result, predicting the temperature of the adsorbent when no heat of adsorption is generated based on the inlet exhaust gas temperature and the load on the engine when the condition is satisfied. Means for calculating the heat of adsorption in accordance with the difference between the predicted value of the adsorbent temperature and the detected value of the temperature of the adsorbent; and means for calculating the amount of HC adsorption in accordance with the heat of adsorption. A device for detecting the amount of HC adsorbed on an adsorbent.
【請求項2】前記吸着熱が正の値のとき前記吸着条件で
あると判定することを特徴とする請求項1に記載の吸着
剤のHC吸着量検出装置。
2. The device for detecting the amount of HC adsorbed on an adsorbent according to claim 1, wherein it is determined that the adsorption condition is satisfied when the heat of adsorption is a positive value.
【請求項3】前記吸着熱算出手段は、吸入空気量と設定
空燃比に基づいて排気の熱容量を算出する手段と、この
排気の熱容量、前記吸着剤の熱容量、前記入口排気温度
および前回の吸着剤温度の予測値を用いて今回の吸着剤
温度の予測値を算出する手段と、この今回の吸着剤温度
の予測値と前記吸着剤温度の検出値の差を前記排気の熱
容量と前記吸着剤の熱容量の和に乗算した値を所定期間
当たりの吸着熱量として算出する手段と、この所定期間
当たりの吸着熱量を前記吸着条件のあいだ積算する手段
と、前記今回の吸着剤温度の予測値を次回の吸着剤温度
の予測値の算出まで記憶する手段とからなることを特徴
とする請求項1または2に記載の吸着剤のHC吸着量検
出装置。
3. The means for calculating heat of adsorption comprises means for calculating heat capacity of exhaust gas based on the amount of intake air and a set air-fuel ratio; Means for calculating the current predicted value of the adsorbent temperature using the predicted value of the adsorbent temperature, and the difference between the current predicted value of the adsorbent temperature and the detected value of the adsorbent temperature is determined by the heat capacity of the exhaust gas and the adsorbent. Means for calculating a value obtained by multiplying the sum of the heat capacities of the adsorbents as the heat of adsorption per predetermined period; means for integrating the heat of adsorption per predetermined period during the adsorption condition; 3. A device for detecting the amount of adsorbed HC on an adsorbent according to claim 1, further comprising means for storing the predicted value of the adsorbent temperature up to the calculation.
【請求項4】前記今回の吸着剤温度の予測値と前記所定
期間当たりの吸着熱量の各算出に前記吸着剤から外気へ
の放熱量を考慮することを特徴とする請求項3に記載の
吸着剤のHC吸着量検出装置。
4. The adsorbent according to claim 3, wherein the estimated value of the adsorbent temperature at this time and the calorific value of the adsorbent per the predetermined period are calculated in consideration of the amount of heat released from the adsorbent to the outside air. A device for detecting the amount of HC adsorbed on the agent.
【請求項5】前記吸着剤温度は前記吸着剤の内部温度ま
たは出口温度であることを特徴とする請求項1から4ま
でのいずれか一つに記載の吸着剤のHC吸着量検出装
置。
5. The adsorbent HC adsorption amount detecting device according to claim 1, wherein the adsorbent temperature is an internal temperature or an outlet temperature of the adsorbent.
【請求項6】エンジン低温時に排気中のHCを吸着する
吸着剤と、 この吸着剤の入口排気温度を検出する手段と、 前記吸着剤の実際の温度を検出する手段と、 前記吸着剤が前記HCを吸着する条件にあるかどうかを
判定する手段と、 この判定結果より吸着条件にあるとき前記入口排気温度
とエンジンの負荷に基づいて吸着熱を生じないとしたと
きの前記吸着剤温度を予測する手段と、 この吸着剤温度の予測値と前記吸着剤温度の検出値の差
に応じて吸着熱を算出する手段と、 この吸着熱に応じてHC吸着量を算出する手段と、 このHC吸着量と目標吸着量との比較から前記吸着剤に
劣化が生じたかどうかを判定する手段とを設けたことを
特徴とするエンジンの排気浄化装置。
6. An adsorbent for adsorbing HC in exhaust gas when the engine temperature is low, means for detecting the temperature of the exhaust gas at the inlet of the adsorbent, means for detecting the actual temperature of the adsorbent, and wherein the adsorbent is Means for determining whether or not a condition for adsorbing HC is determined; and, based on the determination result, predicting the adsorbent temperature when no heat of adsorption is generated based on the inlet exhaust gas temperature and the load of the engine when the condition for adsorption is satisfied. Means for calculating the heat of adsorption according to the difference between the predicted value of the temperature of the adsorbent and the detected value of the temperature of the adsorbent; means for calculating the amount of adsorbed HC in accordance with the heat of adsorption; Means for determining whether or not the adsorbent has deteriorated based on a comparison between the amount and the target adsorption amount.
【請求項7】前記吸着熱が正の値のとき前記吸着条件で
あると判定することを特徴とする請求項6に記載のエン
ジンの排気浄化装置。
7. The exhaust gas purifying apparatus for an engine according to claim 6, wherein it is determined that the adsorption condition is satisfied when the heat of adsorption is a positive value.
【請求項8】前記吸着熱算出手段は、吸入空気量と設定
空燃比に基づいて排気の熱容量を算出する手段と、この
排気の熱容量、前記吸着剤の熱容量、前記入口排気温度
および前回の吸着剤温度の予測値を用いて今回の吸着剤
温度の予測値を算出する手段と、この今回の吸着剤温度
の予測値と前記吸着剤温度の検出値の差を前記排気の熱
容量と前記吸着剤の熱容量の和に乗算した値を所定期間
当たりの吸着熱量として算出する手段と、この所定期間
当たりの吸着熱量を所定期間のあいだだけ積算する手段
と、前記今回の吸着剤温度の予測値を次回の吸着剤温度
の予測値の算出まで記憶する手段とからなることを特徴
とする請求項6または7に記載のエンジンの排気浄化装
置。
8. An adsorption heat calculating means for calculating an exhaust heat capacity based on an intake air amount and a set air-fuel ratio, and a heat capacity of the exhaust gas, a heat capacity of the adsorbent, a temperature of the inlet exhaust gas and a previous adsorbent temperature. Means for calculating the current predicted value of the adsorbent temperature using the predicted value of the adsorbent temperature, and the difference between the current predicted value of the adsorbent temperature and the detected value of the adsorbent temperature is determined by the heat capacity of the exhaust gas and the adsorbent. Means for calculating a value obtained by multiplying the sum of the heat capacities of the above as the heat of adsorption per predetermined period; means for integrating the heat of adsorption per predetermined period only during the predetermined period; 8. An exhaust gas purifying apparatus for an engine according to claim 6, further comprising means for storing the calculated value of the predicted value of the adsorbent temperature.
【請求項9】前記今回の吸着剤温度の予測値と前記所定
期間当たりの吸着熱量の各算出に前記吸着剤から外気へ
の放熱量を考慮することを特徴とする請求項8に記載の
エンジンの排気浄化装置。
9. The engine according to claim 8, wherein an amount of heat released from the adsorbent to the outside air is taken into consideration in each of the current predicted value of the adsorbent temperature and the calculation of the amount of heat of adsorption per predetermined period. Exhaust purification equipment.
【請求項10】前記目標吸着量を算出する手段は、吸入
空気量に応じて所定期間当たりのHC量を算出する手段
と、この所定期間当たりのHC量を前記積算期間と同じ
期間のあいだだけ積算する手段と、このHC積算量に目
標吸着率を乗算した値を目標吸着量として設定する手段
とからなることを特徴とする請求項8または9に記載の
エンジンの排気浄化装置。
10. The means for calculating the target amount of adsorption includes means for calculating the amount of HC per predetermined period according to the amount of intake air, and calculating the amount of HC per predetermined period only during the same period as the integration period. The exhaust gas purifying apparatus for an engine according to claim 8 or 9, comprising means for integrating, and means for setting a value obtained by multiplying the integrated amount of HC by a target adsorption rate as the target amount of adsorption.
【請求項11】前記所定期間当たりのHC量を冷却水温
に応じて補正することを特徴とする請求項10に記載の
エンジンの排気浄化装置。
11. The exhaust gas purifying apparatus for an engine according to claim 10, wherein the HC amount per predetermined period is corrected according to a cooling water temperature.
【請求項12】前記所定期間当たりのHC量を前記設定
空燃比に応じて補正することを特徴とする請求項10に
記載のエンジンの排気浄化装置。
12. The exhaust gas purifying apparatus for an engine according to claim 10, wherein the HC amount per predetermined period is corrected according to the set air-fuel ratio.
【請求項13】前記所定期間はエンジン始動からの短い
期間であることを特徴とする請求項8から12までのい
ずれか一つに記載のエンジンの排気浄化装置。
13. The exhaust gas purifying apparatus for an engine according to claim 8, wherein the predetermined period is a short period from the start of the engine.
【請求項14】前記所定期間はエンジン始動に続くアイ
ドル期間であることを特徴とする請求項8から12まで
のいずれか一つに記載のエンジンの排気浄化装置。
14. The exhaust gas purifying apparatus for an engine according to claim 8, wherein the predetermined period is an idle period following the start of the engine.
【請求項15】エンジン低温時に排気中のHCを吸着す
る吸着剤と、 この吸着剤の入口排気温度を検出する手段と、 前記吸着剤の実際の温度を検出する手段と、 前記吸着剤が前記HCを吸着する条件にあるかどうかを
判定する手段と、 この判定結果より吸着条件にあるとき前記入口排気温度
とエンジンの負荷に基づいて吸着熱を生じないとしたと
きの前記吸着剤温度を予測する手段と、 この吸着剤温度の予測値と前記吸着剤温度の検出値の差
に応じて吸着熱を算出する手段と、 この吸着熱に応じてHC吸着量を算出する手段と、 前記吸着剤の上流に供給する二次空気量を調整可能な手
段と、 前記吸着剤から前記HCを離脱させる条件であるかどう
かを判定する手段と、 この判定結果より離脱条件にあるとき前記HC吸着量に
応じて前記二次空気量を制御する手段とを設けたことを
特徴とするエンジンの排気浄化装置。
15. An adsorbent for adsorbing HC in exhaust gas when the engine temperature is low, means for detecting the exhaust gas temperature at the inlet of the adsorbent, means for detecting the actual temperature of the adsorbent, and wherein the adsorbent is Means for determining whether or not a condition for adsorbing HC is determined; and, based on the determination result, predicting the adsorbent temperature when no heat of adsorption is generated based on the inlet exhaust gas temperature and the load of the engine when the condition for adsorption is satisfied. Means for calculating the heat of adsorption according to the difference between the predicted value of the temperature of the adsorbent and the detected value of the temperature of the adsorbent; means for calculating the amount of HC adsorbed according to the heat of adsorption; Means for adjusting the amount of secondary air to be supplied upstream of the fuel cell; means for determining whether or not the condition for desorbing the HC from the adsorbent is satisfied; and According to the above Exhaust purification apparatus for an engine, characterized in that a means for controlling the following air quantity.
【請求項16】途中より主通路とバイパス通路とに分岐
された排気管と、 前記バイパス通路に流れる排気量を調整可能な手段と、 前記バイパス通路に介装され、エンジン低温時に排気中
のHCを吸着する吸着剤と、 この吸着剤の入口排気温度を検出する手段と、 前記吸着剤の実際の温度を検出する手段と、 前記吸着剤が前記HCを吸着する条件にあるかどうかを
判定する手段と、 この判定結果より吸着条件にあるとき前記バイパス通路
に排気が流れるように前記排気量調整手段に指示する手
段と、 前記判定結果より吸着条件にあるとき前記入口排気温度
とエンジンの負荷に基づいて吸着熱を生じないとしたと
きの前記吸着剤温度を予測する手段と、 この吸着剤温度の予測値と前記吸着剤温度の検出値の差
に応じて吸着熱を算出する手段と、 この吸着熱に応じてHC吸着量を算出する手段と、 前記吸着剤から前記HCを離脱させる条件であるかどう
かを判定する手段と、 この判定結果より離脱条件にあるとき前記HC吸着量に
応じた排気量が前記バイパス通路に流れるように前記排
気量調整手段に指示する手段とを設けたことを特徴とす
るエンジンの排気浄化装置。
16. An exhaust pipe branched from a middle into a main passage and a bypass passage, means for adjusting an amount of exhaust gas flowing through the bypass passage, and HC interposed in the bypass passage and being exhausted when the engine temperature is low. An adsorbent for adsorbing the adsorbent; a means for detecting an inlet exhaust gas temperature of the adsorbent; a means for detecting an actual temperature of the adsorbent; and determining whether the adsorbent is in a condition for adsorbing the HC. Means for instructing the exhaust gas amount adjusting means so that exhaust gas flows through the bypass passage when the determination result indicates that the engine is in the adsorption condition. Means for predicting the temperature of the adsorbent when no heat of adsorption is generated, based on the difference; means for calculating the heat of adsorption according to the difference between the predicted value of the temperature of the adsorbent and the detected value of the temperature of the adsorbent A means for calculating the amount of HC adsorption in accordance with the heat of adsorption; a means for determining whether or not the condition for desorbing the HC from the adsorbent is satisfied; Means for instructing the exhaust amount adjusting means such that a corresponding amount of exhaust gas flows through the bypass passage.
【請求項17】前記吸着熱が正の値のとき前記吸着条件
であると判定することを特徴とする請求項15または1
6に記載のエンジンの排気浄化装置。
17. The method according to claim 15, wherein when the heat of adsorption is a positive value, it is determined that the condition for the adsorption is satisfied.
7. The exhaust gas purifying apparatus for an engine according to 6.
【請求項18】前記吸着熱算出手段は、吸入空気量と設
定空燃比に基づいて排気の熱容量を算出する手段と、こ
の排気の熱容量、前記吸着剤の熱容量、前記入口排気温
度および前回の吸着剤温度の予測値を用いて今回の吸着
剤温度の予測値を算出する手段と、この今回の吸着剤温
度の予測値と前記吸着剤温度の検出値の差を前記排気の
熱容量と前記吸着剤の熱容量の和に乗算した値を所定期
間当たりの吸着熱量として算出する手段と、この所定期
間当たりの吸着熱量を前記吸着条件のあいだ積算する手
段と、前記今回の吸着剤温度の予測値を次回の吸着剤温
度の予測値の算出まで記憶する手段とからなることを特
徴とする請求項15から17までのいずれか一つに記載
のエンジンの排気浄化装置。
18. The heat of adsorption calculation means for calculating the heat capacity of exhaust gas based on the amount of intake air and a set air-fuel ratio, the heat capacity of exhaust gas, the heat capacity of the adsorbent, the temperature of the inlet exhaust gas, and the temperature of the previous adsorption. Means for calculating the current predicted value of the adsorbent temperature using the predicted value of the adsorbent temperature, and the difference between the current predicted value of the adsorbent temperature and the detected value of the adsorbent temperature is determined by the heat capacity of the exhaust gas and the adsorbent. Means for calculating a value obtained by multiplying the sum of the heat capacities of the adsorbents as the heat of adsorption per predetermined period; means for integrating the heat of adsorption per predetermined period during the adsorption condition; 18. An exhaust gas purifying apparatus for an engine according to claim 15, further comprising means for storing the calculated value of the predicted value of the adsorbent temperature.
【請求項19】前記今回の吸着剤温度の予測値と前記所
定期間当たりの吸着熱量の各算出に前記吸着剤から外気
への放熱量を考慮することを特徴とする請求項18に記
載のエンジンの排気浄化装置。
19. The engine according to claim 18, wherein the amount of heat released from the adsorbent to the outside air is taken into account in the calculation of the estimated value of the adsorbent temperature and the calorific value of adsorption per predetermined period. Exhaust purification device.
【請求項20】前記吸着剤温度は前記吸着剤の内部温度
または出口温度であることを特徴とする請求項6から1
9までのいずれか一つに記載のエンジンの排気浄化装
置。
20. The method according to claim 6, wherein the temperature of the adsorbent is an internal temperature or an outlet temperature of the adsorbent.
9. The exhaust gas purifying apparatus for an engine according to any one of items 9 to 9.
JP14238097A 1997-05-30 1997-05-30 Adsorbent HC adsorption amount detection device and engine exhaust purification device using this detection device Expired - Fee Related JP3360568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14238097A JP3360568B2 (en) 1997-05-30 1997-05-30 Adsorbent HC adsorption amount detection device and engine exhaust purification device using this detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14238097A JP3360568B2 (en) 1997-05-30 1997-05-30 Adsorbent HC adsorption amount detection device and engine exhaust purification device using this detection device

Publications (2)

Publication Number Publication Date
JPH10331625A JPH10331625A (en) 1998-12-15
JP3360568B2 true JP3360568B2 (en) 2002-12-24

Family

ID=15314030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14238097A Expired - Fee Related JP3360568B2 (en) 1997-05-30 1997-05-30 Adsorbent HC adsorption amount detection device and engine exhaust purification device using this detection device

Country Status (1)

Country Link
JP (1) JP3360568B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680244B2 (en) 1999-02-12 2005-08-10 トヨタ自動車株式会社 Adsorption amount calculation device for unburned fuel component adsorbent of internal combustion engine
DE102005040906A1 (en) * 2005-08-30 2007-03-08 Daimlerchrysler Ag Method for monitoring an exhaust gas purification component
JP4748083B2 (en) * 2007-03-05 2011-08-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5590640B2 (en) * 2007-08-01 2014-09-17 日産自動車株式会社 Exhaust gas purification system

Also Published As

Publication number Publication date
JPH10331625A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
EP0982487B1 (en) Exhaust emission controlling apparatus of internal combustion engine
JP3832022B2 (en) Engine exhaust gas purification device
JP3440654B2 (en) Exhaust gas purification device
JP3470597B2 (en) Exhaust gas purification device for internal combustion engine
US8468805B2 (en) Exhaust gas purification device and exhaust gas purification method for internal combustion engine
CN101981284A (en) Exhaust emission control system of internal combustion engine
JP2009257226A (en) Exhaust emission control device for internal combustion engine
JPH1181992A (en) Exhaust gas purifying device in internal combustion engine
JP3360568B2 (en) Adsorbent HC adsorption amount detection device and engine exhaust purification device using this detection device
JP3154110B2 (en) Engine emission control device
JP2009293471A (en) Exhaust emission control device
JP3344215B2 (en) Exhaust gas purification device for internal combustion engine
JP3277698B2 (en) Exhaust gas purification device for internal combustion engine
JPH0693846A (en) Exhaust emission control device for internal combustion engine
JP2950077B2 (en) Exhaust gas purification device for internal combustion engine
JP3772554B2 (en) Engine exhaust purification system
JP3409647B2 (en) Degradation diagnosis device for HC adsorbent of engine
JP2800579B2 (en) Exhaust gas purification device for internal combustion engine
JPH0531320A (en) Exhaust gas cleaning apparatus for internal combustion engine
WO2005047681A1 (en) Exhaust gas purification device for internal combustion engine and method of exhaust gas purification
JPH06200750A (en) Exhaust emission control device for internal combustion engine
JP2005147106A (en) Exhaust emission control device for internal combustion engine
JPH0693840A (en) Exhaust emission control device for internal combustion engine
JPH0693843A (en) Exhaust emission control device for internal combustion engine
JPH09112322A (en) Engine controller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees