JP3359954B2 - Hydrogen permeable membrane - Google Patents

Hydrogen permeable membrane

Info

Publication number
JP3359954B2
JP3359954B2 JP16727693A JP16727693A JP3359954B2 JP 3359954 B2 JP3359954 B2 JP 3359954B2 JP 16727693 A JP16727693 A JP 16727693A JP 16727693 A JP16727693 A JP 16727693A JP 3359954 B2 JP3359954 B2 JP 3359954B2
Authority
JP
Japan
Prior art keywords
hydrogen
permeable membrane
storage alloy
film
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16727693A
Other languages
Japanese (ja)
Other versions
JPH07775A (en
Inventor
宏一 北原
健二 大塚
昇 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP16727693A priority Critical patent/JP3359954B2/en
Publication of JPH07775A publication Critical patent/JPH07775A/en
Application granted granted Critical
Publication of JP3359954B2 publication Critical patent/JP3359954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水素透過膜関し、さらに
詳細には水素吸蔵合金を用いた水素ガス精製用の水素透
過膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen permeable membrane, and more particularly to a hydrogen permeable membrane for purifying hydrogen gas using a hydrogen storage alloy.

【0002】水素ガスは近年目覚ましく発展した半導体
製造工業で、各種工程中の雰囲気ガスとして盛んに用い
られている。そして半導体の集積度の向上とともに水素
ガスの純度向上が強く求められている。このため水素ガ
ス中にppmオーダーで存在する窒素、炭化水素、一酸
化炭素、二酸化炭素、酸素および水蒸気などの不純物を
除去し、不純物レベルがppbオーダーまたはそれ以下
のような高純度に、しかも、低コストで効率よく大量に
精製することが望まれている。
[0002] In the semiconductor manufacturing industry, which has remarkably developed in recent years, hydrogen gas is actively used as an atmosphere gas in various processes. There is a strong demand for an improvement in the purity of hydrogen gas along with an improvement in the degree of integration of semiconductors. For this reason, impurities such as nitrogen, hydrocarbons, carbon monoxide, carbon dioxide, oxygen and water vapor present in the ppm order in hydrogen gas are removed, and the impurity level is as high as ppb order or less, and It is desired to purify large quantities efficiently at low cost.

【0003】[0003]

【従来の技術】従来より水素ガスの精製方法として、金
属触媒による化学反応と吸着材による物理吸着性とを組
み合た常温吸着法、液体窒素を冷熱源として極低温下に
設置した吸着材の物理吸着性を利用した深冷吸着法、お
よび水素の選択透過性を有する透過膜を用いる方法など
が知られている。これらのうちでも特に高純度の水素ガ
スを得る方法としてパラジウム合金製の透過膜を用いる
方法があり、その代表的なものとしてパラジウム−銀二
元合金、パラジウム−銀−金三元合金の水素透過膜が多
用されている。また、最近、水素の透過能力が大きいこ
とから水素吸蔵合金を透過膜に用いることが試みられ、
その欠点である使用中での粉化を生じないものとしてジ
ルコニウム、鉄、マグネシウムからなる水素吸蔵合金が
東海大学、黄教授より発表されている(日本工業新聞1
993年2月22日)。
2. Description of the Related Art Conventionally, as a method for purifying hydrogen gas, a room temperature adsorption method combining a chemical reaction with a metal catalyst and a physical adsorbability with an adsorbent, and a method using an adsorbent set at extremely low temperature using liquid nitrogen as a cold heat source. A cryogenic adsorption method utilizing physical adsorption, a method using a permeable membrane having selective permeability for hydrogen, and the like are known. Among these, there is a method using a permeable membrane made of a palladium alloy as a method of obtaining high-purity hydrogen gas, and a typical example thereof is a hydrogen permeable membrane of a palladium-silver binary alloy or a palladium-silver-gold ternary alloy. Is often used. Recently, the use of a hydrogen-absorbing alloy as a permeable membrane has been attempted because of its high hydrogen-permeability.
A hydrogen storage alloy composed of zirconium, iron and magnesium has been disclosed by Professor Huang of Tokai University as one of the drawbacks that does not cause powdering during use (Nippon Kogyo Shimbun 1
February 22, 993).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、常温吸
着方法はイニシャルコスト、ランニングコストともに安
価という特長があるが、除去できる不純物が限定される
ため、高純度のガスが得られず、また、深冷吸着法は、
設備が大がかりとなるばかりでなく、冷熱源として液体
窒素を多量に使用するため、イニシャルコスト、ランニ
ングコストともに高価になる。また、加熱下でのパラジ
ウム合金膜の水素選択透過性を利用した精製方法は、パ
ラジウム合金膜での水素ガスの選択透過性を利用してい
るため、超高純度の水素ガスを得ることができるが、合
金膜の単位面積当りの水素透過量が小さいこと、400
℃以上のような高温に加熱する必要があること、合金膜
が高価であるなどの問題点がある。
However, the room temperature adsorption method has a feature that the initial cost and the running cost are both low, but the impurities that can be removed are limited, so that a high-purity gas cannot be obtained, The adsorption method is
Not only the equipment becomes large, but also a large amount of liquid nitrogen is used as a cold heat source, so both initial cost and running cost are high. In addition, the purification method using the hydrogen selective permeability of the palladium alloy membrane under heating utilizes the selective permeability of hydrogen gas in the palladium alloy membrane, so that ultra-high-purity hydrogen gas can be obtained. That the hydrogen permeation amount per unit area of the alloy film is small;
There are problems such as the necessity of heating to a high temperature of not less than ° C. and the expensiveness of the alloy film.

【0005】さらに、前記のジルコニウム、鉄、マグネ
シウムからなる水素吸蔵合金膜はパラジウム合金透過膜
に比較して水素の透過量が著しく大きく、しかも、粉化
し易いという水素吸蔵合金特有の欠点が大巾に改善され
ているものの精製時間の経過とともに少量ではあるが、
やはり粉化物が生じ、長時間の使用により膜の破壊につ
ながること、また、時間経過とともに水素の透過能力が
低下するという問題点がある。
Further, the hydrogen storage alloy film made of zirconium, iron, and magnesium has a considerably large amount of hydrogen permeation as compared with a palladium alloy permeable film, and has the disadvantage that it is easily powdered. Although it has been improved to a small amount with the passage of purification time,
Also, there is a problem that a powdery substance is generated, which leads to destruction of the membrane when used for a long period of time, and that the hydrogen permeating ability decreases with time.

【0006】[0006]

【課題を解決するための手段】本発明者らは、水素吸蔵
合金膜用の合金組成について、透過膜が粉化することが
なく、しかも、長時間精製を続けても水素透過能力を維
持しうる手段について、鋭意研究を重ねた結果、ジルコ
ニウムおよびカルシウムをベースとし、これに特定の金
属を含有させた水素吸蔵合金を用いることによって目的
を達成しうることを見い出し、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have determined that the alloy composition for a hydrogen storage alloy film does not cause the permeable membrane to be powdered and that the hydrogen permeability is maintained even after long-term purification. As a result of diligent studies on the means to be achieved, they have found that the object can be achieved by using a hydrogen storage alloy based on zirconium and calcium and containing a specific metal, and completed the present invention.

【0007】すなわち本発明は、水素のみを選択的に透
過させ、高純度精製水素ガスを得るための水素透過膜で
あって、(1)カルシウム、(2)鉄、銅、バナジウ
ム、ニッケル、チタン、クロムから選ばれる少なくとも
1種の金属、および(3)ジルコニウムからなる水素吸
蔵合金膜が透過膜本体とされてなることを特徴とする水
素透過膜である。本発明の水素透過膜はジルコニウムお
よびカルシウムをベースとする水素吸蔵合金を用いたも
のであり、高純度で、かつ多量の精製水素ガスを長時間
にわたって効率よく得ることができる。
That is, the present invention relates to a hydrogen permeable membrane for selectively permeating only hydrogen to obtain a high-purity purified hydrogen gas, comprising (1) calcium, (2) iron, copper, vanadium, nickel and titanium. , A hydrogen-absorbing alloy film made of at least one metal selected from chromium and (3) zirconium is used as a permeable membrane main body. The hydrogen permeable membrane of the present invention uses a hydrogen storage alloy based on zirconium and calcium, and can efficiently obtain a large amount of purified hydrogen gas with high purity for a long time.

【0008】透過膜用の水素吸蔵合金としては、(1)
カルシウム、(2)鉄、銅、バナジウム、ニッケル、チ
タン、クロムから選ばれる少なくとも1種の金属、
(3)ジルコニウムからなる多元合金であり、これらの
うちでも(2)の金属として鉄、ニッケル、チタン、銅
などが好ましく、鉄が特に好ましい。金属の組成割合と
しては、通常は、カルシウムが15〜40重量%、
(2)の金属が5〜30重量%、残りジルコニウム、好
ましくは、カルシウムが20〜35重量%、(2)の金
属が10〜25重量%、残りジルコニウムである。カル
シウムが15重量%よりも少ないと水素の精製中に粉化
物が生ずる恐れがあり、40重量%よりも多くなると水
素の透過能力や膜の強度が低下する恐れがある。
[0008] Hydrogen storage alloys for permeable membranes include (1)
Calcium, (2) at least one metal selected from iron, copper, vanadium, nickel, titanium, and chromium;
(3) A multi-element alloy composed of zirconium, and among these, iron, nickel, titanium, copper and the like are preferable as the metal of (2), and iron is particularly preferable. As the composition ratio of the metal, calcium is usually 15 to 40% by weight,
The metal of (2) is 5 to 30% by weight and the remaining zirconium, preferably 20 to 35% by weight of calcium, the metal of (2) is 10 to 25% by weight and the remaining zirconium. If the amount of calcium is less than 15% by weight, powder may be generated during the purification of hydrogen. If the amount of calcium is more than 40% by weight, the permeability of hydrogen and the strength of the membrane may be reduced.

【0009】水素吸蔵合金膜を得るにはこれらの金属を
所定の比率で混合した後、アルゴンアーク溶解、電子ビ
ーム溶解または不活性ガス雰囲気下での高周波溶解な
ど、好ましくはアルゴンアーク溶解などにより合金と
し、旋盤加工による機械加工など公知の手段を用いて所
定の形状に製膜することができる。膜の形状としては平
板状、波板状、パイプ状などいずれでもよいが、水素吸
蔵合金自体、一般的に加工性がよくないことなどから通
常は膜を装着する水素透過器の断面形状に合わせ、円形
などの平板状とされる。水素吸蔵合金膜の厚さは透過面
積、水素の透過速度、強度などをを勘案して定められる
が、通常は0.1〜5mm、好ましくは1〜3mm程度
とされる。
In order to obtain a hydrogen storage alloy film, these metals are mixed at a predetermined ratio, and then alloyed by argon arc melting, electron beam melting or high frequency melting in an inert gas atmosphere, preferably by argon arc melting. The film can be formed into a predetermined shape using a known means such as machining by lathe processing. The shape of the membrane may be any of a flat plate shape, a corrugated plate shape, a pipe shape, etc., but is generally adjusted to the cross-sectional shape of the hydrogen permeable device to which the membrane is mounted because the hydrogen storage alloy itself generally has poor workability. , A circular plate or the like. The thickness of the hydrogen-absorbing alloy film is determined in consideration of the permeation area, the permeation rate of hydrogen, the strength, and the like, and is usually 0.1 to 5 mm, preferably about 1 to 3 mm.

【0010】このようにして得られた水素吸蔵合金膜は
そのまま水素透過膜として透過器に装着してもよいが、
原料水素ガスに含まれる不純物との反応などによる微量
の粉化物の発生による透過能力の低下を確実に防止する
目的などで、所望により水素吸蔵合金膜の表面には水素
の透過性を有する金属または合金の薄膜を形成すること
もできる。金属薄膜を形成させる場合には、水素吸蔵合
金膜の原料水素ガスと接触する側の表面に形成すること
が好ましいが、両面に形成してもよい。水素の透過性を
有する金属薄膜としては、パラジウム、白金、あるいは
パラジウム−銀よりなる二元合金、パラジウム−銀−金
よりなる三元合金など水素ガスの選択的透過性を有する
ものである。薄膜を形成する方法としては、真空蒸着
法、CVD法(化学蒸着)、湿式メッキ法、不活性ガス
雰囲気中での溶融メッキ法など公知の金属薄膜形成技術
の中から適宜選択することができる。薄膜の厚さは通常
は50nm〜10μm、好ましくは1〜5μmである。
The hydrogen-absorbing alloy film thus obtained may be directly mounted on a permeator as a hydrogen-permeable film.
For the purpose of reliably preventing a decrease in permeation capacity due to the generation of a small amount of powdered material due to a reaction with impurities contained in the raw material hydrogen gas, a metal having hydrogen permeability or Alloy thin films can also be formed. When a metal thin film is formed, it is preferably formed on the surface of the hydrogen storage alloy film that is in contact with the source hydrogen gas, but may be formed on both surfaces. Examples of the metal thin film having hydrogen permeability include those having selective permeability for hydrogen gas, such as palladium, platinum, a binary alloy composed of palladium-silver, and a ternary alloy composed of palladium-silver-gold. The method for forming the thin film can be appropriately selected from known metal thin film forming techniques such as a vacuum deposition method, a CVD method (chemical vapor deposition), a wet plating method, and a hot-dip plating method in an inert gas atmosphere. The thickness of the thin film is usually 50 nm to 10 μm, preferably 1 to 5 μm.

【0011】このようにして得られた水素透過膜は、透
過器の内壁に溶接あるいはガスケットなどでシール構造
を取る形態で気密に固定され、透過器内は水素透過膜に
よって原料水素が供給される1次側気室と精製水素側の
2次側気室に隔離されることによって水素のみを透過さ
せる機能が与えられ、水素ガス精製装置として使用され
る。
The hydrogen permeable membrane thus obtained is hermetically fixed to the inner wall of the permeator by welding or a gasket to form a sealed structure, and the hydrogen permeable membrane supplies the raw material hydrogen in the permeator. Isolation between the primary side air chamber and the secondary side air chamber on the side of purified hydrogen gives the function of permeating only hydrogen and is used as a hydrogen gas purifier.

【0012】水素ガスの精製は、通常は150℃以上に
加熱しながらおこなわれるが、比較的低温で大きい透過
速度を得るためには200〜350℃程度でおこなうこ
とが好ましい。本発明による水素透過膜を用いた場合、
精製水素ガスの純度は極めて高く、また、長時間の精製
を続けても水素透過膜の粉化や劣化によって流量低下を
生ずることはほとんどないが、原料ガス中の不純物濃度
が高い場合などには、これらが濃縮されて水素の透過量
が低下してくるため、原料水素ガスの一部を連続的に、
あるいは間欠的にパージすることが好ましい。
The purification of hydrogen gas is usually carried out while heating it to 150 ° C. or higher. However, it is preferable to carry out the purification at about 200 to 350 ° C. in order to obtain a high permeation rate at a relatively low temperature. When using the hydrogen permeable membrane according to the present invention,
The purity of purified hydrogen gas is extremely high, and even if purification is continued for a long time, the flow rate hardly decreases due to powdering or deterioration of the hydrogen permeable membrane, but when the impurity concentration in the source gas is high, etc. Since these are concentrated and the amount of permeated hydrogen decreases, a part of the raw material hydrogen gas is continuously
Alternatively, it is preferable to purge intermittently.

【0013】次に本発明の水素透過膜を用いた水素ガス
精製装置を図面によって示し、具体的に説明する。図1
は本発明の水素透過膜を使用した水素ガス精製装置の断
面図である。図1において、水素吸蔵合金製の透過膜1
が透過器2の内部に装着され、水素ガス精製装置を構成
している。1次側気室3と2次側気室4の間はそれぞれ
ガスケット5、5を介して水素透過膜で隔離され、フラ
ンジ7および8をガスケット6を介してボルト9で締め
つけることにより、外気と遮断されると同時に透過膜部
も締めつけられて固定されている。1次側気室3には、
原料水素の導入口10と排気口11が設けられ、2次側
気室4には精製水素ガスの取り出し口12が設けられて
いる。さらに、透過器2の廻りにはヒーター13が配設
され、取り出し口12には冷却管14が接続され、水素
ガス精製装置とされている。
Next, a hydrogen gas purifying apparatus using the hydrogen permeable membrane of the present invention is shown in the drawings and will be described in detail. FIG.
1 is a cross-sectional view of a hydrogen gas purification device using a hydrogen permeable membrane of the present invention. In FIG. 1, a permeable membrane 1 made of a hydrogen storage alloy is used.
Are mounted inside the permeator 2 to constitute a hydrogen gas purifying apparatus. The primary-side air chamber 3 and the secondary-side air chamber 4 are isolated by a hydrogen permeable membrane through gaskets 5 and 5, respectively, and the flanges 7 and 8 are tightened by bolts 9 through the gasket 6 to protect the outside air. At the same time, the permeable membrane is fastened and fixed. In the primary air chamber 3,
An inlet 10 and an outlet 11 for raw hydrogen are provided, and an outlet 12 for purified hydrogen gas is provided in the secondary air chamber 4. Further, a heater 13 is provided around the permeator 2, and a cooling pipe 14 is connected to the outlet 12, which is a hydrogen gas purification device.

【0014】水素ガスの精製に際しては、ヒーター13
で透過器2を加熱しながら導入口10より原料水素ガス
が1次側気室3に供給される。ここで水素ガスのみが水
素吸蔵合金膜1を透過して2次側気室4に至り、精製水
素ガスとして取り出し口12より冷却管14を経て抜き
出される。この間1次側器室3には水素以外のガスが不
純物として蓄積してくるため、1次側器室3内のガスの
1部が排気口11から連続的または間欠的にパージされ
る。このようにして多量の水素ガスが長時間にわたって
連続的に効率よく精製される。
When purifying hydrogen gas, the heater 13
The raw hydrogen gas is supplied from the inlet 10 to the primary side air chamber 3 while the permeator 2 is heated by the above. Here, only the hydrogen gas passes through the hydrogen storage alloy film 1 and reaches the secondary air chamber 4, and is extracted from the outlet 12 through the cooling pipe 14 as purified hydrogen gas. During this time, a gas other than hydrogen accumulates as impurities in the primary device chamber 3, so that a part of the gas in the primary device chamber 3 is continuously or intermittently purged from the exhaust port 11. In this way, a large amount of hydrogen gas is continuously and efficiently purified over a long period of time.

【0015】[0015]

【実施例】 実施例1 カルシウム40重量部、ジルコニウム75重量部、鉄2
5重量部を混合し、水冷式銅ハース中でアルゴンアーク
溶解によって直径40mm、厚さ5mmの水素吸蔵三元
合金とした後、旋盤加工で厚さ3mmの平板状に加工
し、周囲を水冷式高速回転切断機で切り落として直径3
0mm厚さ3mmの膜に成形することによって、水素透
過膜を製作した。
EXAMPLES Example 1 40 parts by weight of calcium, 75 parts by weight of zirconium, iron 2
After mixing 5 parts by weight, a hydrogen-absorbing ternary alloy having a diameter of 40 mm and a thickness of 5 mm was formed by argon arc melting in a water-cooled copper hearth, and then processed into a flat plate having a thickness of 3 mm by lathe processing. Cut off with high-speed rotary cutting machine, diameter 3
A hydrogen permeable membrane was manufactured by molding into a 0 mm thick 3 mm membrane.

【0016】実施例2 実施例1おけると同様にして水素吸蔵合金膜を製作し、
この膜の原料水素ガスと接する面(1次側)に湿式メッ
キにより、厚さ3μmのパラジウム薄膜を形成させ、水
素透過膜を製作した。
Example 2 A hydrogen storage alloy film was manufactured in the same manner as in Example 1,
A 3 μm-thick palladium thin film was formed by wet plating on the surface (primary side) of the film which was in contact with the raw material hydrogen gas, to produce a hydrogen-permeable film.

【0017】比較例1 カルシウムの代わりにマグネシウムを混合した合金を使
用した他は実施例1と同様にして水素吸蔵合金膜を制作
した。
Comparative Example 1 A hydrogen storage alloy film was produced in the same manner as in Example 1, except that an alloy in which magnesium was mixed instead of calcium was used.

【0018】(使用例)実施例1、2および比較例1の
水素透過膜を用いて水素ガスの精製試験をおこなった。
それぞれの水素透過膜について、外径30mm、内径2
5mm、厚さ0.5mmの銀パッキン1枚づつを用い、
ステンレス鋼製で円筒状の透過器本体の内部に取付け、
1次側気室と2次側気室に隔離し、図1で示したと同様
の構成の水素ガスの精製装置を製作した。
(Use Example) A hydrogen gas purification test was performed using the hydrogen permeable membranes of Examples 1 and 2 and Comparative Example 1.
For each hydrogen permeable membrane, outer diameter 30 mm, inner diameter 2
Using one silver packing of 5 mm and thickness of 0.5 mm,
Attached inside the cylindrical transmitter body made of stainless steel,
A primary gas chamber and a secondary gas chamber were separated from each other, and a hydrogen gas purifying apparatus having the same configuration as that shown in FIG. 1 was manufactured.

【0019】透過器内を真空とした状態で200℃に加
熱した後、水素ガスの精製をおこなった。不純物として
窒素、酸素、CO、CO2 、メタン、水分を含む原料水
素ガスを2.5kg/cm2 Gで導入し、精製水素ガス
の圧力が大気圧以上になったことを確認した後、1次気
室に供給した原料水素ガスの1%をパージしながら、精
製水素ガスを0.2kg/cm2 Gの一定圧で取り出
し、大気圧イオン化質量分析計(日立東京エレクトロニ
クス(株)製)を用いて窒素、CO、CO2 、メタン、
水分を、また、酸素についてはハーシェ微量酸素分析計
(大阪酸素工業(株)製、MK−3Y型)を用いて純度
の測定をおこなった。また、経過時間毎の流量の測定を
おこなった。各不純物の検出限界値は、窒素が0.01
ppb、COが0.03ppb、CO2 が0.01pp
b、メタンが0.01ppb、水分が0.01ppb、
酸素が2ppbである。なお、窒素とCOは質量数で区
別ができないので該当するピークの全てを窒素、あるい
はCOと考えた場合の数値で示した。また、純度測定と
同時に経過時間毎の流量の測定および精製100時間後
の透過膜表面の状態を電子顕微鏡により観察した。それ
ぞれの透過膜を用いた場合の純度の測定結果を表1に、
経過時間毎の流量の測定結果を表2に示す。
After the permeator was heated to 200 ° C. in a vacuum state, hydrogen gas was purified. A raw material hydrogen gas containing nitrogen, oxygen, CO, CO 2 , methane, and moisture as impurities is introduced at 2.5 kg / cm 2 G, and after confirming that the pressure of the purified hydrogen gas is equal to or higher than the atmospheric pressure, 1 Purified hydrogen gas was taken out at a constant pressure of 0.2 kg / cm 2 G while purging 1% of the raw material hydrogen gas supplied to the secondary air chamber, and an atmospheric pressure ionization mass spectrometer (manufactured by Hitachi Tokyo Electronics Co., Ltd.) was used. Using nitrogen, CO, CO 2 , methane,
The purity of water and oxygen were measured using a Hache micro-oxygen analyzer (MK-3Y type, manufactured by Osaka Oxygen Industry Co., Ltd.). In addition, the flow rate was measured for each elapsed time. The detection limit of each impurity is 0.01% for nitrogen.
ppb, CO is 0.03 ppb, CO 2 is 0.01 pp
b, methane 0.01 ppb, moisture 0.01 ppb,
Oxygen is 2 ppb. In addition, since nitrogen and CO cannot be distinguished by the mass number, all the corresponding peaks are indicated by numerical values when nitrogen or CO is considered. At the same time as the purity measurement, the flow rate was measured for each elapsed time and the state of the permeable membrane surface after 100 hours of purification was observed with an electron microscope. Table 1 shows the measurement results of the purity when each permeable membrane was used.
Table 2 shows the measurement results of the flow rate for each elapsed time.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】また、電子顕微鏡による観察では実施例
1、2の膜の表面には粉化物は認められなかったが、比
較例1の膜の表面には僅かではあるが粉化物が観察され
た。
In observation with an electron microscope, no powder was observed on the surfaces of the films of Examples 1 and 2, but a slight amount of powder was observed on the surface of the film of Comparative Example 1.

【0023】[0023]

【発明の効果】本発明によって、従来技術で課題となっ
ていた精製中の流量低下、純度低下、透過膜の粉化など
の問題点が解決され、比較的小型の装置によって、大流
量の水素ガスを長時間連続的に精製することができ、低
コストで大量の高純度精製水素ガスを容易に得ることが
可能となった。
According to the present invention, the problems of the prior art, such as a decrease in flow rate during purification, a decrease in purity, and powdering of a permeable membrane, are solved. The gas can be continuously purified for a long time, and a large amount of high-purity purified hydrogen gas can be easily obtained at low cost.

【0024】[0024]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素透過膜が使用された水素ガス精製
装置の断面図
FIG. 1 is a cross-sectional view of a hydrogen gas purification apparatus using a hydrogen permeable membrane of the present invention.

【符号の説明】[Explanation of symbols]

1 水素透過膜 2 透過器 3 1次側気室 4 2次側気室 10 導入口 11 排気口 12 取り出し口 13 ヒーター 14 冷却管 DESCRIPTION OF SYMBOLS 1 Hydrogen permeable membrane 2 Permeator 3 Primary air chamber 4 Secondary air chamber 10 Inlet 11 Exhaust port 12 Outlet 13 Heater 14 Cooling pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 30/00 C22C 30/00 (56)参考文献 特開 平6−345409(JP,A) 特開 平4−29728(JP,A) 特開 昭55−130801(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 71/02 ──────────────────────────────────────────────────続 き Continuation of front page (51) Int.Cl. 7 Identification code FI C22C 30/00 C22C 30/00 (56) References JP-A-6-345409 (JP, A) JP-A-4-29728 (JP) , A) JP-A-55-130801 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 71/02

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素のみを選択的に透過させ、高純度精製
水素ガスを得るための水素透過膜であって、(1)カル
シウム、(2)鉄、銅、バナジウム、ニッケル、チタ
ン、クロムから選ばれる少なくとも1種の金属、および
(3)ジルコニウムからなる水素吸蔵合金膜が透過膜本
体とされてなることを特徴とする水素透過膜。
1. A hydrogen-permeable membrane for selectively permeating only hydrogen to obtain a high-purity purified hydrogen gas, comprising (1) calcium, (2) iron, copper, vanadium, nickel, titanium, chromium. A hydrogen permeable membrane, wherein a hydrogen storage alloy film made of at least one selected metal and (3) zirconium is used as a permeable membrane main body.
【請求項2】水素吸蔵合金膜中のカルシウムが15〜4
0重量%、(2)の金属が5〜30重量%、残りが実質
的にジルコニウムである請求項1に記載の水素透過膜。
2. The method according to claim 1, wherein the calcium in the hydrogen storage alloy film is 15 to 4%.
2. The hydrogen permeable membrane according to claim 1, wherein 0% by weight, 5 to 30% by weight of the metal of (2), and substantially zirconium.
【請求項3】水素吸蔵合金膜の厚さが0.1〜5.0m
mである請求項1に記載の水素透過膜。
3. The hydrogen storage alloy film has a thickness of 0.1 to 5.0 m.
The hydrogen permeable membrane according to claim 1, wherein m is m.
【請求項4】水素吸蔵合金膜の形状が平板状である請求
項1に記載の水素透過膜。
4. The hydrogen permeable film according to claim 1, wherein the shape of the hydrogen storage alloy film is flat.
【請求項5】水素吸蔵合金膜中の(2)の金属が鉄、
銅、チタンまたはニッケルである請求項2に記載の水素
透過膜。
5. The method according to claim 1, wherein the metal of (2) in the hydrogen storage alloy film is iron,
The hydrogen permeable membrane according to claim 2, which is copper, titanium, or nickel.
【請求項6】水素吸蔵合金膜の少なくとも片面の表面に
パラジウム、白金またはパラジウム合金の薄膜が形成さ
れた請求項1に記載の水素透過膜。
6. The hydrogen permeable film according to claim 1, wherein a thin film of palladium, platinum, or a palladium alloy is formed on at least one surface of the hydrogen storage alloy film.
【請求項7】表面に形成される薄膜の厚さが50nm〜
10μmである請求項6に記載の水素透過膜。
7. A thin film formed on the surface has a thickness of 50 nm or less.
The hydrogen permeable membrane according to claim 6, which has a thickness of 10 µm.
JP16727693A 1993-06-15 1993-06-15 Hydrogen permeable membrane Expired - Fee Related JP3359954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16727693A JP3359954B2 (en) 1993-06-15 1993-06-15 Hydrogen permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16727693A JP3359954B2 (en) 1993-06-15 1993-06-15 Hydrogen permeable membrane

Publications (2)

Publication Number Publication Date
JPH07775A JPH07775A (en) 1995-01-06
JP3359954B2 true JP3359954B2 (en) 2002-12-24

Family

ID=15846748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16727693A Expired - Fee Related JP3359954B2 (en) 1993-06-15 1993-06-15 Hydrogen permeable membrane

Country Status (1)

Country Link
JP (1) JP3359954B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957748A (en) * 1987-03-23 1990-09-18 The Board Of Regents Of The University Of Nebraska Ruminant feed, method of making and method of using
US6478853B1 (en) * 1999-03-09 2002-11-12 Secretary Of Agency Of Industrial Science And Technology Amorphous Ni alloy membrane for separation/dissociation of hydrogen, preparing method and activating method thereof
JP4147462B2 (en) * 2002-08-07 2008-09-10 トヨタ自動車株式会社 Multilayer hydrogen storage
US7708809B2 (en) 2002-11-20 2010-05-04 Mitsubishi Materials Corporation Hydrogen permeable membrane
US7393392B2 (en) 2004-02-27 2008-07-01 Mikuni Corporation Hydrogen-permeable membrane and process for production thereof
JP4608657B2 (en) * 2005-09-09 2011-01-12 三菱マテリアル株式会社 Hydrogen separation and permeation membrane that exhibits excellent hydrogen separation and permeation function over a long period of time by high pressure operation of high purity hydrogen purifier
EP2127733B1 (en) * 2006-12-28 2013-07-03 Mikuni Corporation Hydrogen permeable film and method for manufacturing the same

Also Published As

Publication number Publication date
JPH07775A (en) 1995-01-06

Similar Documents

Publication Publication Date Title
US3350846A (en) Separation of hydrogen by permeation
US5215729A (en) Composite metal membrane for hydrogen extraction
US4902307A (en) Synthesis of SiO2 membrane on porous support and method of use of same
Yoshida et al. Effects of impurities on hydrogen permeability through palladium alloy membranes at comparatively high pressures and temperatures
US3344582A (en) Irreversible hydrogen membrane
KR0180946B1 (en) Process for the removal of gaseous impurities from a stream of hydrogen
US3509694A (en) Process and apparatus for selectively permeating oxygen
JP3359954B2 (en) Hydrogen permeable membrane
JP3462560B2 (en) Hydrogen gas purification method
JPWO2008081855A1 (en) Hydrogen permeable membrane and manufacturing method thereof
EP0484301B1 (en) Process for the purification of ammonia
US4781734A (en) Non-porous hydrogen diffusion membrane and utilization thereof
US7708809B2 (en) Hydrogen permeable membrane
CA1272140A (en) Separating hydrogen from a mixture of substances
KR20140065641A (en) Vanadium-based hydrogen permeation alloy used for a membrane, method for manufacturing the same and method for using the membrane
Al‐Shammary et al. Palladium‐based diffusion membranes as catalysts in ethylene hydrogenation
JP3273641B2 (en) Hydrogen gas purification equipment
JPH06345409A (en) Device for purifying hydrogen gas
JPH0444604B2 (en)
JP4006107B2 (en) Method and apparatus for producing high purity CO
JPS6071003A (en) Hydrogen gas permeable membrane
JPH02268818A (en) Hydrogen separating material
JP3342416B2 (en) Hydrogen purification membrane and hydrogen production method
JPH07223802A (en) Device for purifying hydrogen gas
JP2747753B2 (en) Method and apparatus for removing trace impurity gas components in inert gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees