JP3359128B2 - Plasma CVD deposited film forming apparatus and deposited film forming method - Google Patents

Plasma CVD deposited film forming apparatus and deposited film forming method

Info

Publication number
JP3359128B2
JP3359128B2 JP27809093A JP27809093A JP3359128B2 JP 3359128 B2 JP3359128 B2 JP 3359128B2 JP 27809093 A JP27809093 A JP 27809093A JP 27809093 A JP27809093 A JP 27809093A JP 3359128 B2 JP3359128 B2 JP 3359128B2
Authority
JP
Japan
Prior art keywords
electrodes
film
magnetic field
electrode
deposited film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27809093A
Other languages
Japanese (ja)
Other versions
JPH07130664A (en
Inventor
敦士 山上
智 高木
信行 岡村
敬二 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27809093A priority Critical patent/JP3359128B2/en
Publication of JPH07130664A publication Critical patent/JPH07130664A/en
Application granted granted Critical
Publication of JP3359128B2 publication Critical patent/JP3359128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体デバイス、画像
入力用ラインセンサー、撮像デバイス、光起電力デバイ
ス、その他各種エレクトロニクス素子、光学素子などに
有用な結晶質または非単結晶質の堆積膜の製造に適した
プラズマCVD法による堆積膜の形成装置および形成方
法に関する。
The present invention relates to a crystalline or non-monocrystalline deposited film useful for semiconductor devices, image input line sensors, imaging devices, photovoltaic devices, and various other electronic and optical elements. The present invention relates to an apparatus and a method for forming a deposited film by a plasma CVD method suitable for manufacturing.

【0002】[0002]

【従来の技術】従来、半導体デバイス、画像入力用ライ
ンセンサー、撮像デバイス、光起電力デバイス、その他
各種エレクトロニクス素子、光学素子に用いる素子部材
として、窒化シリコン膜、酸化シリコン膜、アモルファ
スシリコン膜などの非単結晶質の堆積膜またはダイヤモ
ンド薄膜のような結晶質の堆積膜が提案され、その中の
いくつかは実用に付されている。
2. Description of the Related Art Conventionally, as a device member used for a semiconductor device, an image input line sensor, an image pickup device, a photovoltaic device, other various electronic elements and optical elements, a silicon nitride film, a silicon oxide film, an amorphous silicon film and the like have been used. Non-monocrystalline deposited films or crystalline deposited films such as diamond thin films have been proposed, some of which have been put to practical use.

【0003】そして、こうした堆積膜は、プラズマCV
D法、すなわち、原料ガスを直流または高周波、あるい
はマイクロ波によるグロー放電によって分解し、ガラ
ス、石英、耐熱性合金樹脂フィルム、ステンレス、アル
ミニウムなどの基板上に堆積膜を形成する方法により形
成されることが知られている。特に放電周波数が13.
56MHzの高周波や2.45GHzのマイクロ波を用
いたプラズマCVD装置は堆積膜材料等が導電体である
か絶縁体であるかにかかわらずプラズマ処理できること
から、広く用いられている。
[0003] Such a deposited film is formed by plasma CV.
Method D, that is, a method in which a raw material gas is decomposed by glow discharge using direct current, high frequency, or microwave to form a deposited film on a substrate such as glass, quartz, a heat-resistant alloy resin film, stainless steel, or aluminum. It is known. Especially when the discharge frequency is 13.
A plasma CVD apparatus using a high frequency of 56 MHz or a microwave of 2.45 GHz is widely used because plasma processing can be performed regardless of whether a deposited film material or the like is a conductor or an insulator.

【0004】従来のプラズマCVD装置、例えばアモル
ファスシリコン膜(以下a−Si膜と称する)、酸化シ
リコン膜、窒化シリコン膜などの成膜に用いられている
平行平板型のプラズマCVD装置について図8を参照し
ながら説明する。
FIG. 8 shows a conventional plasma CVD apparatus, for example, a parallel plate type plasma CVD apparatus used for forming an amorphous silicon film (hereinafter referred to as an a-Si film), a silicon oxide film, a silicon nitride film and the like. It will be described with reference to FIG.

【0005】図8の装置では、反応容器1に絶縁性のカ
ソード電極支持台2を介してカソード電極3が配置され
ている。カソード電極3の周囲には、カソード電極3の
側部と反応容器1との間で放電が発生しないようにアー
スシールド4が配置されている。カソード電極3には整
合回路9を介して発信周波数が13.56MHzの高周
波電源10が接続されている。基体ホルダー(基体支持
手段)5には被膜を形成するための被成膜基体6が配置
され、被成膜基体6は、基体温度制御手段(図示せず)
により所望の温度に保たれる。
In the apparatus shown in FIG. 8, a cathode electrode 3 is disposed on a reaction vessel 1 via an insulating cathode electrode support 2. An earth shield 4 is arranged around the cathode electrode 3 so that no discharge occurs between the side of the cathode electrode 3 and the reaction vessel 1. A high-frequency power source 10 having a transmission frequency of 13.56 MHz is connected to the cathode electrode 3 via a matching circuit 9. A substrate 6 on which a film is to be formed is disposed on a substrate holder (substrate supporting means) 5, and the substrate 6 is formed by a substrate temperature control means (not shown).
To maintain the desired temperature.

【0006】この装置を使用した場合の成膜は以下のよ
うに行なわれる。反応容器1を真空排気手段7によって
排気して高真空とした後、ガス供給手段8によってシラ
ンなどの原料ガスを反応容器1内に導入し、数十ミリト
ールから数トールの圧力に維持する。高周波電源10よ
りの高周波電力をカソード電極3から供給して、カソー
ド電極と被成膜基体6との間にプラズマを発生させる。
これにより、原料ガスがプラズマによる分解を受け、被
成膜基体6上に堆積膜が形成される。
[0006] When this apparatus is used, a film is formed as follows. After the reaction vessel 1 is evacuated to a high vacuum by the vacuum evacuation means 7, a raw material gas such as silane is introduced into the reaction vessel 1 by the gas supply means 8 and maintained at a pressure of several tens of mTorr to several Torr. High-frequency power from a high-frequency power source 10 is supplied from the cathode electrode 3 to generate plasma between the cathode electrode and the substrate 6.
As a result, the source gas is decomposed by the plasma, and a deposited film is formed on the substrate 6 to be deposited.

【0007】また、上記の従来例を改良したものとし
て、カソード電極に被成膜基体を設置し、カソード電極
と対向電極との間に磁界を印加したプラズマCVD装置
が、特開昭58−177135号に記載されている。
As a modification of the above conventional example, a plasma CVD apparatus in which a substrate on which a film is formed is provided on a cathode electrode and a magnetic field is applied between the cathode electrode and the counter electrode is disclosed in Japanese Patent Application Laid-Open No. 58-177135. No.

【0008】また、上記の従来例を改良したものとし
て、カソード電極の対向電極にも高周波電力を供給し、
片方の電極に被成膜基体を設置したプラズマCVD装置
が特開昭62−130513号に記載されている。
Further, as an improvement of the above conventional example, high-frequency power is supplied also to the opposite electrode of the cathode electrode,
Japanese Patent Application Laid-Open No. Sho 62-130513 discloses a plasma CVD apparatus in which a substrate on which a film is to be formed is provided on one electrode.

【0009】また、上記の従来例では、高周波電源の発
振周波数は13.56MHzであるが、近年、平行平板
型のプラズマCVD装置を用い、13.56MHz以上
の高周波電源を用いたプラズマCVD法の報告[Pla
sma Chemistryand Plasma P
rocessing,Vol 7,No.3,(198
7)p.267−273]があり、堆積速度向上、膜質
高品質化の可能性が示され、注目されている。
In the above conventional example, the oscillation frequency of the high-frequency power supply is 13.56 MHz. In recent years, a parallel plate type plasma CVD apparatus has been used, and a plasma CVD method using a high-frequency power supply of 13.56 MHz or higher has recently been used. Report [Pla
sma Chemistry and Plasma P
processing, Vol 7, No. 3, (198
7) p. 267-273], showing the possibility of improving the deposition rate and improving the quality of the film.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、図8に
示した従来の平行平板型の装置構成を用いたプラズマC
VD法では以下の問題が存在する。
However, the plasma C using the conventional parallel plate type apparatus shown in FIG.
The VD method has the following problems.

【0011】(1)プラズマ密度は、せいぜい1E+1
0(個/cm3)のレベルであり、堆積速度が遅い。
(1) The plasma density is at most 1E + 1
The level is 0 (pieces / cm 3 ), and the deposition rate is low.

【0012】(2)高周波電力を印加するカソード電極
上とその対向電極上では、堆積膜の膜質や堆積速度が異
なるため、両方の電極上に被成膜基体を配置して、同程
度の品質の堆積膜を形成することは困難である。そのた
め、通常はどちらか一方の電極上のみに被成膜基体を配
置して堆積膜を形成しており、成膜処理の効率が悪い。
また、被成膜基体を配置していない電極上にも堆積膜は
形成されることから、原料ガスの利用効率が非常に低
い。
(2) Since the film quality and the deposition rate of the deposited film are different between the cathode electrode to which high-frequency power is applied and the counter electrode, a substrate to be deposited is disposed on both electrodes to achieve the same quality. It is difficult to form a deposited film. Therefore, the deposition film is usually formed by arranging the deposition target substrate on only one of the electrodes, and the efficiency of the deposition process is low.
Further, since the deposited film is formed on the electrode on which the film-forming substrate is not arranged, the utilization efficiency of the source gas is very low.

【0013】(3)プラズマ密度が低いため、安定に放
電を維持できる圧力範囲は狭い。例えば、SiH4ガス
の放電においては、放電可能な圧力領域は数十ミリトー
ル以上であり、工業的には、より安定に放電を維持する
必要性から、100ミリトール以上の圧力領域で用いら
れる例が多く、そのような高い圧力領域では、気相反応
によって粉体が発生しやすく、その粉体が膜中に取り込
まれ、膜に欠陥が生じ易い。
(3) Since the plasma density is low, the pressure range in which the discharge can be stably maintained is narrow. For example, in the discharge of SiH 4 gas, the pressure range in which discharge is possible is several tens of mTorr or more, and industrially, there is an example in which the pressure region is used in the pressure range of 100 mTorr or more because of the necessity of maintaining discharge more stably. In many cases, in such a high pressure region, powder is apt to be generated by a gas phase reaction, and the powder is taken into the film, which tends to cause a defect in the film.

【0014】また、図8の装置構成で、スパッタでよく
用いられるマグネトロン型の磁界を電極間に印加して、
プラズマ中の電子をカソード電極近傍のマグネトロン領
域に捕捉し、いわゆるマグネトロン放電を行なえば、局
所的にプラズマ密度は増加し、ミリトール台の低圧領域
でも放電の維持は可能になるが、カソード電極上とその
対向電極上では、堆積膜の膜質や堆積速度が大きく異な
り、前記の(2)と同様の問題がある。さらに、磁界の
電極面内ムラが大きいため、電極面内で均一なプラズマ
を得ることは困難であり、電極上で均一な膜を得られな
いという問題がある。
In the apparatus configuration shown in FIG. 8, a magnetron type magnetic field often used in sputtering is applied between the electrodes,
If electrons in the plasma are captured in the magnetron region near the cathode electrode and a so-called magnetron discharge is performed, the plasma density locally increases, and the discharge can be maintained even in a low-pressure region on the order of millitorr. On the counter electrode, the film quality and deposition rate of the deposited film are greatly different, and there is the same problem as the above (2). Furthermore, since the magnetic field has large unevenness in the electrode surface, it is difficult to obtain uniform plasma in the electrode surface, and there is a problem that a uniform film cannot be obtained on the electrode.

【0015】また、特開昭58−177135号に記載
されているプラズマCVD装置では、電極面に対して垂
直方向の磁界を印加することから、プラズマ中の低エネ
ルギー電子は電極間に捕捉されてプラズマ密度はある程
度は増加し、かつ、電極面内ムラの小さいプラズマを得
ることは可能であるが、前記の(2)と同様の問題があ
る。また、プラズマ中の電子をマグネトロン放電のよう
に電極間に高密度に捕捉することができず、プラズマ密
度は磁界を印加しない場合よりも増加はするものの、堆
積速度は従来と大差はなく、また、ミリトール台の低圧
領域での安定な放電の維持は困難である。
In the plasma CVD apparatus described in JP-A-58-177135, since a magnetic field is applied in a direction perpendicular to the electrode surface, low-energy electrons in the plasma are trapped between the electrodes. Although it is possible to increase the plasma density to some extent and obtain plasma with small unevenness in the electrode plane, there is a problem similar to the above (2). In addition, electrons in the plasma cannot be captured at high density between the electrodes as in the case of magnetron discharge, and although the plasma density increases compared to the case where no magnetic field is applied, the deposition rate is not much different from the conventional one, and It is difficult to maintain a stable discharge in a low pressure range of the order of millitorr.

【0016】また、特開昭62−130513号に記載
されているプラズマCVD装置では、基板電極にも高周
波電力を供給するので、両電極間のセルフバイアス電位
の差は小さくできるが、基板電極に高周波電力を供給し
ない場合よりもプラズマ電位と基板表面電位との差は大
きくなり、その結果、堆積膜へのイオン衝撃は増大し、
膜質が悪化しやすいという問題があり、また、前記のマ
グネトロン放電のような高密度のプラズマを生成するこ
とはできないため、低圧領域での安定な放電の維持は困
難である。
In the plasma CVD apparatus described in Japanese Patent Application Laid-Open No. Sho 62-130513, high-frequency power is also supplied to the substrate electrode, so that the difference in self-bias potential between the two electrodes can be reduced. The difference between the plasma potential and the substrate surface potential is greater than when no high frequency power is supplied, resulting in increased ion bombardment of the deposited film,
There is a problem that the film quality is easily deteriorated, and it is difficult to generate a high-density plasma like the above-mentioned magnetron discharge. Therefore, it is difficult to maintain a stable discharge in a low pressure region.

【0017】また、図8の装置構成で放電周波数を10
0MHz程度に大きくすると、プラズマ密度は増加し、
前記の(1)(3)の問題はある程度は改善されるが、
まだ不十分であり、また、前記の(2)と同様の問題が
ある。また、本発明者らの行なった実験結果によると、
従来の装置構成のままで放電周波数を13.56MHz
より大きくしていくと、膜厚均一性が悪化し易いという
問題があることが判明している。
Further, in the apparatus configuration of FIG.
When it is increased to about 0 MHz, the plasma density increases,
Although the above problems (1) and (3) are improved to some extent,
It is still insufficient and has the same problem as the above (2). According to the results of experiments performed by the present inventors,
13.56 MHz discharge frequency with conventional device configuration
It has been found that there is a problem that the film thickness uniformity is apt to be deteriorated when the thickness is further increased.

【0018】また、2.45GHzのマイクロ波を用い
たプラズマCVD法では、電子サイクロトロン共鳴を利
用した、いわゆるECR法がミリトール以下の低圧領域
でも放電が可能であり工業的にも注目されている。しか
し、ECR法では発散磁界を用いているので、被成膜基
体上の磁界は不均一になりやすく、従って堆積膜も不均
一になりやすいという問題がある。また、マイクロ波を
用いたプラズマCVD法では、マイクロ波は誘電体の窓
を介して反応容器に導入されており、誘電体の窓にも堆
積膜は形成されるので、長時間の連続放電が困難である
という問題がある。
In the plasma CVD method using a microwave of 2.45 GHz, the so-called ECR method using electron cyclotron resonance can discharge even in a low pressure region of millitorr or less, and is attracting industrial attention. However, since the divergent magnetic field is used in the ECR method, there is a problem that the magnetic field on the substrate on which the film is to be formed tends to be non-uniform, and thus the deposited film tends to be non-uniform. In the plasma CVD method using microwaves, microwaves are introduced into the reaction vessel through a dielectric window, and a deposited film is also formed on the dielectric window. There is a problem that it is difficult.

【0019】[0019]

【課題を解決するための手段】本発明は、上述した従来
技術の問題点を解決し、0.1ミリトール程度の低圧か
ら数十トール程度の圧力領域において、均一かつ長時間
安定で高密度のプラズマを形成すべく本発明者らが鋭意
研究を重ねて完成に至ったものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and provides a high-density uniform, long-time stable and low pressure range of about 0.1 mTorr to several tens of Torr. The present inventors have conducted intensive studies to form plasma, and have completed the present invention.

【0020】本発明は、 (a)高周波電圧印加手段、 (b)内部に、被成膜基体を支持する基体支持手段およ
び該基体支持手段に対向して設置された電極を有する減
圧可能な反応容器 (c)該反応容器を排気する真空排気手段、および (d)該反応容器にガスを供給するガス供給手段を有し
て成るプラズマCVD堆積膜形成装置において、 (1)それぞれ基体支持手段を有し類似の形状を有する
2つの電極が、互いに対向して平行に配置された1対の
対向電極対を形成し、 (2)該電極間に電極面に垂直な方向の磁界を印加する
磁界印加手段を有し、磁界印加手段の部分的磁界強度制
御により、電極間の印加磁界強度の電極面内分布が可変
であり、 (3)該対向電極対の各電極が高周波電圧印加手段に接
続されていることを特徴とするプラズマCVD堆積膜形
成装置を提供する。
The present invention provides: (a) a high-frequency voltage applying means; and (b) a decompressible reaction having a substrate supporting means for supporting a substrate on which a film is to be formed, and an electrode provided opposite to the substrate supporting means. Vessel (c) Vacuum evacuation means for evacuating the reaction vessel, and (d) a plasma CVD deposition film forming apparatus comprising gas supply means for supplying a gas to the reaction vessel, wherein: Two electrodes having a similar shape form a pair of opposed electrodes that are arranged in parallel to face each other, and (2) a magnetic field that applies a magnetic field between the electrodes in a direction perpendicular to the electrode surface. Application means, and a partial magnetic field strength control of the magnetic field application means.
Control, the distribution of the applied magnetic field strength between the electrodes in the electrode plane is variable
(3) There is provided an apparatus for forming a plasma CVD deposited film, wherein each electrode of the counter electrode pair is connected to a high frequency voltage applying means.

【0021】さらに本発明は、減圧可能な反応容器内に
減圧下で原料ガスを導入し、該容器内の電極に高周波電
圧を印加して高周波放電によりプラズマを生成し、所定
の基板上に堆積膜を形成するプラズマCVD堆積膜形成
方法において、上記の装置を用い、電極面に垂直な方向
の、磁界印加手段の磁界強度の部分的制御により電極面
内の強度分布が調節された磁界を電極間に印加しなが
ら、対向電極対の各電極に強度が同等の高周波電圧を印
加して堆積膜形成を行なうことを特徴とするプラズマC
VD堆積膜形成方法を提供する。本発明によれば、形状
がほぼ同一である対向する2つの電極(対向電極対)の
各々に高周波電圧を印加するので、各々の電極上に被成
膜基体を設置しても品質や堆積速度がほぼ同程度の堆積
膜を被成膜基体上に形成することができる。
Further, according to the present invention, a raw material gas is introduced under reduced pressure into a reaction vessel capable of reducing pressure, a high frequency voltage is applied to electrodes in the vessel, plasma is generated by high frequency discharge, and the plasma is deposited on a predetermined substrate. In a plasma CVD deposited film forming method for forming a film, the above-described apparatus is used, and a direction perpendicular to an electrode surface is used.
Of the electrode surface by partial control of the magnetic field strength of the magnetic field applying means
While applying a magnetic field whose intensity distribution is adjusted between the electrodes.
Et al., Plasma intensity to each electrode of the counter electrode pair and performing deposition film formed by applying the same high-frequency voltage C
Provided is a method for forming a VD deposited film. According to the present invention, since a high-frequency voltage is applied to each of two opposing electrodes (counter electrode pairs) having substantially the same shape, the quality and the deposition rate can be improved even when the substrate on which the film is to be formed is placed on each electrode. Can be formed on a substrate on which a film is to be formed.

【0022】また、対向する各々の電極に生じるセルフ
バイアス電位は大きさが同程度になり、かつ、電極面の
垂直方向の磁界を対向する電極間に印加するので、電極
間のプラズマ中の電子は高エネルギー電子であっても効
率よく電極間に捕捉され、高密度のプラズマを電極間に
形成することができる。また、電極間のプラズマインピ
ーダンスは小さくなり、電極上の高周波電圧も小さくな
るので、電極に生じるセルフバイアス電位は小さくな
り、電極上の堆積膜へのイオン衝撃は減少する。以下、
図面を参照しながら本発明のプラズマCVD装置を説明
する。図1は本発明のプラズマCVD装置の1例を示し
た模式図である。図1においては、減圧可能な反応容器
1に、絶縁性のカソード電極支持台2A、2Bを介し
て、基板を保持する手段を有し形状がほぼ同一であり互
いに平行に対面した1組の対向するカソード電極3A、
3Bが配置され、カソード電極3A、3Bには、整合回
路9A、9Bを介して、高周波電源10A、10Bが接
続されている。また、カソード電極3A、3Bの裏面に
は、電極面に垂直な方向の磁界をカソード電極間に印加
するための磁界印加手段11A、11Bが設置されてい
る。また、カソード電極の回りには、カソード電極の側
部と反応容器の間で放電を防止するためのアースシール
ド4A、4Bが配置されている。被成膜基体6A、6B
は、カソード電極面上に配置され、基体温度制御手段
(図示せず)により所望の温度に保たれる。
The self-bias potential generated at each of the opposing electrodes is substantially the same, and a magnetic field perpendicular to the electrode surface is applied between the opposing electrodes. Is efficiently trapped between the electrodes even with high energy electrons, and a high-density plasma can be formed between the electrodes. Further, since the plasma impedance between the electrodes is reduced and the high-frequency voltage on the electrodes is also reduced, the self-bias potential generated on the electrodes is reduced, and the ion bombardment on the deposited film on the electrodes is reduced. Less than,
The plasma CVD apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing one example of the plasma CVD apparatus of the present invention. In FIG. 1, a reaction vessel 1 capable of depressurization has means for holding a substrate via insulating cathode electrode supports 2A and 2B, and a pair of opposed faces which are substantially identical in shape and face each other in parallel. Cathode electrode 3A,
A high-frequency power supply 10A, 10B is connected to the cathode electrodes 3A, 3B via matching circuits 9A, 9B. Magnetic field applying means 11A and 11B for applying a magnetic field in a direction perpendicular to the electrode surface between the cathode electrodes are provided on the back surfaces of the cathode electrodes 3A and 3B. Earth shields 4A and 4B for preventing discharge between the side of the cathode electrode and the reaction vessel are arranged around the cathode electrode. Deposition substrates 6A, 6B
Is disposed on the surface of the cathode electrode, and is maintained at a desired temperature by means of a substrate temperature control means (not shown).

【0023】この装置を使用した場合の成膜は以下のよ
うに行なわれる。反応容器1を真空排気手段7によって
高真空まで排気した後、ガス供給手段8によってシラン
などの原料ガスを反応容器1内に導入し、所望の圧力に
維持する。高周波電源10A、10Bよりほぼ同一パワ
ーの高周波電力をカソード電極3A、3Bに供給して、
カソード電極3Aとカソード電極3Bとの間にプラズマ
を発生させる。これによって、原料ガスがプラズマによ
る分解を受け、被成膜基体6A、6B上に堆積膜が形成
される。
Film formation using this apparatus is performed as follows. After the reaction vessel 1 is evacuated to a high vacuum by the vacuum evacuation means 7, a raw material gas such as silane is introduced into the reaction vessel 1 by the gas supply means 8 and maintained at a desired pressure. High-frequency power having substantially the same power is supplied to the cathode electrodes 3A and 3B from the high-frequency power supplies 10A and 10B,
Plasma is generated between the cathode electrode 3A and the cathode electrode 3B. As a result, the source gas is decomposed by the plasma, and a deposited film is formed on the deposition target substrates 6A and 6B.

【0024】図2のグラフは、本発明により高密度のプ
ラズマが生成された1例を示したものである。
The graph of FIG. 2 shows an example in which a high-density plasma is generated according to the present invention.

【0025】同図中において、○印のプロットは、図1
の本発明の装置を用いて、放電ガスにSiH4を用い、
13.56MHzの高周波電力を各々の電極に300W
ずつ供給し、かつ電極面に垂直な方向の磁束密度430
ガウスの磁界を電極間に印加してシランプラズマを生成
し、放電圧力を変化させて、電極間の中央部でのプラズ
マ密度を一般的なプラズマ計測手段であるプローブ法で
測定した結果を示したものである。
In the figure, the plots marked with a circle are those in FIG.
Using the apparatus of the present invention, using SiH 4 as a discharge gas,
300W high frequency power of 13.56 MHz is applied to each electrode
And the magnetic flux density 430 in the direction perpendicular to the electrode surface.
A gaussian magnetic field was applied between the electrodes to generate silane plasma, the discharge pressure was changed, and the plasma density at the center between the electrodes was measured by the probe method, which is a general plasma measurement method. Things.

【0026】また同図において、×印のプロットは、従
来法との比較のため、図1の装置を用いて、電極間には
磁界を印加せずに、各々の電極に13.56MHzの高
周波電力を300Wずつ供給してシランプラズマを生成
し、電極間中央部のプラズマ密度の放電圧力依存性を示
したものであり、また、△印のプロットは、片方の電極
のみに600Wの高周波電力を供給し、電極面に垂直な
方向の磁束密度430ガウスの磁界を電極間に印加して
シランプラズマを生成し、電極間中央部のプラズマ密度
の放電依存性を示したものである。
In the same figure, the plots marked with x indicate the high frequency of 13.56 MHz applied to each electrode without applying a magnetic field between the electrodes using the apparatus of FIG. 1 for comparison with the conventional method. A power of 300 W was supplied to generate silane plasma, and the discharge density dependence of the plasma density in the central part between the electrodes was shown. The plot indicated by Δ indicates that a high-frequency power of 600 W was applied to only one of the electrodes. The silane plasma is generated by applying a magnetic field having a magnetic flux density of 430 gauss in a direction perpendicular to the electrode surface between the electrodes to generate silane plasma, and shows the discharge dependency of the plasma density in the central portion between the electrodes.

【0027】この図から、各々の電極に高周波電力を供
給し、かつ電極面に垂直方向の磁界を電極間に印加した
場合にのみ、非常に高密度のプラズマを生成することが
でき、また、低圧領域でも安定に放電を維持することが
できることがわかる。
From this figure, it can be seen that a very high-density plasma can be generated only when high-frequency power is supplied to each electrode and a magnetic field perpendicular to the electrode surface is applied between the electrodes. It can be seen that the discharge can be stably maintained even in the low pressure region.

【0028】本発明において、高周波放電の放電周波数
は1MHz〜400MHzが好ましく、より好ましくは
30MHz〜300MHzである。すなわち、放電周波
数が1MHz以上であれば、プラズマ中のイオンが電界
の変動に追随するのが困難となり、堆積膜へのイオン衝
撃が減少する。また、放電周波数が高くなると、プラズ
マ中の電子と原料ガス分子との衝突確率が大きくなるの
でプラズマ密度は高くなり、また、カソード電極に生じ
るセルフバイアス電位が小さくなるので、堆積膜へのイ
オン衝撃は減少する。
In the present invention, the discharge frequency of the high-frequency discharge is preferably from 1 MHz to 400 MHz, more preferably from 30 MHz to 300 MHz. That is, if the discharge frequency is 1 MHz or more, it becomes difficult for the ions in the plasma to follow the change in the electric field, and the ion impact on the deposited film is reduced. Also, as the discharge frequency increases, the probability of collision between electrons in the plasma and the source gas molecules increases, so that the plasma density increases.In addition, the self-bias potential generated at the cathode electrode decreases, so that ion bombardment of the deposited film occurs. Decreases.

【0029】しかし、放電周波数の増加に伴い高周波電
力の伝送ロスが増加して電力利用効率が悪くなり、ま
た、整合回路などの回路設計も困難になるという問題も
あるので、放電周波数の上限は400MHz程度であ
る。そして、実用上、イオン衝撃の少ない高密度プラズ
マを効率良く得るには、30MHz〜300MHz程度
が適している。
However, as the discharge frequency increases, the transmission loss of high-frequency power increases, so that the power utilization efficiency deteriorates. Further, there is a problem that it is difficult to design a circuit such as a matching circuit. It is about 400 MHz. In practice, about 30 MHz to 300 MHz is suitable for efficiently obtaining high-density plasma with little ion bombardment.

【0030】図3のグラフは、電極間の磁界形成に電磁
石を用いた本発明の図4の装置でシランプラズマを生成
した場合の、電極間のプラズマ密度の放電周波数依存
性、および電極へ入射してくるSiH3イオンの入射エ
ネルギー値の放電周波数依存性を示したものである。放
電ガスにSiH4を用い、放電圧力は50ミリトールと
し、電極間に300ガウスの垂直方向の磁界を印加し、
各々の電極に200Wの高周波電力を供給して電極間に
シランプラズマを生成し、プラズマ密度は電極間中央部
でプローブ法によって計測した。また、電極への入射イ
オンエネルギーは、電極中央部に直径1mmのオリフィ
スを設け、電極裏面に静電レンズ型のイオンエネルギー
アナライザーを設置して計測し、SiH3イオンの入射
量が最大になるエネルギー値をSiH3イオンの入射エ
ネルギー値とした。
FIG. 3 is a graph showing the dependence of the plasma density between the electrodes on the discharge frequency and the incidence on the electrodes when silane plasma is generated by the apparatus of FIG. 4 of the present invention using an electromagnet for forming a magnetic field between the electrodes. It shows the discharge frequency dependence of the incident energy value of the incoming SiH 3 ions. Using SiH 4 as a discharge gas, a discharge pressure of 50 mTorr, and applying a vertical magnetic field of 300 Gauss between the electrodes,
200 W of high-frequency power was supplied to each electrode to generate silane plasma between the electrodes, and the plasma density was measured by a probe method at the center between the electrodes. Further, the incident ion energy to the electrodes, the orifice diameter 1mm arranged between an electrode central portion, by installing the ion energy analyzer of an electrostatic lens type electrode back is measured, the incident amount of SiH 3 ions is maximum energy The value was defined as the incident energy value of SiH 3 ions.

【0031】図3のグラフから明らかなように、放電周
波数の増加とともに、プラズマ密度は増加傾向を示し、
SiH3イオンの入射エネルギー値は30MHz以上で
急激に減少する傾向を示した。すなわち、対向する各々
の電極に高周波電力を供給し、電極間に高密度のプラズ
マを生成することが可能となり、さらに、高周波電力の
放電周波数を増加することによって、プラズマ密度の更
なる向上を達成でき、堆積膜へのイオン衝撃の制御も可
能となる。特に、イオン衝撃によって膜質が劣化しやす
い膜を形成する場合は、30MHz以上の放電周波数を
用いることによって、大パワーの高周波電力を供給して
も高品質な堆積膜の形成が可能となる。
As is apparent from the graph of FIG. 3, as the discharge frequency increases, the plasma density shows an increasing tendency.
The incident energy value of the SiH 3 ion showed a tendency to sharply decrease above 30 MHz. That is, high-frequency power is supplied to each of the opposing electrodes, and high-density plasma can be generated between the electrodes. Further, by increasing the discharge frequency of the high-frequency power, the plasma density is further improved. It is possible to control the ion bombardment of the deposited film. In particular, when a film whose film quality is easily deteriorated by ion bombardment is formed, by using a discharge frequency of 30 MHz or more, a high-quality deposited film can be formed even when a large amount of high-frequency power is supplied.

【0032】本発明において、対向する電極の間隔は、
成膜がなされる間隔であればいずれの間隔でも良いが、
20cm程度以下が好ましく、より好ましくは5cm以
下である。すなわち、間隔が大きくなると、磁界が電極
間外に漏れ易くなるので電極間に所望の垂直方向の磁界
を形成することが困難になる。また、磁界の印加手段も
大掛かりになり、装置も大型化して装置コストの上昇を
招く要因にもなることから、間隔の上限は20cm程度
である。そして、間隔が5cm程度以下であれば、電極
裏面に小型の磁石を設置するという簡単な構成により電
極間に所望の垂直方向の磁界を容易に形成することがで
き、装置も小型化できる。
In the present invention, the distance between the facing electrodes is
Any interval may be used as long as the film is formed,
It is preferably about 20 cm or less, more preferably 5 cm or less. In other words, when the distance is large, the magnetic field tends to leak out between the electrodes, so that it is difficult to form a desired vertical magnetic field between the electrodes. In addition, the size of the means for applying the magnetic field becomes large, and the size of the device is increased, which also causes an increase in the cost of the device. Therefore, the upper limit of the interval is about 20 cm. If the distance is about 5 cm or less, a desired vertical magnetic field can be easily formed between the electrodes by a simple configuration in which a small magnet is provided on the back surface of the electrode, and the device can be downsized.

【0033】本発明において、電極間に垂直方向の磁界
を形成する手段としては、図5に示すように電極裏面の
中心部に磁界コイルを、外周部に永久磁石を設置して、
部分的に磁界の強度を変えられるようにしたものでも良
い。さらに、図6に示すように、電極裏面の中心部と反
応室の外部に磁界コイルを設置して、部分的に磁界の強
度を変えられるようにしたものでも良い。
[0033] In the present invention, as a means for forming a magnetic field in the vertical direction between the electrodes, the magnetic field coil in the center of the electrode back as shown in FIG. 5, by installing a permanent magnet in the outer peripheral portion,
The magnetic field intensity may be partially changed. Further, as shown in FIG. 6, a magnetic field coil may be provided in the center of the back surface of the electrode and outside the reaction chamber so that the intensity of the magnetic field can be partially changed.

【0034】一般的に、従来の平行平板型のプラズマC
VD法においては、電極面積が大きくなると電極中心部
上と周辺部上では堆積膜の堆積速度に差が生じ易くな
り、特に、放電周波数が100MHz程度に高くなると
その差が顕著になるが、本発明の装置構成においては、
電極中心部と周辺部の磁界の制御によって電極中心部上
と周辺部上での堆積膜の堆積速度の差を低減でき、面内
均一性の良い堆積膜を形成できる。
In general, a conventional parallel plate type plasma C
In the VD method, when the electrode area is large, the deposition rate of the deposited film tends to be different between the central part and the peripheral part of the electrode. In particular, the difference becomes remarkable when the discharge frequency is increased to about 100 MHz. In the device configuration of the invention,
By controlling the magnetic field between the central portion and the peripheral portion of the electrode, the difference in deposition rate between the central portion and the peripheral portion of the electrode can be reduced, and a deposited film having good in-plane uniformity can be formed.

【0035】本発明において、堆積膜の形成時の圧力
は、成膜がなされる圧力であればいずれの圧力でも良い
が、例えばa−Si膜、酸化シリコン膜、窒化シリコン
膜などでは、0.1ミリトール〜5トールが好ましい。
特に、気相反応により粉体が発生しやすい場合は、10
ミリトール以下の低圧領域で成膜すれば粉体発生防止に
著しい効果がある。
In the present invention, the pressure for forming the deposited film may be any pressure as long as the film is formed. For example, in the case of an a-Si film, a silicon oxide film, a silicon nitride film, etc. 1 mtorr to 5 torr is preferred.
Particularly, when powder is easily generated by a gas phase reaction, 10
Forming a film in a low pressure region of millitorr or less has a remarkable effect in preventing powder generation.

【0036】本発明の堆積膜形成に使用できるガスにつ
いては、任意の公知の物が選択的に使用できる。例え
ば、a−Si系の機能性堆積膜を形成する場合であれ
ば、シラン、ジシラン等が好ましい原料ガスとして挙げ
られ、また他の機能性堆積膜を形成する場合であれば、
例えば、ゲルマン、メタンなどのの原料ガスまたはそれ
らの混合ガスが挙げられる。キャリアーガスとしては、
水素、アルゴン、ヘリウムなどが挙げられる。また、堆
積膜のバンドギャップ幅を変化させるなどの特性改善用
ガスとしては、例えば、窒素、アンモニアなどの窒素原
子を含むガス;酸素、酸化窒素、酸化二窒素などの酸素
原子を含むガス;メタン、エタン、エチレン、アセチレ
ン、プロパンなどの炭化水素;四フッ化珪素、六フッ化
二珪素、四フッ化ゲルマニウムなどのフッ素化合物、あ
るいはこれらの混合ガスが挙げられる。また、ドーピン
グを目的としたドーパントガスとしては、例えば、ジボ
ラン、フッ化ホウ素、ホスフィンなどが挙げられる。
As the gas that can be used for forming the deposited film of the present invention, any known gas can be selectively used. For example, in the case of forming an a-Si based functional deposition film, silane, disilane and the like are mentioned as preferable source gases, and in the case of forming another functional deposition film,
For example, a raw material gas such as germane or methane, or a mixed gas thereof can be used. As carrier gas,
Examples include hydrogen, argon, and helium. Examples of the gas for improving characteristics such as changing the band gap width of the deposited film include a gas containing a nitrogen atom such as nitrogen and ammonia; a gas containing an oxygen atom such as oxygen, nitrogen oxide and nitrous oxide; and methane. Hydrocarbons such as ethane, ethylene, acetylene and propane; fluorine compounds such as silicon tetrafluoride, disilicon hexafluoride and germanium tetrafluoride, or mixed gases thereof. Examples of the dopant gas for doping include diborane, boron fluoride, and phosphine.

【0037】[0037]

【実施例】以下、具体的な実施例と比較例を挙げて本発
明をさらに詳しく説明するが、本発明はこれら実施例に
限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to specific examples and comparative examples, but the present invention is not limited to these examples.

【0038】(参考例1図1のプラズマCVD装置 を用いて、カソード電極3
A、3B上にガラス基板を配置し、カソード電極間に電
極面に垂直方向の磁界を印加し、各々のカソード電極に
高周波電力を供給し、表1に示す種々の成膜条件でa−
Si膜を基板上に形成し、a−Si膜の堆積速度および
光導電率(λ=600nm、50μW/cm2の光照射
時)と暗導電率を測定したところ、表2に示す通りの結
果となり、広い範囲の圧力領域において、両方の基板上
に同程度に高品質な膜を、同程度に高速で形成できた。
Reference Example 1 A cathode electrode 3 was formed using the plasma CVD apparatus shown in FIG.
A, a glass substrate was placed on 3B, a magnetic field in the direction perpendicular to the electrode surface was applied between the cathode electrodes, and high-frequency power was supplied to each cathode electrode.
A Si film was formed on a substrate, and the deposition rate, photoconductivity (λ = 600 nm, when irradiated with 50 μW / cm 2 ) and dark conductivity of the a-Si film were measured. The results were as shown in Table 2. Thus, over a wide range of pressure regions, films of the same high quality could be formed on both substrates at the same high speed.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 形成されたa−Si膜の膜質は、光起電力デバイス、電
子写真用感光体デバイス、画像入力用ラインセンサー、
フラットパネルディスプレー等の実用に十分耐え得るも
のであった。また、膜の欠陥を顕微鏡観察によって評価
したところ、10ミリトール以下の低圧領域で形成した
a−Si膜においては堆積膜表面上で観察される欠陥数
が非常に少ないことが確認された。
[Table 2] The film quality of the formed a-Si film includes a photovoltaic device, a photoconductor device for electrophotography, a line sensor for image input,
It was one that could withstand practical use such as a flat panel display. When the defects of the film were evaluated by microscopic observation, it was confirmed that the number of defects observed on the surface of the deposited film was very small in the a-Si film formed in the low pressure region of 10 mTorr or less.

【0041】(比較例1)従来法との比較のため、図1
プラズマCVD装置を用いて、カソード電極3A、3B
上にガラス基板を配置し、カソード電極3Aのみに高周
波電力を供給して3Bには供給せず、かつカソード電極
間に磁界を印加せずに、表3に示す成膜条件でa−Si
膜を基板上に形成し、a−Si膜の堆積速度および光導
電率と暗導電率を測定したところ、表4に示す通りの結
果が得られた。
(Comparative Example 1) For comparison with the conventional method, FIG.
Using a plasma CVD apparatus, the cathode electrodes 3A, 3B
A glass substrate was placed thereon, and high-frequency power was supplied only to the cathode electrode 3A and was not supplied to 3B, and no magnetic field was applied between the cathode electrodes.
A film was formed on a substrate, and the deposition rate, photoconductivity, and dark conductivity of the a-Si film were measured. The results shown in Table 4 were obtained.

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【表4】 3Aと3Bの電極上の基板に形成されるa−Si膜は、
堆積速度および膜質とも大きく異なっており、特に3A
の電極上の基板に形成されるa−Si膜は、堆積速度は
大きいが膜質が悪いという特徴があり、光起電力デバイ
ス、電子写真用感光体デバイス、画像入力用ラインセン
サー、フラットパネルディスプレイなどの実用に耐え得
るものではなかった。また、30ミリトール以下の低圧
領域では放電の維持ができず成膜できなかった。
[Table 4] The a-Si film formed on the substrate on the electrodes 3A and 3B is:
The deposition rate and the film quality are also very different, especially 3A
The a-Si film formed on the substrate on the electrode is characterized by a high deposition rate but poor film quality, such as photovoltaic devices, electrophotographic photoreceptor devices, image input line sensors, and flat panel displays. It was not something that could withstand practical use. In a low pressure region of 30 mTorr or less, discharge could not be maintained and a film could not be formed.

【0044】(比較例2)従来法との比較のため、図1
のプラズマCVD装置を用いて、カソード電極3A、3
B上にガラス基板を配置し、カソード電極間に磁界を印
加せずに、各々のカソード電極に高周波電力を供給し
て、表5に示す成膜条件でa−Si膜を基板上に形成
し、a−Si膜の堆積速度および光導電率と暗導電率を
測定したところ、表6に示す通りの結果となった。
Comparative Example 2 For comparison with the conventional method, FIG.
Of the cathode electrodes 3A, 3A
A glass substrate was placed on B, high frequency power was supplied to each cathode electrode without applying a magnetic field between the cathode electrodes, and an a-Si film was formed on the substrate under the film forming conditions shown in Table 5. , A-Si film deposition rate, photoconductivity and dark conductivity were measured. The results were as shown in Table 6.

【0045】[0045]

【表5】 [Table 5]

【0046】[0046]

【表6】 3Aと3Bの電極上の基板に形成されるa−Si膜は、
堆積速度および膜質とも同程度であったが、膜質は悪
く、光起電力デバイス、電子写真用感光体デバイス、画
像入力用ラインセンサー、フラットパネルディスプレイ
などの実用に耐え得るものではなかった。また、20ミ
リトール以下の低圧領域では放電の維持ができず、成膜
できなかった。
[Table 6] The a-Si film formed on the substrate on the electrodes 3A and 3B is:
Although the deposition rate and the film quality were almost the same, the film quality was poor, and the film could not be put to practical use such as a photovoltaic device, a photoconductor device for electrophotography, a line sensor for image input, and a flat panel display. Further, in a low pressure region of 20 mTorr or less, discharge could not be maintained, and a film could not be formed.

【0047】(比較例3)従来法との比較のため、図1
のプラズマCVD装置を用いて、カソード電極3A、3
B上にガラス基板を配置し、カソード電極間に電極面に
垂直方向の磁界を印加し、カソード電極3Aのみに高周
波電力を供給して3Bには供給せず、表7に示す成膜条
件でa−Si膜を基板上に形成し、a−Si膜の堆積速
度および光導電率と暗導電率を測定したところ、表8に
示す通りの結果となった。
Comparative Example 3 For comparison with the conventional method, FIG.
Of the cathode electrodes 3A, 3A
A glass substrate was placed on B, a magnetic field in a direction perpendicular to the electrode surface was applied between the cathode electrodes, and high-frequency power was supplied only to the cathode electrode 3A and not to 3B, but under the film forming conditions shown in Table 7 An a-Si film was formed on a substrate, and the deposition rate, photoconductivity, and dark conductivity of the a-Si film were measured. The results were as shown in Table 8.

【0048】[0048]

【表7】 [Table 7]

【0049】[0049]

【表8】 3Aと3Bの電極上の基板に形成されるa−Si膜は、
堆積速度および膜質とも大きく異なっており、特に、3
Aの電極上の基板に形成されるa−Si膜は、堆積速度
は大きいが膜質が悪いという特徴があり、光起電力デバ
イス、電子写真用感光体デバイス、画像入力用ラインセ
ンサー、フラットパネルディスプレイなどの実用に耐え
得るものではなかった。また、20ミリトール以下の低
圧領域では、放電の維持ができず成膜できなかった。
[Table 8] The a-Si film formed on the substrate on the electrodes 3A and 3B is:
The deposition rate and the film quality are also significantly different.
The a-Si film formed on the substrate on the electrode A has a feature that the deposition rate is high but the film quality is poor, and a photovoltaic device, an electrophotographic photosensitive device, an image input line sensor, and a flat panel display are used. It was not something that could withstand practical use. In a low pressure region of 20 mTorr or less, discharge could not be maintained and a film could not be formed.

【0050】(参考例2図1のプラズマCVD装置 を用いて、カソード電極3
A、3B上にガラス基板を配置し、カソード電極間に電
極面に垂直方向の磁界を印加し、各々のカソード電極に
高周波電力を供給し、表9に示す成膜条件で窒化珪素膜
と酸化珪素膜を基板上に形成し、窒化珪素膜における堆
積速度、珪素原子と窒素原子の組成比率(Si/N)、
膜の水素含有率および49%フッ化水素酸でのエッチン
グ速度、さらに、酸化珪素膜における堆積速度、珪素原
子と酸素原子の組成比率(Si/O)、膜の水素含有率
および2.5%フッ化水素酸でのエッチング速度を測定
したところ、表10に示す通りの結果となり、広い範囲
の圧力領域において両方の基板上に、同程度に水素含有
率が小さく化学量論的組成に近い緻密な膜を、同程度に
高速で形成できた。特に、従来のプラズマCVD法では
成膜できなかった10ミリトール以下の低圧領域で形成
した膜は、水素含有率が特に小さく、非常に高品質な膜
質であった。
Reference Example 2 A cathode electrode 3 was formed using the plasma CVD apparatus shown in FIG.
A, a glass substrate was placed on 3B, a magnetic field in the direction perpendicular to the electrode surface was applied between the cathode electrodes, and high-frequency power was supplied to each cathode electrode. A silicon film is formed on a substrate, a deposition rate in the silicon nitride film, a composition ratio of silicon atoms and nitrogen atoms (Si / N),
Hydrogen content of film and etching rate with 49% hydrofluoric acid, furthermore, deposition rate in silicon oxide film, composition ratio of silicon atoms and oxygen atoms (Si / O), hydrogen content of film and 2.5% Measurement of the etching rate with hydrofluoric acid yielded the results shown in Table 10 and showed that the hydrogen content on both substrates over a wide range of pressures was similar and the density was close to the stoichiometric composition. A good film could be formed at the same high speed. In particular, a film formed in a low-pressure region of 10 mTorr or less, which cannot be formed by the conventional plasma CVD method, has a particularly low hydrogen content and a very high quality film quality.

【0051】[0051]

【表9】 [Table 9]

【0052】[0052]

【表10】 実施例1) 図1の本発明のプラズマCVD装置を用いて、カソード
電極3A、3B上に円形のガラス基板を配置し、カソー
ド電極間距離を4cmとし、カソード電極面の裏面の磁
界印加手段11A、11Bとして電極裏面の中心部に磁
界コイルを、外周部に永久磁石を設置した図5で示した
構成のものを用いて電極間中心部の径方向の磁束密度分
布を図7(a)のように均一になるように制御して、成
膜条件(51)ならびに成膜条件(52)でガラス基板
上にa−Si膜を形成し、それぞれの径方向の膜厚分布
を測定した。
[Table 10] Example 1 Using the plasma CVD apparatus of the present invention shown in FIG. 1, a circular glass substrate was placed on the cathode electrodes 3A and 3B, the distance between the cathode electrodes was set to 4 cm, and a magnetic field applying means on the back surface of the cathode electrode surface was used. The magnetic flux density distribution in the radial direction at the center between the electrodes is shown in FIG. 7 (a) using the configuration shown in FIG. 5 in which a magnetic field coil is provided at the center of the back surface of the electrodes as 11A and 11B and a permanent magnet is provided at the outer periphery. An a-Si film was formed on a glass substrate under the film forming conditions (51) and (52) by controlling the film thickness to be uniform as described above, and the film thickness distribution in each radial direction was measured.

【0053】その結果、成膜条件(51)を用いて成膜
したものは、基板中心部の膜厚の方が外周部より厚くな
る傾向があり、径方向の膜厚ムラ(測定膜厚の最大値と
最小値の差を求め、その差を平均膜厚差で割り、百分率
で表したもの)は12%であった。また、成膜条件(5
2)を用いて成膜したものは、基板中心部の膜厚の方が
外周部より薄くなる傾向があり、膜厚ムラは22%であ
った。
As a result, in the film formed under the film forming condition (51), the film thickness at the center of the substrate tends to be thicker than that at the outer periphery, and the film thickness unevenness in the radial direction (the measured film thickness). The difference between the maximum and minimum values was determined and the difference was divided by the average film thickness difference and expressed as a percentage) was 12%. In addition, film formation conditions (5
In the film formed by using the method 2), the film thickness at the center of the substrate tends to be smaller than that at the outer periphery, and the film thickness unevenness was 22%.

【0054】次に、電極間中心部の径方向の磁束密度分
布を図7(b)に示すように外周部の磁界が強くなるよ
うに制御して成膜条件(51)でガラス基板上にa−S
i膜を形成し、径方向の膜厚分布を測定したところ、膜
厚分布は均一となり、膜厚ムラは4%まで改善できた。
Next, the magnetic flux density distribution in the radial direction at the central portion between the electrodes is controlled so that the magnetic field at the outer peripheral portion becomes strong as shown in FIG. a-S
When the i-film was formed and the film thickness distribution in the radial direction was measured, the film thickness distribution became uniform and the film thickness unevenness could be improved to 4%.

【0055】次に、電極間中心部の径方向の磁束密度分
布を図(c)に示すように外周部の磁界が弱くなるよう
に制御して成膜条件(52)でガラス基板上にa−Si
膜を形成し、径方向の膜厚分布を測定したところ、膜厚
分布は均一となり、膜厚ムラは3%まで改善できた。
Next, the magnetic flux density distribution in the radial direction at the central portion between the electrodes is controlled so that the magnetic field at the outer peripheral portion is weakened as shown in FIG. -Si
When a film was formed and the film thickness distribution in the radial direction was measured, the film thickness distribution became uniform and the film thickness unevenness could be improved to 3%.

【0056】 成膜条件(51) 放電周波数:13.56MHz カソード電極3Aへの供給電力:100W カソード電極3Bへの供給電力:100W ガス流量:SiH4 200sccm H2 100sccm 放電圧力:30ミリトール 基板温度:240℃ 成膜条件(52) 放電周波数:180MHz カソード電極3Aへの供給電力:100W カソード電極3Bへの供給電力:100W ガス流量:SiH4 200sccm H2 100sccm 放電圧力:30ミリトール 基板温度:240℃[0056] film-forming conditions (51) discharge frequency: supplying power to the 13.56MHz cathode electrode 3A: supplying power to 100W cathode electrode 3B: 100W Gas flow rate: SiH 4 200sccm H 2 100sccm discharge pressure: 30 mTorr Substrate temperature: 240 ° C. Film formation condition (52) Discharge frequency: 180 MHz Supply power to cathode electrode 3A: 100 W Supply power to cathode electrode 3 B: 100 W Gas flow rate: SiH 4 200 sccm H 2 100 sccm Discharge pressure: 30 mTorr Substrate temperature: 240 ° C.

【0057】[0057]

【発明の効果】本発明のプラズマCVD法により、広い
圧力範囲で高品質な膜の堆積を高速かつ良好な均一性で
行なうことが可能となり、特に、従来のプラズマCVD
法では均一に成膜できなかった約10ミリトール以下の
低圧領域でも安定に放電を維持することができ、高品質
な膜の堆積を高速かつ良好な均一性で行なうことが可能
となる。また、対向する電極の両方の電極上でバラツキ
の少ない高品質膜の形成が可能となることから、ガスの
利用効率の向上によるコストダウンおよびスループット
の向上が可能となる。
According to the plasma CVD method of the present invention, a high-quality film can be deposited at high speed and with good uniformity over a wide pressure range.
Discharge can be stably maintained even in a low pressure region of about 10 mTorr or less, which cannot be formed uniformly by the method, and high-quality film can be deposited at high speed and with good uniformity. Further, since it is possible to form a high-quality film with little variation on both of the opposing electrodes, it is possible to reduce the cost and improve the throughput by improving the gas use efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のプラズマCVD装置の構成模式図であ
る。
FIG. 1 is a schematic diagram of a configuration of a plasma CVD apparatus of the present invention.

【図2】プラズマ密度の放電圧力依存性を示したグラフ
である。
FIG. 2 is a graph showing the dependence of plasma density on discharge pressure.

【図3】プラズマ密度と入射イオンエネルギーの放電周
波数依存性を示したグラフである。
FIG. 3 is a graph showing the discharge frequency dependence of plasma density and incident ion energy.

【図4】本発明のプラズマCVD装置の別の1例の構成
模式図である。
FIG. 4 is a schematic diagram of another example of the plasma CVD apparatus of the present invention.

【図5】本発明のプラズマCVD装置のさらに別の1例
の構成模式図である。
FIG. 5 is a schematic view showing the configuration of still another example of the plasma CVD apparatus of the present invention.

【図6】本発明のプラズマCVD装置のさらに別の1例
の構成模式図である。
FIG. 6 is a schematic view showing the configuration of still another example of the plasma CVD apparatus of the present invention.

【図7】実施例3における電極間の径方向磁束密度分布
の各種制御状態を示すグラフである。
FIG. 7 is a graph showing various control states of a radial magnetic flux density distribution between electrodes in Example 3.

【図8】従来のプラズマCVD装置の構成模式図であ
る。
FIG. 8 is a schematic diagram of a configuration of a conventional plasma CVD apparatus.

【符号の説明】[Explanation of symbols]

1 反応容器 2、2A、2B カソード電極支持台 3、3A、3B カソード電極 4 アースシールド 5 基体ホルダー 6、6A、6B 被成膜基体 7 真空排気手段 8 ガス供給手段 9、9A、9B 整合回路 10、10A、10B 高周波電源 11A、11B 磁界印加手段 DESCRIPTION OF SYMBOLS 1 Reaction container 2, 2A, 2B Cathode electrode support 3, 3A, 3B Cathode electrode 4 Earth shield 5 Substrate holder 6, 6A, 6B Deposition substrate 7 Vacuum exhaust means 8 Gas supply means 9, 9A, 9B Matching circuit 10 , 10A, 10B High frequency power supply 11A, 11B Magnetic field applying means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平林 敬二 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平2−132827(JP,A) 特開 昭59−227170(JP,A) 特開 昭58−125821(JP,A) 特開 昭63−253617(JP,A) 特開 平4−359425(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/205,21/31 C23C 16/00 - 16/56 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keiji Hirabayashi 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (56) References JP-A 2-132827 (JP, A) JP-A Sho 59 JP-A-227170 (JP, A) JP-A-58-125821 (JP, A) JP-A-63-253617 (JP, A) JP-A-4-359425 (JP, A) (58) Fields investigated (Int. . 7, DB name) H01L 21 / 205,21 / 31 C23C 16/00 - 16/56

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (a)高周波電圧印加手段、 (b)内部に、被成膜基体を支持する基体支持手段およ
び該基体支持手段に対向して設置された電極を有する減
圧可能な反応容器 (c)該反応容器を排気する真空排気手段、および (d)該反応容器にガスを供給するガス供給手段を有し
て成るプラズマCVD堆積膜形成装置において、 (1)それぞれ基体支持手段を有し類似の形状を有する
2つの電極が、互いに対向して平行に配置された1対の
対向電極対を形成し、 (2)該電極間に電極面に垂直な方向の磁界を印加する
磁界印加手段を有し、磁界印加手段の部分的磁界強度制御により、電極間の印
加磁界強度の電極面内分布が可変であり、 (3)該対向電極対の各電極が高周波電圧印加手段に接
続されていることを特徴とするプラズマCVD堆積膜形
成装置。
1. A decompressible reaction vessel comprising: (a) a high-frequency voltage applying means; and (b) a substrate supporting means for supporting a substrate on which a film is to be formed, and an electrode disposed opposite to the substrate supporting means. (c) a plasma CVD deposited film forming apparatus comprising: a vacuum exhaust means for exhausting the reaction vessel; and (d) a gas supply means for supplying a gas to the reaction vessel. Two electrodes having similar shapes form a pair of opposing electrodes arranged in parallel in opposition to each other, and (2) magnetic field applying means for applying a magnetic field between the electrodes in a direction perpendicular to the electrode surface. And the mark between the electrodes is controlled by the partial magnetic field intensity control of the magnetic field applying means.
(3) An apparatus for forming a plasma CVD deposited film , wherein an in-plane distribution of an applied magnetic field intensity is variable, and (3) each electrode of the pair of opposed electrodes is connected to a high-frequency voltage applying means.
【請求項2】 減圧可能な反応容器内に減圧下で原料ガ
スを導入し、該容器内の電極に高周波電圧を印加して高
周波放電によりプラズマを生成し、所定の基板上に堆積
膜を形成するプラズマCVD堆積膜形成方法において、
請求項1記載の装置を用い、電極面に垂直な方向の、磁
界印加手段の磁界強度の部分的制御により電極面内の強
度分布が調節された磁界を電極間に印加しながら、対向
電極対の各電極に強度が同等の高周波電圧を印加して堆
積膜形成を行なうことを特徴とするプラズマCVD堆積
膜形成方法。
2. A source gas is introduced under reduced pressure into a reaction vessel that can be depressurized, a high-frequency voltage is applied to electrodes in the vessel, plasma is generated by high-frequency discharge, and a deposited film is formed on a predetermined substrate. Plasma CVD deposited film forming method,
A pair of opposing electrodes, using the apparatus according to claim 1 , wherein a magnetic field whose intensity distribution in the electrode surface is adjusted by partial control of the magnetic field intensity of the magnetic field applying means in a direction perpendicular to the electrode surface is applied between the electrodes. Forming a deposited film by applying a high-frequency voltage having the same intensity to each of the electrodes.
【請求項3】 電極に印加する高周波電圧の周波数を3
0MHz〜300MHzとする請求項2記載のプラズマ
CVD堆積膜形成方法。
3. The frequency of the high frequency voltage applied to the electrode is 3
3. The method according to claim 2, wherein the frequency is 0 MHz to 300 MHz.
JP27809093A 1993-11-08 1993-11-08 Plasma CVD deposited film forming apparatus and deposited film forming method Expired - Fee Related JP3359128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27809093A JP3359128B2 (en) 1993-11-08 1993-11-08 Plasma CVD deposited film forming apparatus and deposited film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27809093A JP3359128B2 (en) 1993-11-08 1993-11-08 Plasma CVD deposited film forming apparatus and deposited film forming method

Publications (2)

Publication Number Publication Date
JPH07130664A JPH07130664A (en) 1995-05-19
JP3359128B2 true JP3359128B2 (en) 2002-12-24

Family

ID=17592502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27809093A Expired - Fee Related JP3359128B2 (en) 1993-11-08 1993-11-08 Plasma CVD deposited film forming apparatus and deposited film forming method

Country Status (1)

Country Link
JP (1) JP3359128B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250478A (en) * 2006-03-18 2007-09-27 Nano Electronics & Micro System Technologies Inc Plasma processing system

Also Published As

Publication number Publication date
JPH07130664A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
US4599135A (en) Thin film deposition
US20050005854A1 (en) Surface wave plasma treatment apparatus using multi-slot antenna
EP0179665A2 (en) Apparatus and method for magnetron-enhanced plasma-assisted chemical vapor deposition
JPH0215174A (en) Microwave plasma cvd device
JPH04198476A (en) Plasma treating device
US5651825A (en) Plasma generating apparatus and plasma processing apparatus
US20190067019A1 (en) Workpiece processing method
US5565247A (en) Process for forming a functional deposited film
US5366586A (en) Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
JP3359128B2 (en) Plasma CVD deposited film forming apparatus and deposited film forming method
US5558719A (en) Plasma processing apparatus
JPH1081968A (en) Production of amorphous silicon coating
JPH0776781A (en) Plasma vapor growth device
JP3478561B2 (en) Sputter deposition method
JPH07161489A (en) Device for processing inductively coupled plasma in magnetic field
JP2925399B2 (en) Plasma CVD apparatus and deposition film forming method using the same
JPH10233295A (en) Microwave introducing device and surface treatment
JPS63145782A (en) Formation of thin film
JP2003068659A (en) Apparatus and method for plasma treatment, thin film produced by using the same, substrate, and semiconductor device
CN115874154B (en) Semiconductor structure, chip, application thereof and film deposition method
JP3574373B2 (en) Plasma processing apparatus and plasma processing method
JPH10158846A (en) Batch type microwave plasma treating system and treatment
JPH09125243A (en) Thin film forming device
JPH07153595A (en) Existent magnetic field inductive coupling plasma treating device
JP3190100B2 (en) Carbon material production equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees