JP3357519B2 - Diesel engine direct injection combustion chamber - Google Patents

Diesel engine direct injection combustion chamber

Info

Publication number
JP3357519B2
JP3357519B2 JP31993695A JP31993695A JP3357519B2 JP 3357519 B2 JP3357519 B2 JP 3357519B2 JP 31993695 A JP31993695 A JP 31993695A JP 31993695 A JP31993695 A JP 31993695A JP 3357519 B2 JP3357519 B2 JP 3357519B2
Authority
JP
Japan
Prior art keywords
cavity
radiation
virtual line
center axis
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31993695A
Other languages
Japanese (ja)
Other versions
JPH09158734A (en
Inventor
勝定 築地
節男 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP31993695A priority Critical patent/JP3357519B2/en
Priority to CN96114585A priority patent/CN1086443C/en
Publication of JPH09158734A publication Critical patent/JPH09158734A/en
Application granted granted Critical
Publication of JP3357519B2 publication Critical patent/JP3357519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディーゼルエンジ
ンの直接噴射式燃焼室に関し、詳しくは、燃焼効率を高
めることができるものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct injection combustion chamber of a diesel engine, and more particularly to a combustion chamber capable of improving combustion efficiency.

【0002】[0002]

【従来の技術】ディーゼルエンジンの直接噴射式燃焼室
の従来技術として図4に示すものがある。これは、本発
明と同様、次のような基本構造を備えている。すなわ
ち、シリンダヘッド101に燃料噴射ノズル102とス
ワールポート103とを設け、ピストンヘッド頂面10
4に、スキッシュ面105を残してバルブリセス106
と燃焼用のキャビティ107とを凹設し、キャビティ1
07内に燃料噴射ノズル102から燃料108を噴射す
るようにし、キャビティ107をピストンヘッド頂面1
04の中央部に、バルブリセス106をピストンヘッド
頂面104の周縁寄りにそれぞれ配置するとともに、キ
ャビティ107とバルブリセス106とを相互に連通さ
せて、スワール流123がバルブリセス内周面112の
案内でキャビティ107に導入されるようにしてある。
2. Description of the Related Art FIG. 4 shows a prior art of a direct injection combustion chamber of a diesel engine. This has the following basic structure as in the present invention. That is, the fuel injection nozzle 102 and the swirl port 103 are provided on the cylinder head 101, and the piston head top surface 10
4, leaving a squish surface 105 and a valve recess 106
And the cavity 107 for combustion are recessed, and the cavity 1
07, the fuel 108 is injected from the fuel injection nozzle 102, and the cavity 107 is formed in the piston head top surface 1.
A valve recess 106 is disposed near the periphery of the piston head top surface 104 at the center of the valve head 04, and the cavity 107 and the valve recess 106 are communicated with each other. It is being introduced to.

【0003】この種の燃焼室では、吸気工程でスワール
ポート103からシリンダ内に導入された吸気により、
シリンダ内にシリンダ中心軸線109を旋回中心とする
スワール流123が形成され、圧縮工程の終期には、ピ
ストンヘッド頂面104がシリンダヘッドに接近するた
め、スワール流123がバルブリセス内周面112の案
内でキャビティ107内に速やかに導入され、キャビテ
ィ107内にキャビティ中心軸線122を旋回中心とす
る旋回流124が形成されるうえ、スキッシュ面105
によってキャビティ107内にスキッシュ流125が形
成され、この旋回流124とスキッシュ流125によっ
てキャビティ107内で空気と燃料108とが混合され
る。
In this type of combustion chamber, the intake air introduced into the cylinder from the swirl port 103 in the intake process causes
A swirl flow 123 is formed in the cylinder around the center axis 109 of the cylinder, and at the end of the compression process, the top surface 104 of the piston head approaches the cylinder head, so that the swirl flow 123 guides the inner peripheral surface 112 of the valve recess. In this way, a swirling flow 124 is formed in the cavity 107 around the center axis 122 of the cavity, and the squish surface 105 is formed.
Thus, a squish flow 125 is formed in the cavity 107, and the swirl flow 124 and the squish flow 125 mix the air and the fuel 108 in the cavity 107.

【0004】この従来技術では、キャビティ107の内
底面が平坦になっているため、キャビティ107の中心
部に旋回流124が作用しない空気の停滞部分が残る。
In this prior art, since the inner bottom surface of the cavity 107 is flat, a stagnant portion of the air where the swirling flow 124 does not act remains at the center of the cavity 107.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術では、キ
ャビティ107の中心部に旋回流124が作用しない空
気の停滞部分が残るため、キャビティ107内での空気
と燃料108との混合が不十分となり、燃焼効率が低
い。
In the above prior art, since a stagnant portion of air in which the swirling flow 124 does not act remains in the center of the cavity 107, mixing of the air and fuel 108 in the cavity 107 becomes insufficient. , Low combustion efficiency.

【0006】本発明の課題は、燃焼効率を高めることが
できる、ディーゼルエンジンの直接噴射式燃焼室を提供
することにある。
[0006] It is an object of the present invention to provide a direct injection combustion chamber for a diesel engine capable of improving the combustion efficiency.

【0007】[0007]

【課題を解決するための手段】(第1発明と第2発明) 第1発明は、図1(A)または図3に示すように、シリ
ンダヘッド1に燃料噴射ノズル2とスワールポート3と
を設け、ピストンヘッド頂面4に、スキッシュ面5を残
してバルブリセス6と燃焼用のキャビティ7とを凹設
し、キャビティ7内に燃料噴射ノズル2から燃料8を噴
射するようにし、キャビティ7をピストンヘッド頂面4
の中央部に、バルブリセス6をピストンヘッド頂面4の
周縁寄りにそれぞれ配置するとともに、キャビティ7と
バルブリセス6とを相互に連通させて、スワール流23
がバルブリセス内周面12の案内でキャビティ7に導入
されるようにした、ディーゼルエンジンの直接噴射式燃
焼室において、次のようにしたことを特徴とする。
(First Invention and Second Invention ) According to a first invention, as shown in FIG. 1A or FIG. 3, a fuel injection nozzle 2 and a swirl port 3 are provided in a cylinder head 1. A valve recess 6 and a cavity 7 for combustion are recessed in the piston head top surface 4 while leaving a squish surface 5 so that fuel 8 is injected from the fuel injection nozzle 2 into the cavity 7. Head top surface 4
The valve recess 6 is arranged near the periphery of the piston head top surface 4 at the center of the swirl flow 23, and the cavity 7 and the valve recess 6 communicate with each other.
Is introduced into the cavity 7 through the guide of the inner peripheral surface 12 of the valve recess in a direct injection combustion chamber of a diesel engine, as described below.

【0008】すなわち、キャビティ7の内底中央部から
シリンダヘッド1に向けて***部10を形成し、 バルブ
リセス6を一個のみ設け、シリンダ中心軸線9と平行な
向きに見て、シリンダ中心軸線9からバルブリセス6の
リセス中心軸線14に向けて伸びるリセス中心向き放射
仮想線15と、シリンダ中心軸線9からリセス中心向き
放射仮想線15と反対側に伸びる基準放射仮想線16
と、基準放射仮想線16からスワール流旋回方向に進角
させた下限放射仮想線17と、この下限放射仮想線17
よりも更にスワール流旋回方向に進角させた上限放射仮
想線18とを想定し、 基準放射仮想線16からの下限放
射仮想線17の進角度19を30゜とし、基準放射仮想
線16からの上限放射仮想線18の進角度20を150
゜とし、下限放射仮想線17と上限放射仮想線18との
間に挟まれた中心角120゜の扇形領域21内に、シリ
ンダ中心軸線9から偏心させたキャビティ中心軸線22
を配置した、ことを特徴とする。 また、第2発明は、第
1発明において、 基準放射仮想線16からの下限放射仮
想線17の進角度19を30゜とし、基準放射仮想線1
6からの上限放射仮想線18の進角度20を150゜と
し、下限放射仮想線17と上限放射仮想線18との間に
挟まれた中心角120゜の扇形領域21内に、シリンダ
中心軸線9から偏心させたキャビティ中心軸線22を配
置した、ことに代えて、 基準放射仮想線16からの下限
放射仮想線17の進角度19を45゜とし、基準放射仮
想線16からの上限放射仮想線18の進角度20を13
5゜とし、下限 放射仮想線17と上限放射仮想線18と
の間に挟まれた中心角90゜の扇形領域21内に、シリ
ンダ中心軸線9から偏心させたキャビティ中心軸線22
を配置した、ことを特徴とする。
Namely, the ridge 10 is formed toward the inner bottom center portion of the cavity 7 in the cylinder head 1, the valve
Only one recess 6 is provided and is parallel to the cylinder center axis 9.
Viewed from the direction, the cylinder recess
Radiation toward recess center extending toward recess center axis 14
From the imaginary line 15 and the cylinder center axis 9 to the recess center
Reference radiation virtual line 16 extending to the opposite side of radiation virtual line 15
From the reference radiation virtual line 16 in the swirl swirling direction
The lower limit radiation virtual line 17 and the lower limit radiation virtual line 17
Upper limit radiation temporally advanced in swirl direction
Assuming the imaginary line 18, the lower limit emission from the reference emission virtual line 16 is performed.
The advance angle 19 of the virtual imaginary line 17 is set to 30 °, and the reference radiation virtual
The advance angle 20 of the upper limit imaginary line 18 from the line 16 is set to 150
の, the lower limit virtual emission line 17 and the upper limit virtual emission line 18
In the fan-shaped area 21 with a central angle of 120 ° sandwiched between
Cavity center axis 22 eccentric from cylinder center axis 9
Are arranged. In addition, the second invention provides a
In one invention, the lower limit radiation temporary from the reference radiation virtual line 16
The advance angle 19 of the imaginary line 17 is 30 °, and the reference radiation virtual line 1
The advance angle 20 of the upper limit imaginary line 18 from 6 is set to 150 °.
And between the lower virtual imaginary line 17 and the upper virtual imaginary line 18
In the fan-shaped area 21 having a central angle of 120 ° sandwiched between the cylinders,
A cavity center axis 22 eccentric from the center axis 9 is arranged.
Instead of the lower limit from the reference radiation virtual line 16
The advance angle 19 of the radiation virtual line 17 is set to 45 °, and the reference radiation temporary
The advance angle 20 of the upper limit radiation virtual line 18 from the imaginary line 16 is set to 13
5 °, and the lower limit radiation virtual line 17 and the upper limit radiation virtual line 18
In the fan-shaped region 21 with a central angle of 90 ° sandwiched between
Cavity center axis 22 eccentric from cylinder center axis 9
Are arranged.

【0009】(第発明) 第発明は、第1発明または第2発明において、図3に
示すように、キャビティ内周面11とバルブリセス内周
面12とを、これらの接線方向に向けたスワール流案内
面13で接続したことを特徴とする。
( Third Invention) According to a third invention, in the first invention or the second invention , as shown in FIG. 3, the inner peripheral surface 11 of the cavity and the inner peripheral surface 12 of the valve recess are directed in a tangential direction thereof. It is characterized in that it is connected by a swirl flow guide surface 13.

【0012】[0012]

【作用】(第1発明) この種の燃焼室では、図1(A)または図3に示すよう
に、吸気工程でスワールポート3からシリンダ内に導入
された吸気により、シリンダ内にシリンダ中心軸線9を
旋回中心とするスワール流23が形成され、圧縮工程の
終期には、ピストンヘッド頂面4がシリンダヘッド1に
接近するため、スワール流23がバルブリセス内周面1
2の案内でキャビティ7内に速やかに導入され、キャビ
ティ7内にキャビティ中心軸線22を旋回中心とする旋
回流24が形成されるうえ、スキッシュ面5によってキ
ャビティ7内にスキッシュ流25が形成され、この旋回
流24とスキッシュ流25によってキャビティ7内で空
気と燃料8とが混合される。
(First Invention) In this type of combustion chamber, as shown in FIG. 1 (A) or FIG. 3, the intake air introduced into the cylinder from the swirl port 3 in the intake process causes the cylinder center axis to move into the cylinder. A swirl flow 23 is formed around the swirl center 9, and at the end of the compression process, the piston head top surface 4 approaches the cylinder head 1.
2, the squish flow 5 is quickly introduced into the cavity 7, the swirl flow 24 having the cavity center axis 22 as the center of rotation is formed in the cavity 7, and the squish surface 5 forms the squish flow 25 in the cavity 7. The air and the fuel 8 are mixed in the cavity 7 by the swirling flow 24 and the squish flow 25.

【0013】そして、この第1発明では、キャビティ7
の内底中央部からシリンダヘッドに向けて***10を形
成してあるため、キャビティ7の中心部に旋回流24が
作用しない空気の停滞部分が無くなる。また、第1発明
では、次のように作用する。 すなわち、図1(A)また
は図3に示すように、バルブリセス6からスワール流旋
回方向に沿って基準放射仮想線16に至る前半部26
と、基準放射仮想線16からスワール流旋回方向に沿っ
てバルブリセス6に至る後半部27とに、スキッシュ面
5を区分した場合、シリンダ中心軸線9からのキャビテ
ィ中心軸線22 の偏心距離が一定ならば、基準放射仮想
線16からスワール流下流側に90゜進角させた直角放
射仮想線28上にキャビティ中心軸線22が位置する
時、前半部26の面積が最大になり、かつ、後半部27
の面積が最小になる。 このため、この直角放射仮想線2
8からスワール流23の上流側と下流側とにそれぞれ均
等に広がる中心角120゜の扇形領域21内に、キャビ
ティ中心軸線22を配置すると、前半部26の面積が十
分に大きく、後半部27の面積が十分に小さくなり、前
半部26で形成されるスキッシュ流25が高速化される
分だけ、後半部27で形成されるスキッシュ流25が低
速化される。このため、バルブリセス6からキャビティ
7に導入された直後の旋回力の高い旋回流24と高速の
スキッシュ流25とがバランスよく複合化されるととも
に、キャビティ7内を半周程度旋回して旋回力がやや低
下した旋回流24と低速のスキッシュ流25とがバラン
スよく複合化され、スキッシュ流25による旋回流24
の乱れが起こりにくく、その旋回力の低下が抑制され
る。
In the first invention, the cavity 7
Since the bulge 10 is formed from the center of the inner bottom toward the cylinder head, there is no stagnant portion of the air where the swirling flow 24 does not act at the center of the cavity 7. Also, the first invention
Then, it works as follows. That is, FIG.
Is swirled from the valve recess 6 as shown in FIG.
First half 26 leading to reference radiation virtual line 16 along the turning direction
Along the swirl swirl direction from the reference radiation virtual line 16
Squish surface in the second half 27 leading to valve recess 6
5 is divided from the cylinder center axis 9
If the eccentric distance of the center axis 22 is constant, the reference radiation virtual
A 90 ° angle advance from line 16 downstream of the swirl flow
The cavity center axis 22 is located on the imaginary line 28
At the time, the area of the first half 26 is maximized, and the second half 27
Area is minimized. Therefore, this perpendicular radiation virtual line 2
8 to the upstream and downstream sides of the swirl flow 23, respectively.
In the fan-shaped area 21 with a central angle of 120 °
When the tee center axis 22 is arranged, the area of the first half 26 is sufficient.
Large enough, the area of the rear half 27 becomes sufficiently small,
The speed of the squish flow 25 formed by the half 26 is increased.
The squish flow 25 formed in the second half 27 is low
Be speeded up. Therefore, the cavity from the valve recess 6
7 and the high-speed swirling flow 24
With the squish flow 25 being compounded in a well-balanced manner
In addition, the turning force is slightly low by turning around half a circle in the cavity 7.
The swirling flow 24 and the low-speed squish flow 25 are balanced
Swirling flow 24 by squish flow 25
Turbulence does not easily occur, and the reduction of the turning force is suppressed.
You.

【0014】(第発明) 第発明では、第1発明の作用に加え、次のように作用
する。すなわち、図3に示すように、バルブリセス6に
導入されたスワール流23が、スワール流案内面13に
沿ってキャビティ7内に速やかに案内され、キャビティ
7内の旋回流24の流速が高まる。
( Third invention) In the third invention, in addition to the operation of the first invention, the following operation is performed. That is, as shown in FIG. 3, the swirl flow 23 introduced into the valve recess 6 is quickly guided into the cavity 7 along the swirl flow guide surface 13, and the flow velocity of the swirl flow 24 in the cavity 7 increases.

【0017】[0017]

【発明の効果】(第1発明または第2発明) 第1発明または第2発明では、キャビティ7内に旋回流
24が作用しない空気の停滞部分が無くなるため、キャ
ビティ7内での空気と燃料8との混合が促進され、燃焼
効率が高まる。また、スキッシュ流25による旋回流2
4の乱れが起こりにくく、その旋回力の低下が抑制され
るため、キャビティ7内での空気と燃料8の混合が一層
促進され、燃焼効率が一層高まる。
According to the first and second aspects of the present invention , since there is no stagnant portion of the air in which the swirling flow 24 does not act in the cavity 7, the air and the fuel 8 in the cavity 7 are eliminated. Is promoted, and the combustion efficiency is increased. In addition, swirl flow 2 by squish flow 25
4 is less likely to be disturbed, and a decrease in the turning force is suppressed.
Therefore, the mixing of the air and the fuel 8 in the cavity 7 is further improved.
Promoted and the combustion efficiency is further increased.

【0018】(第発明) 第発明では、第1発明または第2発明の効果に加え、
次の効果を奏する。すなわち、キャビティ7内の旋回流
24の流速が高まるため、キャビティ7内での空気と燃
料8の混合が一層促進され、燃焼効率が一層高まる。
( Third invention) In the third invention, in addition to the effects of the first invention or the second invention ,
The following effects are obtained. That is, since the flow velocity of the swirling flow 24 in the cavity 7 increases, the mixing of the air and the fuel 8 in the cavity 7 is further promoted, and the combustion efficiency further increases.

【0020】[0020]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。図1及び図2に示す第1実施形態では、
単気筒の横形ディーゼルエンジンを用いている。このエ
ンジンの構成は次の通りである。すなわち、図2(A)
に示すように、シリンダブロック29内にシリンダ30
を水平な向きに設け、シリンダブロック29の一端側に
シリンダヘッド1を組み付けてある。シリンダ30には
ピストンヘッド32を内嵌してある。そして、シリンダ
ブロック29とシリンダヘッド1とにわたってプッシュ
ロッド挿通孔34をあけ、ここにプッシュロッド35を
挿通してある。シリンダヘッド1には、吸気用のスワー
ルポート3と排気ポート31と、ノズル差し込み孔33
とを設け、ノズル差し込み孔33に燃料噴射ノズル2を
差し込んで固定してある。
Embodiments of the present invention will be described with reference to the drawings. In the first embodiment shown in FIGS. 1 and 2,
A single cylinder horizontal diesel engine is used. The structure of this engine is as follows. That is, FIG.
As shown in FIG.
Are provided in a horizontal direction, and the cylinder head 1 is attached to one end of the cylinder block 29. A piston head 32 is fitted in the cylinder 30. A push rod insertion hole 34 is formed between the cylinder block 29 and the cylinder head 1, and a push rod 35 is inserted through the hole 34. The cylinder head 1 has a swirl port 3 for intake, an exhaust port 31, and a nozzle insertion hole 33.
The fuel injection nozzle 2 is inserted into the nozzle insertion hole 33 and fixed.

【0021】そして、図1に示すように、ピストンヘッ
ド頂面4に、スキッシュ面5を残してバルブリセス6と
燃焼用のキャビティ7とを凹設し、キャビティ7内に燃
料噴射ノズル2から燃料8を噴射するようにし、キャビ
ティ7をピストンヘッド頂面4の中央部に、バルブリセ
ス6をピストンヘッド頂面4の周縁寄りにそれぞれ配置
するとともに、キャビティ7とバルブリセス6とを相互
に連通させて、スワール流23がバルブリセス内周面1
2の案内でキャビティ7に導入されるようにしてある。
As shown in FIG. 1, a valve recess 6 and a combustion cavity 7 are recessed in the piston head top surface 4 while leaving a squish surface 5. The cavity 7 is arranged at the center of the piston head top surface 4, the valve recess 6 is arranged near the periphery of the piston head top surface 4, respectively, and the cavity 7 and the valve recess 6 are communicated with each other to form a swirl. Flow 23 is inner peripheral surface 1 of valve recess
2 to be introduced into the cavity 7.

【0022】この種の燃焼室では、吸気工程でスワール
ポート3からシリンダ内に導入された吸気により、シリ
ンダ内にシリンダ中心軸線9を旋回中心とするスワール
流23が形成され、圧縮工程の終期には、ピストンヘッ
ド頂面4がシリンダヘッド1に接近するため、スワール
流23がバルブリセス内周面12の案内でキャビティ7
内に速やかに導入され、キャビティ7内にキャビティ中
心軸線22を旋回中心とする旋回流24が形成されるう
え、スキッシュ面5によってキャビティ7内にスキッシ
ュ流25が形成され、この旋回流24とスキッシュ流2
5によってキャビティ7内で空気と燃料8とが混合され
る。
In this type of combustion chamber, a swirl flow 23 centering on the cylinder center axis 9 is formed in the cylinder by the intake air introduced into the cylinder from the swirl port 3 in the intake process, and at the end of the compression process. Since the top surface 4 of the piston head approaches the cylinder head 1, the swirl flow 23 is guided by the inner peripheral surface 12 of the valve recess to form the cavity 7.
The squish surface 5 forms a squish flow 25 in the cavity 7, and the squish surface 5 forms a squish flow 25 in the cavity 7. Stream 2
5 mixes air and fuel 8 in the cavity 7.

【0023】この実施形態では、燃焼効率を高めるた
め、キャビティ7の内底中央部からシリンダヘッド1に
向けて***部10を形成してあるため、キャビティ7の
中心部に旋回流24が作用しない空気の停滞部分が無く
なり、キャビティ7内での空気と燃料との混合が促進さ
れ、燃焼効率が高まる。
In this embodiment, the raised portion 10 is formed from the center of the inner bottom of the cavity 7 toward the cylinder head 1 in order to increase the combustion efficiency. Therefore, the swirling flow 24 does not act on the center of the cavity 7. The stagnant portion of the air is eliminated, the mixing of the air and the fuel in the cavity 7 is promoted, and the combustion efficiency is increased.

【0024】バルブリセス6は円形にしてある。このバ
ルブリセス6は、吸気バルブ用のバルブリセスで、排気
バルブ用のバルブリセスは設けていない。燃料噴射ノズ
ル2から噴射される燃料8は、キャビティ中心軸線22
付近からキャビティ内周面11に向けてある。キャビテ
ィ7はシリンダ中心軸線9と平行なキャビティ中心軸線
22を有し、キャビティ内周面11はキャビティ7の内
底面に近づくにつれて次第に径を広げる円錐台面として
ある。また、***部10の周面は、シリンダヘッド1に
近づくにつれて次第に径を広げる円錐面としてある。図
1(D)に示すように、シリンダ中心軸線9と直交する
仮想断面上で、キャビティ内周面11と***部10の周
面とは、キャビティ中心軸線22を中心とする同心円に
なるため、キャビティ7内で旋回流24が抵抗少なく旋
回する。
The valve recess 6 is circular. The valve recess 6 is a valve recess for an intake valve, and has no valve recess for an exhaust valve. The fuel 8 injected from the fuel injection nozzle 2 is supplied to the cavity center axis 22.
It is directed from the vicinity to the inner circumferential surface 11 of the cavity. The cavity 7 has a cavity center axis 22 parallel to the cylinder center axis 9, and the cavity inner peripheral surface 11 is a truncated conical surface whose diameter gradually increases as approaching the inner bottom surface of the cavity 7. The peripheral surface of the raised portion 10 is a conical surface whose diameter gradually increases as approaching the cylinder head 1. As shown in FIG. 1D, on a virtual cross section orthogonal to the cylinder center axis 9, the inner circumferential surface 11 of the cavity and the circumferential surface of the raised portion 10 are concentric circles centered on the center axis 22 of the cavity. The swirling flow 24 swirls in the cavity 7 with low resistance.

【0025】この第1実施形態では、図1(A)に示す
ように、バルブリセス6を一個のみ設け、シリンダ中心
軸線9と平行な向きに見て、シリンダ中心軸線9からバ
ルブリセス6のリセス中心軸線14に向けて伸びるリセ
ス中心向き放射仮想線15と、シリンダ中心軸線9から
リセス中心向き放射仮想線15と反対側に伸びる基準放
射仮想線16と、基準放射仮想線16からスワール流旋
回方向に進角させた下限放射仮想線17と、この下限放
射仮想線17よりも更にスワール流旋回方向に進角させ
た上限放射仮想線18とを想定した。
In the first embodiment, as shown in FIG. 1A, only one valve recess 6 is provided, and when viewed in a direction parallel to the cylinder center axis 9, the recess center axis of the valve recess 6 extends from the cylinder center axis 9. 14, a virtual imaginary line 15 extending toward the center of the recess extending toward the recess 14, a virtual imaginary line 16 extending from the cylinder center axis 9 to the opposite side to the virtual imaginary line 15 toward the center of the recess, and a swirl flow turning direction from the standard virtual imaginary line 16. An assumed lower-limit emission virtual line 17 and an upper-limit emission virtual line 18 advanced further in the swirl flow turning direction than the lower limit emission virtual line 17 are assumed.

【0026】そして、基準放射仮想線16からの下限放
射仮想線17の進角度19を30゜とし、基準放射仮想
線16からの上限放射仮想線18の進角度20を150
゜とし、下限放射仮想線17と上限放射仮想線18との
間に挟まれた中心角120゜の扇形領域21内に、シリ
ンダ中心軸線9から偏心させたキャビティ中心軸線22
を配置した。
The advance angle 19 of the lower limit virtual emission line 17 from the reference emission virtual line 16 is 30 °, and the advance angle 20 of the upper limit emission virtual line 18 from the reference emission virtual line 16 is 150 °.
And a cavity center axis 22 eccentric from the cylinder center axis 9 in a sector area 21 having a center angle 120 ° sandwiched between the lower limit radiation virtual line 17 and the upper limit radiation virtual line 18.
Was placed.

【0027】このような構成によれば、バルブリセス6
からスワール流旋回方向に沿って基準放射仮想線16に
至る前半部26と、基準放射仮想線16からスワール流
旋回方向に沿ってバルブリセス6に至る後半部27と
に、スキッシュ面5を区分した場合、シリンダ中心軸線
9からのキャビティ中心軸線22の偏心距離が一定なら
ば、基準放射仮想線16からスワール流下流側に90゜
進角させた直角放射仮想線28上にキャビティ中心軸線
22が位置する時、前半部26の面積が最大になり、か
つ、後半部27の面積が最小になる。
According to such a configuration, the valve recess 6
When the squish surface 5 is divided into a first half 26 from the imaginary line to the reference radiation virtual line 16 along the swirl flow turning direction, and a second half 27 from the reference radiation virtual line 16 to the valve recess 6 along the swirl flow turning direction. If the eccentric distance of the cavity center axis 22 from the cylinder center axis 9 is constant, the cavity center axis 22 is located on a right-angle virtual imaginary line 28 which is advanced from the reference virtual imaginary line 16 by 90 ° downstream of the swirl flow. At this time, the area of the front half 26 is maximized, and the area of the rear half 27 is minimized.

【0028】このため、この直角放射仮想線28からス
ワール流23の上流側と下流側とにそれぞれ均等に広が
る中心角120゜の扇形領域21内に、キャビティ中心
軸線22を配置すると、前半部26の面積が十分に大き
く、後半部27の面積が十分に小さくなり、前半部26
で形成されるスキッシュ流25が高速化される分だけ、
後半部27で形成されるスキッシュ流25が低速化され
る。このため、バルブリセス6からキャビティ7に導入
された直後の旋回力の高い旋回流24と高速のスキッシ
ュ流25とがバランスよく複合化されるとともに、キャ
ビティ7内を半周程度旋回して旋回力がやや低下した旋
回流24と低速のスキッシュ流25とがバランスよく複
合化され、スキッシュ流25による旋回流24の乱れが
起こりにくく、その旋回力の低下が抑制される。このた
め、キャビティ7内での空気と燃料8の混合が一層促進
され、燃焼効率が一層高まる。
For this reason, when the cavity center axis 22 is disposed in the sectoral area 21 having a central angle of 120 ° that spreads equally from the right-angled imaginary line 28 to the upstream side and the downstream side of the swirl flow 23, the front half 26 Is sufficiently large, the area of the rear half 27 is sufficiently small, and the area of the front half 26 is small.
As much as the speed of the squish flow 25 formed by
The speed of the squish flow 25 formed in the rear half 27 is reduced. Therefore, the swirling flow 24 having a high swirling force and the high-speed squish flow 25 immediately after being introduced from the valve recess 6 into the cavity 7 are combined in a well-balanced manner. The reduced swirl flow 24 and the low-speed squish flow 25 are combined in a well-balanced manner, and the squish flow 25 is less likely to disturb the swirl flow 24, thereby suppressing a decrease in the swirling force. Therefore, the mixing of the air and the fuel 8 in the cavity 7 is further promoted, and the combustion efficiency is further increased.

【0029】より望ましくは、基準放射仮想線16から
の下限放射仮想線17の進角度19を45゜とし、基準
放射仮想線16からの上限放射仮想線18の進角度20
を135゜とし、下限放射仮想線17と上限放射仮想線
18との間に挟まれた中心角90゜の扇形領域21内に
シリンダ中心軸線9から偏心させたキャビティ中心軸線
22を配置する。
More preferably, the advancing angle 19 of the lower limit virtual emission line 17 from the reference emission virtual line 16 is 45 °, and the advancing angle 20 of the upper limit emission virtual line 18 from the reference emission virtual line 16 is
Is set to 135 °, and the cavity center axis 22 eccentric from the cylinder center axis 9 is arranged in a sector area 21 having a center angle of 90 ° sandwiched between the lower limit radiation virtual line 17 and the upper limit radiation virtual line 18.

【0030】図3に示す第2実施形態では、図1及び図
2に示す第1実施形態において、キャビティ内周面11
とバルブリセス内周面12とを、これらの接線方向に向
けたスワール流案内面13で接続してある。他の構成は
第1実施形態と同一にしており、図3中、第1実施形態
と同一の要素には同一の符号を付しておく。このような
構成によれば、バルブリセス6に導入されたスワール流
23が、スワール流案内面13に沿ってキャビティ7内
に速やかに案内され、キャビティ7内の旋回流24の流
速が高まる。このため、キャビティ7内での空気と燃料
8の混合が一層促進され、燃焼効率が一層高まる。
In the second embodiment shown in FIG. 3, in the first embodiment shown in FIGS.
And the inner peripheral surface 12 of the valve recess are connected by a swirl flow guiding surface 13 directed in the tangential direction. The other configuration is the same as that of the first embodiment. In FIG. 3, the same elements as those of the first embodiment are denoted by the same reference numerals. According to such a configuration, the swirl flow 23 introduced into the valve recess 6 is quickly guided into the cavity 7 along the swirl flow guide surface 13, and the flow velocity of the swirl flow 24 in the cavity 7 increases. Therefore, the mixing of the air and the fuel 8 in the cavity 7 is further promoted, and the combustion efficiency is further increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態の燃焼室を説明する図で、図1
(A)はピストンヘッド頂面の正面図、図1(B)は図
1(A)のB−B線断面図、図1(C)は図1(A)の
C−C線断面図、図1(D)は図1(B)のD−D線断
面図である。
FIG. 1 is a diagram illustrating a combustion chamber according to a first embodiment;
(A) is a front view of the top surface of the piston head, FIG. 1 (B) is a sectional view taken along line BB of FIG. 1 (A), FIG. 1 (C) is a sectional view taken along line CC of FIG. 1 (A), FIG. 1D is a sectional view taken along line DD of FIG. 1B.

【図2】第1実施形態の燃焼室を備えたエンジンの要部
説明図で、図2(A)は縦断側面図、図2(B)は図2
(A)のB−B線断面図である。
FIG. 2 is an explanatory view of a main part of an engine including a combustion chamber according to the first embodiment, wherein FIG. 2 (A) is a longitudinal side view, and FIG.
It is a BB sectional view taken on the line of (A).

【図3】第2実施形態の燃焼室に用いるピストンヘッド
頂面の正面図である。
FIG. 3 is a front view of a top surface of a piston head used in a combustion chamber according to a second embodiment.

【図4】従来技術の燃焼室を説明する図で、図4(A)
はピストンヘッド頂面の正面図、図4(B)は図4
(A)のB−B線断面図である。
FIG. 4 is a view for explaining a conventional combustion chamber, and FIG.
4B is a front view of the top surface of the piston head, and FIG.
It is a BB sectional view taken on the line of (A).

【符号の説明】[Explanation of symbols]

1…シリンダヘッド、2…燃料噴射ノズル、3…スワー
ルポート、4…ピストンヘッド頂面、5…スキッシュ
面、6…バルブリセス、7…キャビティ、8…燃料、9
…シリンダ中心軸線、10…***部、11…キャビティ
内周面、12…バルブリセス内周面、13…スワール流
案内面、14…リセス中心軸線、15…リセス中心向き
放射仮想線、16…基準放射仮想線、17…下限放射仮
想線、18…上限放射仮想線、19・20…進角度、2
1…扇形領域、22…キャビティ中心軸線、23…スワ
ール流。
DESCRIPTION OF SYMBOLS 1 ... Cylinder head, 2 ... Fuel injection nozzle, 3 ... Swirl port, 4 ... Piston head top surface, 5 ... Squish surface, 6 ... Valve recess, 7 ... Cavity, 8 ... Fuel, 9
... Cylinder central axis, 10 ... Protrusion, 11 ... Cavity inner peripheral surface, 12 ... Valve recess inner peripheral surface, 13 ... Swirl flow guide surface, 14 ... Recess central axis, 15 ... Recess central emission line, 16 ... Reference radiation Virtual line, 17: Lower limit virtual line, 18: Upper limit virtual line, 19/20: Advance angle, 2
1 ... sector region, 22 ... cavity center axis line, 23 ... swirl flow.

フロントページの続き (51)Int.Cl.7 識別記号 FI F02F 3/28 F02F 3/28 B (56)参考文献 特開 昭58−35223(JP,A) 特開 昭56−38517(JP,A) 特開 昭60−224920(JP,A) 実開 昭57−25117(JP,U) 実開 昭58−72424(JP,U) (58)調査した分野(Int.Cl.7,DB名) F02B 23/06 F02F 3/26 F02F 3/28 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI F02F 3/28 F02F 3/28 B (56) References JP-A-58-35223 (JP, A) JP-A-56-38517 (JP, A JP-A-60-224920 (JP, A) JP-A-57-25117 (JP, U) JP-A-58-72424 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F02B 23/06 F02F 3/26 F02F 3/28

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリンダヘッド(1)に燃料噴射ノズル
(2)とスワールポート(3)とを設け、ピストンヘッド頂
面(4)に、スキッシュ面(5)を残してバルブリセス(6)
と燃焼用のキャビティ(7)とを凹設し、キャビティ(7)
内に燃料噴射ノズル(2)から燃料(8)を噴射するように
し、キャビティ(7)をピストンヘッド頂面(4)の中央部
に、バルブリセス(6)をピストンヘッド頂面(4)の周縁
寄りにそれぞれ配置するとともに、キャビティ(7)とバ
ルブリセス(6)とを相互に連通させて、スワール流(2
3)がバルブリセス内周面(12)の案内でキャビティ
(7)に導入されるようにした、ディーゼルエンジンの直
接噴射式燃焼室において、 キャビティ(7)の内底中央部からシリンダヘッド(1)に
向けて***部(10)を形成し、 バルブリセス(6)を一個のみ設け、シリンダ中心軸線
(9)と平行な向きに見て、シリンダ中心軸線(9)からバ
ルブリセス(6)のリセス中心軸線(14)に向けて伸びる
リセス中心向き放射仮想線(15)と、シリンダ中心軸線
(9)からリセス中心向き放射仮想線(15)と反対側に伸
びる基準放射仮想線(16)と、基準放射仮想線(16)か
らスワール流旋回方向に進角させた下限放射仮想線(1
7)と、この下限放射仮想線(17)よりも更にスワール
流旋回方向に進角させた上限放射仮想線(18)とを想定
し、 基準放射仮想線(16)からの下限放射仮想線(17)の進
角度(19)を30゜とし、基準放射仮想線(16)からの
上限放射仮想線(18)の進角度(20)を150゜とし、
下限放射仮想線(17)と上限放射仮想線(18)との間に
挟まれた中心角120゜の扇形領域(21)内に、シリン
ダ中心軸線9から偏心させたキャビティ中心軸線(22)
を配置した、 ことを特徴とするディーゼルエンジンの直
接噴射式燃焼室。
A fuel injection nozzle is provided on a cylinder head (1).
(2) and a swirl port (3) are provided, and a valve recess (6) is left on the piston head top surface (4) while leaving a squish surface (5).
And a cavity (7) for combustion, and a cavity (7)
The fuel (8) is injected from the fuel injection nozzle (2), the cavity (7) is in the center of the piston head top surface (4), and the valve recess (6) is the periphery of the piston head top surface (4). And the cavity (7) and the valve recess (6) communicate with each other to form a swirl flow (2).
3) The cavity is guided by the inner peripheral surface (12) of the valve recess.
In a direct injection combustion chamber of a diesel engine, which is introduced into (7), a raised portion (10) is formed from the center of the inner bottom of the cavity (7) toward the cylinder head (1), and the valve recess ( 6) Only one cylinder is provided
When viewed in a direction parallel to (9), the cylinder center axis (9)
Lubrices (6) extends towards the recess center axis (14)
Radiation imaginary line (15) directed to the center of the recess and the cylinder center axis
From (9), extend to the opposite side to the virtual imaginary line (15) toward the center of the recess.
The reference radiation virtual line (16) and the reference radiation virtual line (16)
Lower limit radiation imaginary line (1)
7) and swirl more than this lower limit radiation virtual line (17)
Assuming the upper limit radiation virtual line (18) advanced in the flow turning direction
Of the lower limit radiation virtual line (17) from the reference radiation virtual line (16).
The angle (19) is 30 °, and the angle from the reference radiation virtual line (16) is
The advance angle (20) of the upper limit radiation virtual line (18) is set to 150 °,
Between the lower radiation imaginary line (17) and the upper radiation imaginary line (18)
In the fan-shaped area (21) with a central angle of 120 °,
Cavity center axis (22) eccentric from damper center axis 9
It was placed, direct injection combustion chamber of a diesel engine, characterized in that.
【請求項2】 請求項1に記載したディーゼルエンジン
の直接噴射式燃焼室において、 基準放射仮想線(16)からの下限放射仮想線(17)の進
角度(19)を30゜と し、基準放射仮想線(16)からの
上限放射仮想線(18)の進角度(20)を150゜とし、
下限放射仮想線(17)と上限放射仮想線(18)との間に
挟まれた中心角120゜の扇形領域(21)内に、シリン
ダ中心軸線9から偏心させたキャビティ中心軸線(22)
を配置した、ことに代えて、 基準放射仮想線(16)からの下限放射仮想線(17)の進
角度(19)を45゜とし、基準放射仮想線(16)からの
上限放射仮想線(18)の進角度(20)を135゜とし、
下限放射仮想線(17)と上限放射仮想線(18)との間に
挟まれた中心角90゜の扇形領域(21)内に、シリンダ
中心軸線9から偏心させたキャビティ中心軸線(22)を
配置した、 ことを特徴とするディーゼルエンジンの直接
噴射式燃焼室。
2. The diesel engine according to claim 1.
In the direct injection combustion chamber, the lower limit radiation virtual line (17) from the reference radiation virtual line (16) advances.
The angle (19) is 30 °, and the angle from the reference radiation virtual line (16) is
The advance angle (20) of the upper limit radiation virtual line (18) is set to 150 °,
Between the lower radiation imaginary line (17) and the upper radiation imaginary line (18)
In the fan-shaped area (21) with a central angle of 120 °,
Cavity center axis (22) eccentric from damper center axis 9
Instead of the reference radiation imaginary line (16).
The angle (19) is 45 °, and the angle from the reference radiation virtual line (16) is
The advance angle (20) of the upper limit radiation virtual line (18) is set to 135 °,
Between the lower radiation imaginary line (17) and the upper radiation imaginary line (18)
In the sandwiched area (21) with a central angle of 90 °, the cylinder
The cavity center axis (22) decentered from the center axis 9
A direct injection combustion chamber for a diesel engine, which is arranged .
【請求項3】 請求項1または請求項2に記載したディ
ーゼルエンジンの直接噴射式燃焼室において、 キャビティ内周面(11)とバルブリセス内周面(12)と
を、これらの接線方向に向けたスワール流案内面(13)
で接続した、ことを特徴とするディーゼルエンジンの直
接噴射式燃焼室。
3. The direct injection combustion chamber of a diesel engine according to claim 1 , wherein the inner peripheral surface (11) of the cavity and the inner peripheral surface (12) of the valve recess are directed in a tangential direction thereof. Swirl flow guideway (13)
A direct-injection combustion chamber for a diesel engine, characterized by being connected by:
JP31993695A 1995-12-08 1995-12-08 Diesel engine direct injection combustion chamber Expired - Fee Related JP3357519B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31993695A JP3357519B2 (en) 1995-12-08 1995-12-08 Diesel engine direct injection combustion chamber
CN96114585A CN1086443C (en) 1995-12-08 1996-11-22 Direct injection type combustion chamber of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31993695A JP3357519B2 (en) 1995-12-08 1995-12-08 Diesel engine direct injection combustion chamber

Publications (2)

Publication Number Publication Date
JPH09158734A JPH09158734A (en) 1997-06-17
JP3357519B2 true JP3357519B2 (en) 2002-12-16

Family

ID=18115901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31993695A Expired - Fee Related JP3357519B2 (en) 1995-12-08 1995-12-08 Diesel engine direct injection combustion chamber

Country Status (2)

Country Link
JP (1) JP3357519B2 (en)
CN (1) CN1086443C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270749A (en) * 2006-03-31 2007-10-18 Toyota Motor Corp Internal combustion engine
CN101676538A (en) * 2008-09-18 2010-03-24 吕文杰 Engine with multiple-level gas displacement
US20150337756A1 (en) * 2013-01-07 2015-11-26 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP6432788B2 (en) * 2015-07-29 2018-12-05 マツダ株式会社 Engine combustion chamber structure
CN112031920A (en) * 2020-09-11 2020-12-04 潍柴动力股份有限公司 Diesel engine combustion system and diesel engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87210334U (en) * 1987-07-18 1988-07-20 大连工学院 Squeezing-and-flowing-nozzle type oil-film atomizing combustion chamber
CN2184785Y (en) * 1994-01-17 1994-12-07 云南内燃机厂 4100 energy saving type diesel engine

Also Published As

Publication number Publication date
CN1086443C (en) 2002-06-19
CN1152071A (en) 1997-06-18
JPH09158734A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
JPS6037290B2 (en) Air compression/direct injection internal combustion engine
JP3357519B2 (en) Diesel engine direct injection combustion chamber
JP3191003B2 (en) Diesel engine subchamber combustion chamber
JPH0826769B2 (en) The nozzle of the swirl chamber combustion chamber of the diesel engine
JPH09303149A (en) Combustion chamber for direct injection diesel engine
JPS5926776B2 (en) Diesel engine intake system
JPS6287665A (en) Fuel injection nozzle for direct injection type diesel-engine
JP3268341B2 (en) Secondary combustion chamber diesel engine
JPH086589B2 (en) Direct injection internal combustion engine
JP3523498B2 (en) Engine swirl intake port
JP3295260B2 (en) Vortex chamber combustion chamber for diesel engine
JPS6329016A (en) Subchamber type diesel combustion chamber
JP2001214742A (en) Direct injection type combustion chamber for diesel engine
JPS5985424A (en) Diesel engine of direct injection type
JP2686360B2 (en) Subcombustion chamber of internal combustion engine
JPH0318619A (en) Combustion chamber of swirl flow chamber type diesel engine
KR920007246B1 (en) Combustion chamber in piesel engine
JP2504770Y2 (en) Direct injection diesel engine
JP2589542Y2 (en) Direct injection diesel engine
JPS6019956Y2 (en) Direct injection combustion chamber of diesel engine
JPS62157227A (en) Air cell for diesel engine combustion chamber
JP3426617B2 (en) Diesel engine combustion equipment
JP2001152858A (en) Swirl chamber type combustion chamber for diesel engine
JP3295268B2 (en) Diesel engine subchamber combustion chamber
JP2921328B2 (en) Engine with swirl chamber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees