JP3357319B2 - Piping destruction prevention reinforcement method of existing embankment and piping destruction prevention reinforcement structure of existing embankment - Google Patents

Piping destruction prevention reinforcement method of existing embankment and piping destruction prevention reinforcement structure of existing embankment

Info

Publication number
JP3357319B2
JP3357319B2 JP19663099A JP19663099A JP3357319B2 JP 3357319 B2 JP3357319 B2 JP 3357319B2 JP 19663099 A JP19663099 A JP 19663099A JP 19663099 A JP19663099 A JP 19663099A JP 3357319 B2 JP3357319 B2 JP 3357319B2
Authority
JP
Japan
Prior art keywords
embankment
fiber
soil
piping
reinforced soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19663099A
Other languages
Japanese (ja)
Other versions
JP2001020245A (en
Inventor
博史 三木
厚企 藤井
昌平 千田
勇 高橋
広一 藤木
勇二 長坂
仁 増井
憲章 加津
孝志 新坂
哲茂 内川
孝 西田
淳 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Toyobo Co Ltd
Kumagai Gumi Co Ltd
Okumura Corp
Mitsui Chemicals Industrial Products Ltd
National Research and Development Agency Public Works Research Institute
Original Assignee
Public Works Research Institute
Teijin Ltd
Toyobo Co Ltd
Kumagai Gumi Co Ltd
Okumura Corp
Mitsui Chemicals Industrial Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Public Works Research Institute, Teijin Ltd, Toyobo Co Ltd, Kumagai Gumi Co Ltd, Okumura Corp, Mitsui Chemicals Industrial Products Ltd filed Critical Public Works Research Institute
Priority to JP19663099A priority Critical patent/JP3357319B2/en
Publication of JP2001020245A publication Critical patent/JP2001020245A/en
Application granted granted Critical
Publication of JP3357319B2 publication Critical patent/JP3357319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Revetment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】パイピング破壊の防止を目的
として土手や堤防などの既設堤体を補強する方法、なら
びに既設堤体の補強構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reinforcing an existing embankment such as a bank or a dike for the purpose of preventing piping breakdown, and a reinforcing structure for the existing embankment.

【0002】[0002]

【従来の技術】地中を水が流れると地中の弱いところに
水の流れが集まり、やがて水の道(パイプ状の孔もしく
は隙間。以下、パイプラインともいう)ができ、更にそ
の孔の内壁面の土が洗掘されていき孔径が大きくなって
いく。これをパイピングという。
2. Description of the Related Art When water flows in the ground, the flow of water gathers in weak places in the ground, and eventually water paths (pipe-shaped holes or gaps; hereinafter also referred to as pipelines) are formed. As the soil on the inner wall is scoured, the hole diameter increases. This is called piping.

【0003】多くの河川堤防は、かつて河川が幾度とな
く氾濫を繰り返した基礎地盤上に築造されており、これ
らの基礎地盤は局所的に砂分の多いところや強度が弱い
場所を有している。
[0003] Many river embankments were once built on foundation ground where rivers repeatedly flooded, and these foundation grounds have locally high sand content and low strength. I have.

【0004】このような場所に堤体を構築した場合、増
水などにより堤外地側(河川や湖沼がわ)の水位が上昇
していると堤体の基礎地盤内に水の流れ(浸透流)が発
生し、砂分の多いところや強度が弱い場所からパイピン
グが発生する。そして、このパイピング現象によって堤
体の基礎地盤の強度低下や地盤沈下を引き起こして堤体
破壊に至ることがある。
When the embankment is constructed in such a place, if the water level on the outer side of the embankment (rivers, lakes and marshes) rises due to rising water, water flows (seepage flow) into the foundation ground of the embankment. Occurs, and piping occurs from places with a lot of sand or places with low strength. And, due to this piping phenomenon, the strength of the foundation ground of the embankment may be reduced or the land may be subsided, leading to destruction of the embankment.

【0005】また堤体自体も築造に用いた土質材によっ
ては弱いことがある。
[0005] The embankment itself may be weak depending on the soil material used for construction.

【0006】さらに、堤体を横断して設けられる樋門・
樋管構造物などの構造物は堤体土との重量・剛性等の相
違から密着が難しく周囲に空隙が生じ易い。実際、樋門
・樋管構造物周囲に発生したパイピング現象によって堤
体破壊に至った例がある。
[0006] Further, a gutter provided across the embankment
Structures such as gutter pipe structures are difficult to adhere to due to differences in weight, rigidity, etc. with the embankment soil, and voids are likely to occur around them. In fact, there is an example in which the damping body was destroyed by a piping phenomenon that occurred around a gutter gate / gutter pipe structure.

【0007】パイピングによる堤体破壊の防止を目的と
する堤体強化対策として、従来からセメント系改良材な
どによる堤体基礎地盤の改良、堤体のり尻付近への鋼矢
板の打ち込みによる止水などが行われてきた。
[0007] As measures for strengthening the embankment body to prevent breakage of the embankment body by piping, improvement of the foundation body of the embankment body using a cement-based improvement material, water stoppage by driving a steel sheet pile into the vicinity of the tail end of the embankment, etc. Has been done.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、これら
従来方法は、高額な費用と長い工期を必要とするという
問題点があった。
However, these conventional methods have a problem that they require high cost and a long construction period.

【0009】そこで、本発明の主たる課題は、安価かつ
短期間での施工が可能な既設堤体の補強方法を提案する
ことにある。
Therefore, a main object of the present invention is to propose a method for reinforcing an existing embankment, which is inexpensive and can be constructed in a short period of time.

【0010】[0010]

【課題を解決するための手段】上記課題を解決した本発
明は、既設堤体のパイピング破壊を防止する補強方法で
あって、堤体の基礎地盤、堤体の内側および堤体の外側
のうち; (a)堤体の内側法面の下側部分およびこれに続く周辺
基礎地盤面を覆うように、繊維混合強化土による押え盛
土を行う補強、 (b)堤体の基礎地盤における堤体外側に面しない補強
対象部位を、繊維混合強化土からなるものとする補強、 (c)堤体の内側法面の下側部分を、繊維混合強化土か
らなるものとする補強、 のうちいずれか一つの補強またはこれらを組合せた補強
を行い、前記繊維混合強化土の繊維として、経時的に分
解し強化効果が低減することのない化学繊維を用いるこ
とを特徴とするものである。他の本発明は、既設堤体の
パイピング破壊を防止する補強方法であって、堤体内を
通る構造物の外面に接する土砂部位を、経時的に分解し
強化効果が低減することのない化学繊維を用いた繊維混
合強化土からなるものとする、既設堤体のパイピング破
壊防止補強方法である。
SUMMARY OF THE INVENTION The present invention, which has solved the above-mentioned problems, is a reinforcing method for preventing piping breakage of an existing embankment, and includes a foundation ground of the embankment, an inside of the embankment, and an outside of the embankment.
Tsutsumi in the lower portion and subsequent to cover the surrounding foundation ground surface, reinforcing performing pressing embankment by fiber blend reinforced soil, (b) foundation ground of the dam of (a) an inner slopes of the dam; out of any reinforcing target portion facing away from the body side, the reinforcement consist of a fiber blend reinforced soil, (c) the lower portion of the inner slopes of the dam body, reinforcing consist of a fiber blend reinforced earth, among One or a combination of these reinforcements is performed, and separated over time as fibers of the fiber-mixed reinforced soil.
The present invention is characterized in that a chemical fiber is used in which the reinforcing effect is not reduced . Another invention is a reinforcing method for preventing a piping breakage of an existing embankment , which decomposes a sediment portion in contact with an outer surface of a structure passing through the embankment over time.
This is a method of preventing piping breakage of an existing embankment, which comprises a fiber-mixed reinforced soil using chemical fibers whose reinforcing effect is not reduced .

【0011】これら本発明における前記繊維混合強化土
は、太さが1〜100デニールで且つ長さが50mm〜
500mmである、経時的に分解し強化効果が低減する
ことのない化学繊維を土砂に混合したものであるのが好
ましい。
The fiber-reinforced soil according to the present invention has a thickness of 1 to 100 denier and a length of 50 mm to 50 mm.
500 mm , decomposes with time and the strengthening effect is reduced
It is preferable that the chemical fiber is mixed with earth and sand.

【0012】他方、本発明の既設堤体のパイピング破壊
防止補強構造は、堤体の基礎地盤、堤体の内側および堤
体の外側のうち; (a)堤体の内側法面の下側部分およびこれに続く周辺
基礎地盤面を覆うように、繊維混合強化土による押え盛
土を行う補強、 (b)堤体の基礎地盤における堤体外側に面しない補強
対象部位を、繊維混合強化土からなるものとする補強、 (c)堤体の内側法面の下側部分を、繊維混合強化土か
らなるものとする補強、 のうちいずれか一つの補強またはこれらを組合せた補強
を行い形成されたものであって、かつ前記繊維混合強化
土の繊維として、経時的に分解し強化効果が低減するこ
とのない化学繊維を用いたものである。
[0012] On the other hand, piping fracture prevention reinforcing structure of the existing embankment of the present invention, dam of foundation ground, dam inner and Tsutsumi
Out of the outer body; (a) so as to cover the lower part and the peripheral foundation ground surface subsequent thereto the inner slopes of the dam body, reinforcing performing pressing embankment by fiber blend reinforced soil, (b) dam foundation Reinforcement that the portion of the ground that does not face the outside of the embankment is made of fiber-reinforced soil. (C) Reinforcement that the lower part of the inner slope of the embankment is made of fiber-reinforced soil. Which is formed by reinforcing any one of them or a combination thereof, and decomposes with time as the fibers of the fiber-mixed reinforced soil to reduce the reinforcing effect.
It uses a synthetic fiber without any .

【0013】<作用> 繊維混合強化土とは、土砂に繊維を人為的に混合して得
られる土質材料であり、単なる土砂と比較すると下記
(イ)および(ロ)に示す特徴を有している。
<Function> The fiber-mixed reinforced soil is a soil material obtained by artificially mixing fibers with earth and sand, and has the following characteristics (a) and (b) as compared with mere earth and sand. I have.

【0014】(イ)繊維混合強化土は、混合繊維の作用
により一軸圧縮強さ、見かけの粘着力や内部摩擦角が高
く強度特性に優れる。例えば、太さが1〜100デニー
ルで且つ長さが50mm以上の短繊維を、土砂に対して
重量比で0.1%以上10%未満(0.2%標準)混合
することによって、図1〜図4にそれぞれ示すような強
度特性を得ることができる。なお、図1、図2および図
4中のインデックス値とは、強化効果が繊維長Lおよび
混合量nに比例し、下記(1)式に示すように、太さに
反比例することを想定し定めた特性値である。 インデックス値=(繊維長さL)/(繊維太さD)×(繊維混合比n) ・・・(1)
(A) The fiber-mixed reinforced soil has a high uniaxial compressive strength, an apparent adhesive strength and an internal friction angle due to the action of the mixed fiber, and has excellent strength characteristics. For example, by mixing short fibers having a thickness of 1 to 100 denier and a length of 50 mm or more with respect to earth and sand in a weight ratio of 0.1% or more and less than 10% (0.2% standard), FIG. 4 to FIG. 4 can be obtained. The index values in FIGS. 1, 2 and 4 assume that the reinforcing effect is proportional to the fiber length L and the mixing amount n, and is inversely proportional to the thickness as shown in the following equation (1). This is a defined characteristic value. Index value = (fiber length L) / (fiber thickness D) × (fiber mixing ratio n) (1)

【0015】(ロ)繊維混合強化土は、単なる土砂と比
較して流体抵抗特性(すなわち降雨などによる浸食特
性、流水などによる洗掘特性)が著しく高い。これは、
繊維と土粒子の絡み合い(繊維の土粒子に対する拘束効
果)により、土粒子の移動が拘束されるからである。こ
の場合にも、前述(イ)と同様の繊維および配合によっ
て、図5および図6にそれぞれ示すような降雨侵食特性
および流水洗掘特性を得ることができる。
(B) The fiber-reinforced reinforced soil has significantly higher fluid resistance characteristics (ie, erosion characteristics due to rainfall, scouring characteristics due to running water, etc.) than mere earth and sand. this is,
This is because the movement of the soil particles is restricted by the entanglement of the fibers and the soil particles (the effect of restricting the fibers to the soil particles). Also in this case, the rainfall erosion characteristic and the running water scouring characteristic as shown in FIGS.

【0016】かかる繊維混合強化土の特性に着眼し、本
発明では、堤体の基礎地盤、堤体の内側および堤体の外
側のうち;上記(a)〜(c)のいずれか一つの補強ま
たはこれらを組合せた補強を行い、かつ繊維混合強化土
の繊維として、経時的に分解し強化効果が低減すること
のない化学繊維を用いる。したがって堤体やその下側の
基礎地盤内を水が流れた場合でも、補強対象部位におけ
る混合繊維と土粒子の絡み合い(繊維の土粒子に対する
拘束効果)によって、補強部位においては土粒子の移動
が拘束され、パイプラインの形成・成長を抑制すること
ができる。その結果、堤体内外に連通するパイプライン
が形成されるまでには至らない。
In view of the characteristics of the fiber-reinforced soil, in the present invention, the foundation ground of the embankment, the inside of the embankment and the outside of the embankment are used.
Side, the reinforcement of any one of the above (a) to (c)
Or a combination of these materials, and decompose over time to reduce the reinforcing effect as fibers of fiber-reinforced soil.
Use synthetic fiber without any . Therefore, even when water flows in the embankment and the underlying ground below, the movement of the soil particles in the reinforced area is caused by the entanglement of the mixed fiber and the soil particles in the area to be reinforced (the effect of restricting the fibers to the soil particles). Being restrained, the formation and growth of the pipeline can be suppressed. As a result, it does not lead to the formation of a pipeline that communicates inside and outside the embankment.

【0017】なお、本発明において堤体の内側とは、河
川・湖沼・海側の反対側を意味する。
In the present invention, the inside of the embankment means the opposite side of the river, lake, marsh, and sea.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て添付図面を参照しつつ詳説する。 <第1の実施形態> 本発明の第1実施形態は、図7にも示すように、既設堤
体1の内側法面2の下側部分2aおよびこれに続く周辺
基礎地盤面3の一部3aを覆うように、それらの上面に
繊維混合強化土4Aによる押え盛土を行って補強するも
のである。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. <First Embodiment> As shown in FIG. 7, a first embodiment of the present invention includes a part of a lower part 2 a of an inner slope 2 of an existing embankment body 1 and a part of a peripheral foundation ground surface 3 following the lower part. In order to cover 3a, the upper surface thereof is reinforced by holding embankment with fiber mixed reinforced soil 4A.

【0019】同図に矢印で示すように、水位が堤体1に
かからないような場合も含めて基本的に基礎地盤5内を
通り、堤体1の内側法面2の下側部分2aに続く周辺基
礎地盤面3に至る水の浸透流が発生する。特に、同図に
示すように水位が堤体1にかかるような場合であって堤
体1が土砂で形成されている場合には、堤体1内および
基礎地盤5内を通り、堤体1の内側法面2の下側部分2
aおよびこれに続く周辺基礎地盤面3に至る水の浸透流
が発生する。
As shown by arrows in FIG. 1, the water basically passes through the foundation ground 5 including the case where the water level does not reach the embankment 1 and continues to the lower portion 2a of the inner slope 2 of the embankment 1. A permeation flow of water reaching the surrounding foundation ground surface 3 is generated. In particular, as shown in the figure, when the water level falls on the embankment body 1 and the embankment body 1 is formed of earth and sand, it passes through the embankment body 1 and the foundation ground 5, and Lower part 2 of the inside slope 2
a and the subsequent permeation flow of water reaching the peripheral foundation ground surface 3 is generated.

【0020】したがって、同図に示すように、堤体1の
内側法面2の下側部分2aおよびこれに続く周辺基礎地
盤面部分3aを覆うように、繊維混合強化土4Aによる
押え盛土を行うことで、前述の浸透流によって、堤体1
外側から堤体1内または基礎地盤5内を通り、堤体1の
内側法面2の下側部分2aまたはこれに続く周辺基礎地
盤面3に至るパイプラインが形成され成長していったと
しても、押え盛土4Aが洗掘に対して強いので当該押え
盛土4Aにおいてパイプラインの成長が抑えられ、パイ
プラインが堤体1の内外に連通するまでには至りにく
い。
Therefore, as shown in the figure, the embankment is filled with the fiber-mixed reinforced soil 4A so as to cover the lower part 2a of the inner slope 2 of the embankment body 1 and the surrounding foundation ground surface 3a. Therefore, the embankment 1
Even if a pipeline is formed and grows from the outside through the embankment 1 or the foundation ground 5 to the lower part 2a of the inner slope 2 of the embankment 1 or the surrounding foundation ground surface 3 following it. Since the holding embankment 4A is strong against scouring, the growth of the pipeline is suppressed in the holding embankment 4A, and it is difficult to reach the pipeline communicating with the inside and outside of the embankment body 1.

【0021】なお本発明においては、例えば堤体内側法
面2のみや、基礎地盤面部分3aのみなど、他の補強対
象部位に対して押え盛土を行うこともできる。ただし、
堤体1外側の補強対象部位に押え盛土を行うと、河川等
による洗掘作用によって混合繊維が押え盛土内から外部
に放出され易く、それが周辺の河川等を汚染するなどの
環境問題を引き起こすことが想定されるので、本発明で
は前述したように堤体1の内側に押え盛土を行うことと
している。
In the present invention, it is also possible to perform embankment embankment for other reinforcement target portions, for example, only the inner slope 2 of the embankment body or only the foundation ground surface portion 3a. However,
When the embankment is applied to the reinforcement target portion outside the embankment 1, the mixed fiber is easily released from the inside of the embankment due to scouring action by the river or the like, which causes environmental problems such as polluting surrounding rivers and the like. Therefore, according to the present invention, as described above, the embankment embankment is performed inside the embankment body 1.

【0022】また、かかる押え盛土は、既設堤体に対し
て適用し易い利点がある。また土を盛るにあたり公知の
吹付装置を用いても良い。
Further, such a holding embankment has an advantage that it can be easily applied to an existing embankment body. A well-known spraying device may be used to fill the soil.

【0023】<第2の実施形態> 第2の実施形態は、図8に示すように、少なくとも、既
設堤体1の基礎地盤5における堤体1外側に面しない補
強対象部位5aを繊維混合強化土4Bからなるものとす
る(以下、単に強化土化ともいう)方法である。特に図
示例では、かかる堤体1外側に面しない基礎地盤部位の
うち、堤体1下側の基礎地盤の一部15aおよびこれに
続く堤体内側の基礎地盤部分15bからなる領域5aに
ついて強化土化を行っている。
<Second Embodiment> In a second embodiment, as shown in FIG. 8, at least a portion 5a to be reinforced that does not face the outside of the bank 1 on the foundation ground 5 of the existing bank 1 is fiber-reinforced. It is a method that consists of soil 4B (hereinafter, simply referred to as reinforced soil). In particular, in the illustrated example, of the foundation ground portion not facing the outside of the embankment 1, the region 5 a composed of a part 15 a of the foundation ground below the embankment 1 and the following base ground portion 15 b inside the embankment 1 is reinforced. Is going on.

【0024】この場合、矢印で示す浸透流の出口となり
易い部分15a,15bが強化される。したがって、仮
に浸透流によって堤体1外側から堤体1内または基礎地
盤5内を通り、上記強化土化部位5aの浸透流上流側面
に至るパイプラインが形成されたとしても、当該強化土
化部分5aが繊維混合強化土4Bからなり洗掘に対して
強いので、当該強化土化部分5aにおいてパイプライン
の成長が抑えられ、堤体1の内外に連通するパイプライ
ンが形成されるまでには至りにくい。
In this case, the portions 15a and 15b which are likely to be the outlets of the permeation flow indicated by arrows are strengthened. Therefore, even if a pipeline is formed by the infiltration flow from the outside of the embankment body 1 to the inside of the embankment body 1 or the inside of the foundation ground 5 and to the upstream side surface of the infiltration flow of the reinforced soil formation site 5a, the reinforced soil formation portion Since 5a is made of the fiber-mixed reinforced soil 4B and is resistant to scouring, the growth of the pipeline is suppressed in the reinforced soil portion 5a, and the pipeline communicating with the inside and outside of the embankment 1 is formed. Hateful.

【0025】ところで本発明における具体的強化土化方
法としては、図示しないが、補強対象部位の地盤土を掘
削撤去するとともに、その掘削撤去により形成される凹
部を、予め、地盤土(掘削撤去した地盤土でも良い)に
強化繊維を混合して製造しておいた繊維混合強化土で埋
め戻す置換方法のほか、耕運機などの地盤土を攪拌可能
な攪拌混合装置を用い、現場で原地盤土を耕しつつその
原地盤土内に強化繊維を攪拌混合させる現場攪拌方法を
採用することができる。特に現場攪拌混合においては、
補強対象部位の地盤上に強化繊維を撒き散らした後、こ
の撒き散らし部位を耕運機などで耕す方法を推奨する。
現場攪拌のほうが、前述置換方法よりも作業手間および
施工コストが少なくて済む利点がある。かかる基礎地盤
の強化土化を既設堤体に対して適用できる。
As a concrete reinforced soil method according to the present invention, although not shown, the ground soil at the portion to be reinforced is excavated and removed, and the recess formed by the excavation and removal is previously removed from the ground soil (by excavation and removal). In addition to the replacement method of backfilling with fiber-mixed reinforced soil that has been manufactured by mixing reinforced fibers into the ground soil, soil-mixing equipment that can stir the ground soil, such as a cultivator, can be used to remove the original ground soil at the site. An on-site stirring method in which reinforcing fibers are stirred and mixed into the original ground soil while tilling can be adopted. Especially in the case of on-site stirring and mixing
It is recommended that after reinforcing fibers are scattered on the ground at the part to be reinforced, the scattered parts are plowed with a cultivator.
On-site agitation has the advantage of requiring less labor and construction costs than the replacement method described above. Such strengthening of the foundation ground can be applied to the existing embankment.

【0026】他方、基礎地盤5のうち堤体1外側に面し
ない部位を補強対象部位5aとしているのは、前述第1
実施形態の場合と同様に周辺環境汚染を配慮しているか
らである。
On the other hand, the portion of the foundation ground 5 that does not face the outside of the bank 1 is defined as the portion 5a to be reinforced.
This is because surrounding environmental pollution is considered as in the case of the embodiment .

【0027】<第3の実施形態> また第3の実施形態は、図9に示すように、少なくと
も、堤体1の内側法面2の下側部分2bを、上述の第2
実施形態と同様に強化土化により補強するものである。
4Cは繊維混合強化土を示している。堤体1が土砂で形
成してある場合には、堤体1の内側法面2における下側
部分2bが堤体1内を通る浸透流の出口となる場合があ
る。しかし、本第3実施形態に従って強化土化を行うこ
とで、堤体1内におけるパイプラインの成長を抑えるこ
とができ、もって堤体1の決壊を防止できる。
Third Embodiment In the third embodiment, as shown in FIG. 9, at least the lower part 2b of the inner slope 2 of the embankment body 1 is connected to the second
As in the embodiment, reinforcement is performed by strengthening soil.
4C shows a fiber mixed reinforced soil. When the embankment body 1 is formed of earth and sand, the lower portion 2 b of the inner slope 2 of the embankment body 1 may serve as an outlet of a permeation flow passing through the inside of the embankment body 1. However, by performing the reinforced soil in accordance with the third embodiment, the growth of the pipeline in the embankment 1 can be suppressed, and thus the collapse of the embankment 1 can be prevented.

【0028】<第4の実施形態> 第4の実施形態は、図10にも示すように、堤体1内を
通る構造物30の外面に接する土砂部位31を、繊維混
合強化土4Dからなるものとする強化土化を行って補強
するものである。矢印は想定される浸透流を示してい
る。
<Fourth Embodiment> In a fourth embodiment, as shown in FIG. 10, the earth and sand portion 31 in contact with the outer surface of the structure 30 passing through the embankment body 1 is made of fiber mixed reinforced soil 4D. This is to reinforce the soil by strengthening it. Arrows indicate possible permeation flows.

【0029】特に図10に示す構造物30は、堤体1を
横断する樋門構造物であり、その外周全体を取り囲む土
砂部位31について強化土化を行っている。一般の堤体
1においては、家庭廃水や工業廃水を堤体内側から堤体
外側に送出するための水門や管渠などの樋門構造物30
が設けられることが多く、これらは堤体1外側の水位が
上昇するときには閉じられるようになっているものもあ
る。しかし、土砂で形成された堤体1においては、堤体
1と樋門構造物30の外周面との境界に沿って堤体内外
に連通するパイプラインが形成され易い。また、図示し
ないが、堤体を横断せず堤体の一部を通るだけの構造物
であっても同様のパイプライン化が生じることが想定さ
れる。
In particular, a structure 30 shown in FIG. 10 is a gutter gate structure which crosses the embankment body 1, and a soil portion 31 surrounding the entire outer periphery thereof is reinforced. In the general embankment body 1, a gutter structure 30 such as a sluice or a sewer for sending domestic wastewater or industrial wastewater from the inside of the embankment body to the outside of the embankment body.
Are often provided, and these are closed when the water level outside the embankment body 1 rises. However, in the embankment body 1 formed of earth and sand, a pipeline communicating with the inside and outside of the embankment along the boundary between the embankment body 1 and the outer peripheral surface of the gutter structure 30 is easily formed. Further, although not shown, it is assumed that a similar pipeline is generated even with a structure that does not cross the embankment but only passes through a part of the embankment.

【0030】しかるに本発明に従って、堤体1内を通る
構造物30の外面に接する土砂部位(好適には図10に
示すように構造物30の外周全体を取り囲む部位31)
について強化土化すると、当該部位31の洗掘耐性が高
まるので、堤体1と樋門構造物30の外周面との境界に
沿うパイプラインは形成されにくくなる。
However, according to the present invention, the earth and sand portion which contacts the outer surface of the structure 30 passing through the embankment body 1 (preferably, the portion 31 surrounding the entire outer periphery of the structure 30 as shown in FIG. 10)
When the soil is strengthened, the scouring resistance of the portion 31 is increased, so that a pipeline along the boundary between the embankment 1 and the outer peripheral surface of the gutter structure 30 is less likely to be formed.

【0031】他方、かかる強化土化を行うには、樋門構
造物30を堤体1に構築する際に行うのが簡便である。
すなわち図示しないが、堤体に構造物設置スペースを形
成するとともに、その底部に繊維混合強化土を布設し、
その上に樋門構造物築造または設置し、しかる後に堤体
と樋門構造物との隙間を、繊維混合強化土を埋め戻し材
として埋戻すことで、補強対象の土砂部位を強化土化す
ることができる。もちろん、既に堤体に樋門構造物が設
けられている場合にも、被門構造物の外周に接する部分
を掘削もしくは穿孔により撤去した後に、当該撤去スペ
ースを繊維混合強化土で埋め戻ししたりすることで、強
化土化を行うことができる。
On the other hand, it is convenient to carry out such reinforced soil at the time of constructing the gutter structure 30 on the embankment 1.
That is, although not shown, a structure installation space is formed in the embankment, and a fiber-mixed reinforced soil is laid at the bottom thereof,
A gutter structure is built or installed on it, and then the gap between the embankment and the gutter structure is backfilled with the fiber-mixed reinforced soil as backfill material, thereby turning the soil portion to be reinforced into reinforced soil. be able to. Of course, even when the gutter structure is already provided on the embankment, after removing the portion in contact with the outer periphery of the gated structure by drilling or drilling, the removed space is backfilled with fiber-reinforced soil. By doing so, reinforced soil can be obtained.

【0032】<変形形態> ところで本発明においては、図11に示すように上述の
第1〜第3の実施形態は組合せる、すなわち、第1実施
形態の押さえ盛土4A、第2実施形態の基礎地盤の強化
土化4B、ならびに第3実施形態の堤体内側法面の強化
土化4Cの全てを行うことができる。
<Modification> In the present invention, as shown in FIG. 11, the above-described first to third embodiments are combined, that is, the holding embankment 4A of the first embodiment and the base of the second embodiment. All the soil reinforcement 4B of the ground and the reinforcement soil 4C of the slope inside the embankment body of the third embodiment can be performed.

【0033】また図示しないが、第4の実施形態におい
て、上述の第1〜第3の実施形態の少なくとも一つに示
す堤体補強を行うこともできる。
Although not shown, in the fourth embodiment, the embankment reinforcement shown in at least one of the above-described first to third embodiments can be performed.

【0034】<繊維混合強化土> 本発明の繊維としては、天然繊維のように経時的に分解
し強化効果が低減していくものは用いず、補強効果を維
持していく上で、ポリエチレン繊維やポリプロピレン繊
維などの自然分解されにくい化学繊維を用いる。特に異
形断面繊維を用いると土粒子拘束効果が高くなるので、
強化効果が向上する。
<Fiber-Reinforced Soil> As the fiber of the present invention, a fiber that degrades with time and reduces the reinforcing effect, such as natural fiber, is not used. Use chemical fibers that are not easily degraded, such as polypropylene and polypropylene fibers. In particular, the use of irregular cross-section fibers increases the soil particle restraint effect,
Strengthening effect is improved.

【0035】また、太さとしては1〜100デニールが
好ましく、長さとしては50〜500mm(短繊維)程
度が好ましい。これよりも短いと強化効果に乏しくな
る。また、これよりも長い長繊維を用いるほうが強化効
果が高くなるが、土砂との攪拌混合が困難となるととも
に、強化土表面から一部が飛び出していたり或いは全部
が飛び出したりしてしまうと、周辺に生息する鳥獣がこ
れに絡まる虞があるので好ましくない。
The thickness is preferably 1 to 100 denier, and the length is preferably about 50 to 500 mm (short fiber). If it is shorter than this, the reinforcing effect will be poor. In addition, the use of long fibers longer than this will increase the reinforcing effect, but it will be difficult to stir and mix with earth and sand, and if some or all of them will protrude from the reinforced soil surface, the surrounding This is not preferable because birds and beasts that live in the country may be entangled with this.

【0036】配合としては、繊維を土砂に対して重量比
で0.1〜3%、特に好適には0.1〜0.4%混合す
るのが好ましい。
It is preferable to mix the fibers with the earth and sand in a weight ratio of 0.1 to 3%, particularly preferably 0.1 to 0.4%.

【0037】他方、以下に実験例を示して本発明の効果
を明らかにする。 <実験例1> 図12に示す試験装置を使用し、本発明に係る繊維混合
強化土および繊維無混合強化土を用いてパイピング試験
を行った。この試験装置は、U字状管(内径10cm)
の一方側の縦管内に供試土を充填した後、他方側の縦管
内に対して注水を行い、両縦管にける水位差、ならびに
充填土を透過する水の流量に基づいて、動水勾配および
流速を求めることができるようになしたものである。
On the other hand, the effects of the present invention will be clarified by showing experimental examples below. <Experimental Example 1> A piping test was performed using the fiber-mixed reinforced soil and the fiber-free mixed reinforced soil according to the present invention using the test device shown in FIG. This test device is a U-shaped tube (10 cm inside diameter)
After filling the test soil in the vertical pipe on one side, water is injected into the vertical pipe on the other side, and based on the water level difference between both vertical pipes and the flow rate of water passing through the filled soil, The gradient and the flow velocity can be obtained.

【0038】供試土として、表1に示すように繊維無混
合土(供試土番号1)および繊維の混合率を0.1%〜
0.4%(供試土番号2〜4)の繊維混合強化土の計4
種を用いて試験を行った。
As the test soil, as shown in Table 1, a fiber-free soil (test soil number 1) and a fiber mixing ratio of 0.1% to
0.4% (test soil number 2-4) fiber mixed reinforced soil total 4
The test was performed using seeds.

【0039】なお、これらの供試土の土砂としては、表
2に示すような河川流域に多く分布する土砂を用いた。
また、試験には太さ20De(45μm)、長さ64m
m、H形断面のポリエステル繊維を用いた。また、繊維
混合強化土は径10cm,高さ15cmとし、繊維と土
砂を均一に混合するとともに、充分に締め固めて試験を
行った。
As the soil of these test soils, the soil widely distributed in the river basin as shown in Table 2 was used.
The test was performed with a thickness of 20 De (45 μm) and a length of 64 m.
Polyester fibers having m and H-shaped cross sections were used. The fiber-mixed reinforced soil was 10 cm in diameter and 15 cm in height. The test was performed by uniformly mixing the fiber and earth and sand, and by sufficiently compacting.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】試験の結果、どの供試土においても上面か
ら細かい気泡の発生や局所的な噴砂が生じた後、パイピ
ング破壊に至った。各供試土における動水勾配と平均流
速の関係を図13に示した。また、限界動水勾配、限界
平均流速、ならびに限界実流速を表3に示した(これら
に付した、限界とはパイピング破壊に至った時に測定し
た各値を意味する)。この結果から、混合率0.4%の
供試土は、無混合の供試土に比べて限界動水勾配で2.
2倍、限界平均流速で1.4倍上昇することが判明し
た。
As a result of the test, in each of the test soils, fine bubbles were generated from the upper surface and local sand blasting occurred, and then the piping was destroyed. FIG. 13 shows the relationship between the hydraulic gradient and the average flow velocity in each test soil. In addition, the critical hydraulic gradient, the critical average flow velocity, and the critical actual flow velocity are shown in Table 3 (the limit refers to each value measured at the time of the pipe breaking). From this result, the test soil with a mixing ratio of 0.4% has a marginal hydraulic gradient of 2.% compared to the test soil without mixing.
It was found to increase by a factor of two and a factor of 1.4 at the critical mean flow rate.

【0043】[0043]

【表3】 [Table 3]

【0044】さらに、これらの結果を混合繊維の種類
(長さL,太さD)および混合量nによってあらわした
特性値(=インデックス値=L/D×n)で整理する
と、図14および図15に示すようになる。インデック
ス値は、前述のとおり強化効果が繊維長Lおよび混合量
nに比例し、太さに反比例することを想定し定めた特性
値である。これらのグラフから、限界動水勾配および限
界実流速とインデックス値とには相関がある、すなわ
ち、繊維長が長くなるほど及び混合量が多くなるほど強
化効果が高くなり、繊維が太くなるほど強化効果が低下
することが判明する。
Further, when these results are arranged by characteristic values (= index value = L / D × n) represented by the type (length L, thickness D) of the mixed fiber and the mixing amount n, FIG. 14 and FIG. As shown in FIG. The index value is a characteristic value determined on the assumption that the reinforcing effect is proportional to the fiber length L and the mixing amount n and is inversely proportional to the thickness as described above. From these graphs, there is a correlation between the critical hydraulic gradient and the critical actual flow velocity and the index value, that is, the reinforcing effect increases as the fiber length increases and the mixing amount increases, and the reinforcing effect decreases as the fiber becomes thicker. It turns out to be.

【0045】<実験例2> 図16に示す大型実験システムを使用し、実験例1と同
様の土砂を利用し、繊維混合土を用いて高さ10cmの
押さえ盛土によるパイピング防止効果の検証を行った。
同図に示すように、本実験システムは樋門構造物を有す
る堤体を想定して構成されているものであり、樋門構造
物として幅45cm,高さ46cmのボックスカルバー
トを用いたものである。またカルバートの下に地盤沈下
によって生じたと想定した空洞(5cm)を設けた。
<Experimental Example 2> Using the large-scale experimental system shown in FIG. 16, the same soil and sand as in Experimental Example 1 were used, and the effect of preventing the piping by the holding embankment having a height of 10 cm using the fiber mixed soil was verified. Was.
As shown in the figure, this experimental system is configured assuming a bank body having a gutter structure, and a box culvert having a width of 45 cm and a height of 46 cm is used as the gutter structure. is there. A cavity (5 cm) assumed to have been caused by land subsidence was provided below the culvert.

【0046】また、実験には太さ40μm,長さ64m
mポリエステル繊維を用いた。
In the experiment, the thickness was 40 μm and the length was 64 m.
m polyester fiber was used.

【0047】実験ケースは無対策(押さえ盛土なし‥‥
実験番号1),川砂を用いた押さえ盛土(実験番号
2),4号砕石による押さえ盛土(実験番号3)および
繊維の混合率を0.2%に調整した繊維混合土(実験番
号4)の計4ケースで行った。
The experimental case has no countermeasure (no embankment.)
Experiment No. 1), holding embankment using river sand (Experiment No. 2), holding embankment using No. 4 crushed stone (Experiment No. 3), and fiber mixed soil (Experiment No. 4) with fiber mixing ratio adjusted to 0.2% A total of four cases were performed.

【0048】試験の結果、どのケースも図17に示すよ
うに堤体法先のカルバートボックス脇(左右いずれか)
からパイピング破壊を起こした。各ケースのパイピング
破壊に至る水位差と動水勾配、平均動水勾配の関係を表
4に、パイピング破壊に至る水位差と越流量の関係を図
18に示した。
As a result of the test, in each case, as shown in FIG. 17, as shown in FIG.
Caused piping destruction. Table 4 shows the relationship between the water level difference leading to the pipe breaking and the hydraulic gradient and the average hydraulic gradient in each case, and FIG. 18 shows the relationship between the water level difference leading to the pipe breaking and the overflow.

【0049】[0049]

【表4】 [Table 4]

【0050】この結果から、無対策の場合は水位差7
6.5cm、動水勾配1.66、平均動水勾配0.22
でパイピング破壊に至ったのに対して、わずか10cm
の繊維混合強化土の押さえ盛土を行ったケースは水位差
144.4cm、動水勾配2.60、平均動水勾配0.
41でパイピング破壊に至り、水位差で1.9倍、動水
勾配で1.6倍の効果が認められた。
From these results, it can be seen that the water level difference is 7
6.5 cm, hydraulic gradient 1.66, average hydraulic gradient 0.22
Only 10cm while the piping was destroyed by
In the case where the embankment of fiber mixed reinforced soil was carried out, the water level difference was 144.4 cm, the hydraulic gradient was 2.60, and the average hydraulic gradient was 0.
At 41, piping was destroyed, and an effect of 1.9 times in water level difference and 1.6 times in hydrodynamic gradient was observed.

【0051】<実験のまとめ> 以上の実験から、繊維を用いた繊維混合強化土による押
さえ盛土は盛上高さを調整することによって河川や湖
沼、海の堤体のパイピング破壊防止対策として効果的で
あることが確認された。
<Summary of Experiment> From the above experiment, it is effective as a measure for preventing piping destruction of rivers, lakes, marshes, and sea levee bodies by adjusting the embankment height of the holding embankment made of fiber-mixed reinforced soil using fibers. Was confirmed.

【0052】[0052]

【発明の効果】以上のとおり本発明によれば、安価かつ
短期間で、既設堤体のパイピング破壊を防止する補強が
可能となる。
As described above, according to the present invention, it is possible to carry out reinforcement at a low cost and in a short period of time to prevent piping breakage of an existing embankment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】繊維混合強化土の一軸圧縮強さを示すグラフで
ある。
FIG. 1 is a graph showing the uniaxial compressive strength of a fiber-reinforced soil.

【図2】繊維混合強化土の内部摩擦角を示すグラフであ
る。
FIG. 2 is a graph showing an internal friction angle of a fiber-reinforced soil.

【図3】繊維混合強化土の曲げ強さを示すグラフであ
る。
FIG. 3 is a graph showing the bending strength of the fiber-mixed reinforced soil.

【図4】繊維混合強化土の粘着力を示すグラフである。FIG. 4 is a graph showing the adhesive strength of the fiber-reinforced soil.

【図5】繊維混合強化土の降雨による侵食特性を示すグ
ラフである。
FIG. 5 is a graph showing erosion characteristics of fiber-reinforced soil due to rainfall.

【図6】繊維混合強化土の洗掘特性を示すグラフであ
る。
FIG. 6 is a graph showing scouring characteristics of the fiber-mixed reinforced soil.

【図7】第1の実施形態の概略を示す縦断面図である。FIG. 7 is a longitudinal sectional view schematically showing the first embodiment.

【図8】第2の実施形態の概略を示す縦断面図である。FIG. 8 is a longitudinal sectional view schematically showing a second embodiment.

【図9】第3の実施形態の概略を示す縦断面図である。FIG. 9 is a longitudinal sectional view schematically showing a third embodiment.

【図10】第4の実施形態の概略を示す縦断面図であ
る。
FIG. 10 is a longitudinal sectional view schematically showing a fourth embodiment.

【図11】変形形態の概略を示す縦断面図である。FIG. 11 is a longitudinal sectional view schematically showing a modification.

【図12】実験例1の試験装置の概略図である。FIG. 12 is a schematic diagram of a test apparatus of Experimental Example 1.

【図13】実験例1の試験結果を示すグラフである。FIG. 13 is a graph showing test results of Experimental Example 1.

【図14】実験例1の試験結果を示す他のグラフであ
る。
FIG. 14 is another graph showing test results of Experimental Example 1.

【図15】実験例1の試験結果を示す他のグラフであ
る。
FIG. 15 is another graph showing test results of Experimental Example 1.

【図16】実験例2の実験システムの概略図である。FIG. 16 is a schematic diagram of an experimental system of Experimental Example 2.

【図17】パイピングの状態を示す要部拡大縦断面図で
ある。
FIG. 17 is an enlarged longitudinal sectional view of a main part showing a piping state.

【図18】実験例2の試験結果を示すグラフである。FIG. 18 is a graph showing test results of Experimental Example 2.

【符号の説明】[Explanation of symbols]

1…堤体、2…堤体の内側法面、4A〜4D…繊維混合
強化土、5…堤体基礎地盤。
1 ... embankment, 2 ... slope inside embankment, 4A-4D ... fiber mixed reinforced soil, 5 ... embankment foundation ground.

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 593121586 株式会社エスエルエス 東京都千代田区内神田1丁目11番6号 (73)特許権者 000140292 株式会社奥村組 大阪府大阪市阿倍野区松崎町2丁目2番 2号 (73)特許権者 390036515 株式会社鴻池組 大阪府大阪市此花区伝法4丁目3番55号 (73)特許権者 391019740 三信建設工業株式会社 東京都文京区後楽1丁目2番7号 (73)特許権者 000003001 帝人株式会社 大阪府大阪市中央区南本町1丁目6番7 号 (73)特許権者 000003160 東洋紡績株式会社 大阪府大阪市北区堂島浜2丁目2番8号 (73)特許権者 000175021 三井化学産資株式会社 東京都文京区湯島3丁目39番10号 (72)発明者 三木 博史 茨城県つくば市大字旭1番地 建設省土 木研究所内 (72)発明者 藤井 厚企 茨城県つくば市大字旭1番地 建設省土 木研究所内 (72)発明者 千田 昌平 東京都台東区台東1丁目6番4号 財団 法人土木研究センター内 (72)発明者 高橋 勇 東京都中央区日本橋本町3丁目3番6号 三菱建設株式会社内 (72)発明者 藤木 広一 茨城県つくば市大字鬼ヶ窪字下山1043番 地 株式会社熊谷組内 (72)発明者 長坂 勇二 東京都中央区日本橋大伝馬町1丁目13番 株式会社エスエルエス内 (72)発明者 増井 仁 東京都港区赤坂4丁目1番27号 株式会 社奥村組内 (72)発明者 加津 憲章 東京都千代田区神田駿河台2丁目3番11 号 株式会社鴻池組内 (72)発明者 新坂 孝志 東京都文京区後楽1丁目2番7号 三信 建設工業株式会社内 (72)発明者 内川 哲茂 東京都千代田区内幸町2丁目1番1号 帝人株式会社東京本社内 (72)発明者 西田 孝 東京都中央区日本橋小網町17番9号 東 洋紡績株式会社内 (72)発明者 西村 淳 東京都文京区湯島3丁目39番10号 三井 石化産資株式会社内 (56)参考文献 特開 平9−78583(JP,A) 特開 平10−204882(JP,A) 特開 平4−155006(JP,A) (58)調査した分野(Int.Cl.7,DB名) E02B 3/04 E02D 17/18 ──────────────────────────────────────────────────続 き Continued on the front page (73) Patent holder 593121586 SLS Co., Ltd. 1-11-6 Uchikanda, Chiyoda-ku, Tokyo (73) Patent holder 000140292 Okumura Gumi Co., Ltd. 2-2-2 Matsuzakicho, Abeno-ku, Osaka-shi, Osaka No. 2 (73) Patent Holder 390036515 Konoike Gumi Co., Ltd. 4-55, Kobana-ku, Osaka-shi, Osaka (73) Patent Holder 391019740 Sanshin Construction Industry Co., Ltd. 1-2-7 Koraku, Bunkyo-ku, Tokyo ( 73) Patent holder 000003001 Teijin Co., Ltd. 1-6-7 Minamihonmachi, Chuo-ku, Osaka-shi, Osaka (73) Patentee 000003160 Toyobo Co., Ltd. 2-2-2 Dojimahama, Kita-ku, Osaka-shi, Osaka (73) Patent holder 000175021 Mitsui Chemicals Industrial Co., Ltd. 3-39-10 Yushima, Bunkyo-ku, Tokyo (72) Inventor Hiroshi Miki 1 Asahi, Asahi, Tsukuba, Ibaraki Prefecture Within the Public Works Research Institute of the Ministry of Construction (72) Atsushi Fujii, Asahi 1, Tsukuba, Ibaraki Prefecture Within the Public Works Research Institute of the Ministry of Construction (72) Shohei Senda 1-6-4 Taito, Taito-ku, Tokyo Civil Engineering Research Foundation Inside the center (72) Inventor Isamu Takahashi 3-6, Nihonbashi-Honcho, Chuo-ku, Tokyo Inside Mitsubishi Construction Co., Ltd. (72) Inventor Yuji Nagasaka 1-13 Nihonbashi Odenmacho, Chuo-ku, Tokyo SLS Inc. (72) Inventor Hitoshi Masui 4-1-27 Akasaka, Minato-ku, Tokyo Incorporated company Okumura Gumi (72) Inventor Noriyoshi Kazu 2-3-11 Kanda Surugadai, Chiyoda-ku, Tokyo Inside Konoike Gumi Co., Ltd. (72) Inventor Takashi Shinsaka 1-2-7 Koraku, Bunkyo-ku, Tokyo Sanshin Construction Industries Co., Ltd. (72) Inventor Uchikawa Tetsumo 2-1-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Teijin Limited Tokyo Head Office (72) Inventor Takashi Nishida 17-9, Koami-cho, Nihonbashi, Chuo-ku, Tokyo Toyobo Co., Ltd. (56) reference Patent flat 9-78583 (JP, a) JP flat 10-204882 (JP, a) JP flat 4-155006 (JP, a) (58 ) investigated the field (Int.Cl. 7 , DB name) E02B 3/04 E02D 17/18

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】既設堤体のパイピング破壊を防止する補強
方法であって、堤体の基礎地盤、堤体の内側および堤体の外側のうち; (a)堤体の内側法面の下側部分およびこれに続く周辺
基礎地盤面を覆うように、繊維混合強化土による押え盛
土を行う補強、 (b)堤体の基礎地盤における堤体外側に面しない補強
対象部位を、繊維混合強化土からなるものとする補強、 (c)堤体の内側法面の下側部分を、繊維混合強化土か
らなるものとする補強、 のいずれか一つの補強またはこれらを組合せた補強を行
い、かつ前記繊維混合強化土の繊維として、経時的に分
解し強化効果が低減することのない化学繊維を用いるこ
と、 を特徴とする、既設堤体のパイピング破壊防止補強方
法。
1. A reinforcing method for preventing piping breakage of an existing embankment, comprising: a foundation ground of the embankment, an inside of the embankment, and an outside of the embankment; (B) Reinforcement of the embankment with fiber-mixed reinforced soil so as to cover the portion and the surrounding foundation ground surface, And (c) reinforcement in which the lower part of the inner slope of the embankment is made of fiber-mixed reinforced soil, or any one of these reinforcements or a combination thereof , and the fiber as fibers mixed reinforced soil, over time min
A method for preventing piping breakage of an existing embankment, characterized by using chemical fibers that do not reduce the reinforcing effect .
【請求項2】既設堤体のパイピング破壊を防止する補強
方法であって、 堤体内を通る構造物の外面に接する土砂部位を、経時的
に分解し強化効果が低減することのない化学繊維を用い
た繊維混合強化土からなるものとする、既設堤体のパイ
ピング破壊防止補強方法。
2. A reinforcing method for preventing piping destruction of an existing embankment, wherein a sediment portion in contact with an outer surface of a structure passing through the embankment is removed with time.
A method of preventing piping breakage of an existing embankment, comprising a fiber-mixed reinforced soil that uses chemical fibers that do not decompose and reduce the reinforcing effect .
【請求項3】前記繊維混合強化土は、太さが1〜100
デニールで且つ長さが50mm〜500mmである、経
時的に分解し強化効果が低減することのない化学繊維を
土砂に混合したものである、請求項1または2に記載の
既設堤体のパイピング破壊防止補強方法。
3. The fiber mixed reinforced soil has a thickness of 1 to 100.
Denier and 50 mm to 500 mm in length.
The method for preventing and breaking piping breakage of an existing embankment according to claim 1 or 2, wherein a chemical fiber which is decomposed temporally and whose reinforcing effect is not reduced is mixed with earth and sand.
【請求項4】既設堤体のパイピング破壊を防止する補強
構造であって、堤体の基礎地盤、堤体の内側および堤体の外側のうち; (a)堤体の内側法面の下側部分およびこれに続く周辺
基礎地盤面を覆うように、繊維混合強化土による押え盛
土を行う補強、 (b)堤体の基礎地盤における堤体外側に面しない補強
対象部位を、繊維混合強化土からなるものとする補強、 (c)堤体の内側法面の下側部分を、繊維混合強化土か
らなるものとする補強、のいずれか一つの補強またはこ
れらを組合せた補強を行い形成されたものであって、か
つ 前記繊維混合強化土の繊維として、経時的に分解し強化
効果が低減することのない化学繊維を用いたものである
こと、 を特徴とする、既設堤体のパイピング破壊防止補強構
造。
4. A reinforcing structure for preventing piping breakage of an existing embankment, comprising: a foundation ground of the embankment, an inner side of the embankment, and an outer side of the embankment; (a) a lower side of an inner slope of the embankment ; (B) Reinforcement of the embankment with fiber-mixed reinforced soil so as to cover the portion and the surrounding foundation ground surface, (C) The lower part of the inside slope of the embankment is made of fiber-reinforced soil.
They are formed by reinforcing them in combination , and are decomposed with time and reinforced as fibers of the fiber-mixed reinforced soil.
A structure that prevents damage to piping of an existing embankment, characterized by using chemical fibers whose effect is not reduced .
JP19663099A 1999-07-09 1999-07-09 Piping destruction prevention reinforcement method of existing embankment and piping destruction prevention reinforcement structure of existing embankment Expired - Lifetime JP3357319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19663099A JP3357319B2 (en) 1999-07-09 1999-07-09 Piping destruction prevention reinforcement method of existing embankment and piping destruction prevention reinforcement structure of existing embankment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19663099A JP3357319B2 (en) 1999-07-09 1999-07-09 Piping destruction prevention reinforcement method of existing embankment and piping destruction prevention reinforcement structure of existing embankment

Publications (2)

Publication Number Publication Date
JP2001020245A JP2001020245A (en) 2001-01-23
JP3357319B2 true JP3357319B2 (en) 2002-12-16

Family

ID=16360969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19663099A Expired - Lifetime JP3357319B2 (en) 1999-07-09 1999-07-09 Piping destruction prevention reinforcement method of existing embankment and piping destruction prevention reinforcement structure of existing embankment

Country Status (1)

Country Link
JP (1) JP3357319B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348853A (en) * 2001-05-24 2002-12-04 Kyosei Kiko Kk Method for agitating and mixing soil and sand and solidifying material by using agricultural machine
JP3506680B2 (en) * 2001-07-11 2004-03-15 独立行政法人農業工学研究所 Reinforcement method of earth structure dam body
JP6474101B2 (en) * 2015-05-22 2019-02-27 国立研究開発法人土木研究所 Piping phenomenon evaluation method and piping phenomenon evaluation apparatus
CN116306033B (en) * 2023-05-18 2023-08-15 长江水资源保护科学研究所 Hydraulic regulation and control method for controlling overgrowth of submerged plant through flow fluctuation flushing

Also Published As

Publication number Publication date
JP2001020245A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
CN201245846Y (en) Clamshell excavator stirring concrete enclosure wall
JP2006342614A (en) Protection method of floating structure foundation section
JP3789127B1 (en) Seismic structure
JP3357319B2 (en) Piping destruction prevention reinforcement method of existing embankment and piping destruction prevention reinforcement structure of existing embankment
JP2006214145A (en) Reinforcing structure of levee and reinforcing method
Al-Adhadh et al. Reviewing the most suitable Soil Improvement Techniques for treating soft clay soil
Heibaum et al. Hydraulic applications of geosynthetics
JP5407642B2 (en) Composite dike and its construction method
KR101074881B1 (en) cut-off wall using sheet pile working method
JP2004211533A (en) Revetment for reclamation and its construction method
CN209891168U (en) Dredging engineering&#39;s floodgate case buried pipe formula outlet structure
CN218540592U (en) Hydraulic and hydroelectric engineering construction water conservancy diversion structure
Polańska et al. Barriers of Low Permeability to Water–Technical Solutions
JP2531328B2 (en) How to build a bank
CN217460590U (en) Strengthen foundation ditch structure of drainage
JP3454757B2 (en) Underground structure buried structure
CN114775620B (en) Construction method for progressive excavation of plain riverbank under mucky soil condition
JP2784314B2 (en) How to set up an open caisson
Koerner et al. Geotextiles used as flexible forms
JPH0827768A (en) Strengtening of sand ground
JP2976390B2 (en) Method for preventing liquefaction of the foundation directly under the existing structure
JP4139871B2 (en) Steel plate cell revetment
Moody Investigation of Dredge Material Dewatering Through Hydraulic and Ground Improvement Methods
Chen et al. Sluices and barrages
JPH0611994B2 (en) Underground impermeable wall formation method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020827

R150 Certificate of patent or registration of utility model

Ref document number: 3357319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term