JP3351778B2 - Carbon-based metal composite material plate-shaped body and manufacturing method - Google Patents

Carbon-based metal composite material plate-shaped body and manufacturing method

Info

Publication number
JP3351778B2
JP3351778B2 JP2000149848A JP2000149848A JP3351778B2 JP 3351778 B2 JP3351778 B2 JP 3351778B2 JP 2000149848 A JP2000149848 A JP 2000149848A JP 2000149848 A JP2000149848 A JP 2000149848A JP 3351778 B2 JP3351778 B2 JP 3351778B2
Authority
JP
Japan
Prior art keywords
carbon
composite material
molded body
metal composite
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000149848A
Other languages
Japanese (ja)
Other versions
JP2001058255A (en
Inventor
憲明 川村
栄樹 津島
Original Assignee
日本政策投資銀行
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26490213&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3351778(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本政策投資銀行 filed Critical 日本政策投資銀行
Priority to JP2000149848A priority Critical patent/JP3351778B2/en
Publication of JP2001058255A publication Critical patent/JP2001058255A/en
Application granted granted Critical
Publication of JP3351778B2 publication Critical patent/JP3351778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素基金属複合材
料板状成形体およびその製造方法に関するものであり、
詳しくは、炭素成形体とアルミニウムまたは銅との複合
材料からなる高熱伝導率、低熱膨張率および低弾性率の
電子機器用基板及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon-based metal composite plate-like molded product and a method for producing the same.
More particularly, the present invention relates to a substrate for electronic equipment having a high thermal conductivity, a low coefficient of thermal expansion, and a low elastic modulus, which is made of a composite material of a carbon molded body and aluminum or copper, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】電子装置の高機能化、大容量化に伴い熱
の発生が増加しており、熱除去に有効な高熱伝導率で熱
膨張率の小さい材料が要求されている。半導体素子、抵
抗体、トランス、コンデンサーまたは配線からなる電子
回路から発生する熱の大部分は、回路基板または回路基
板の支持体でもあるベース基板から冷却装置に伝えられ
最終的に大気または冷却液体に放熱される。熱を大量に
発生する電子回路においては、ベース基板材料に通常熱
伝導の良いアルミニウム、銅またはそれらの合金が使用
されている。
2. Description of the Related Art The generation of heat is increasing with the increase in functions and capacity of electronic devices, and a material having a high thermal conductivity and a small coefficient of thermal expansion effective for removing heat is required. Most of the heat generated from electronic circuits consisting of semiconductor elements, resistors, transformers, capacitors or wiring is transferred from the circuit board or the base substrate, which is also the support of the circuit board, to the cooling device and finally to the atmosphere or cooling liquid. Heat is dissipated. In an electronic circuit that generates a large amount of heat, aluminum, copper, or an alloy thereof having high heat conductivity is generally used as a base substrate material.

【0003】また、近年、炭素繊維またはセラミックス
と金属を複合して、熱膨張率を小さく調整した伝熱材料
が提案されている(例えば、特開平11−97593号
公報参照。)。
[0003] In recent years, a heat transfer material in which the coefficient of thermal expansion is adjusted to a small value by combining carbon fiber or ceramics with a metal has been proposed (for example, see Japanese Patent Application Laid-Open No. 11-97593).

【0004】しかしながら、ベース基板材料に使用され
ているアルミニウム、銅またはそれらの合金は、性質上
熱伝導性は良いが熱膨張率も大きい。一方、ベース基板
上に積層されるシリコン半導体素子またはセラミックス
からなる電子回路は熱膨張率が小さく、従って、両者の
熱膨張差からそりまたは剥がれ等が生じる問題点があ
る。
[0004] However, aluminum, copper or their alloys used as the base substrate material have good thermal conductivity in nature, but also have a large coefficient of thermal expansion. On the other hand, an electronic circuit made of a silicon semiconductor element or ceramics laminated on a base substrate has a small coefficient of thermal expansion, and therefore has a problem that warpage or peeling is caused by a difference in thermal expansion between the two.

【0005】前記問題点を解決する材料として、熱膨張
率の小さなセラミックスである炭化珪素、アルミナ、窒
化珪素または窒化アルミニウムとアルミニウム、銅金属
の複合材料からなる基板が考案されているが、この複合
材料基板は、セラミックスを含むため加工が難しいとい
う難点がある。
As a material for solving the above problems, a substrate made of ceramics having a low coefficient of thermal expansion such as silicon carbide, alumina, silicon nitride or a composite material of aluminum nitride, aluminum and copper metal has been devised. The material substrate has a drawback that it is difficult to process because it contains ceramics.

【0006】また、前記問題点を解決する材料として、
熱膨張率の小さな金属であるタングステン、モリブデン
と銅からなる複合材料基板が考案されているが、この複
合材料基板には、重量が大きいことと加工が難しいとい
う問題点がある。更に、シリコンとアルミニウム合金に
よる基板も提案されているが未だ実用化はされていない
など、従来、提案されてきた材料は熱伝導率と熱膨張率
の両者を充足しても加工性が良い製品は実現されていな
かった。また、従来のいずれの材料も弾性率が高いため
熱膨張率の異なる材料を接合する場合、接合面に大きな
熱応力がかかり、結果としてはがれを生ずる欠点があっ
た。
Further, as a material for solving the above problems,
A composite material substrate made of tungsten, molybdenum and copper, which are metals having a low coefficient of thermal expansion, has been devised. However, this composite material substrate has problems that it is heavy and difficult to process. Furthermore, conventionally proposed materials have good workability even if they satisfy both thermal conductivity and coefficient of thermal expansion, such as substrates made of silicon and aluminum alloys have been proposed but not yet put to practical use. Was not realized. In addition, since any conventional material has a high elastic modulus, when joining materials having different coefficients of thermal expansion, a large thermal stress is applied to the joining surface, and as a result, there is a disadvantage that peeling occurs.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明の課題
は、前記の如き電子機器用基板の開発状況に鑑み、軽量
で熱伝導率が高く、シリコン素子またはセラミックスか
らなる電子回路の熱膨張率に合致し、かつ面方向の弾性
率が小さい機械加工性の良い電子機器用基板を提供する
ことにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a light weight, high thermal conductivity, and a thermal expansion coefficient of an electronic circuit made of a silicon element or a ceramic in view of the development situation of the electronic device substrate as described above. It is an object of the present invention to provide a substrate for an electronic device which conforms to the above and has a small elastic modulus in a plane direction and has good machinability.

【0008】[0008]

【課題を解決するための手段】そこで、本発明者らは、
前記目的を達成するために、鋭意検討を重ねたところ、
石油コークス、天然黒鉛またはピッチ系炭素繊維などの
熱伝導率の高いフィラーとコールタールピッチなどのバ
インダーの混合物を、成形、焼成し黒鉛化した炭素成形
体の空孔に溶融したアルミニウム、銅またはそれら金属
の溶融合金を熔湯鍛造により高圧で含浸することにより
得られた炭素基金属複合材料からなる板状成形体が前記
課題により解決できることを見い出し、これらの知見に
基づいて本発明の完成に到達した。
Means for Solving the Problems Accordingly, the present inventors have:
After intensive studies to achieve the above objectives,
A mixture of a filler with high thermal conductivity, such as petroleum coke, natural graphite, or pitch-based carbon fiber, and a binder, such as coal tar pitch, is molded, fired, and melted in the pores of a graphitized carbon molded body. It has been found that a plate-like molded body made of a carbon-based metal composite material obtained by impregnating a molten alloy of a metal at a high pressure by molten forging can be solved by the above-described problems, and based on these findings, the present invention has been completed. did.

【0009】すなわち、本発明の第一は、黒鉛化した
素粒子または炭素繊維を含む炭素成形体にアルミニウ
ム、銅、銀または該金属の合金を熔湯鍛造により加圧含
浸させることより得られた炭素基金属複合材料からなる
ことを特徴とする炭素基金属複合材料板状成形体に関す
るものである。
[0009] That is, the first present invention causes immersed pressurized圧含by molten forging aluminum, copper, silver or the metal alloy to a carbon molded body containing a carbon <br/> particles or carbon fibers made into graphite The present invention relates to a carbon-based metal composite material plate-shaped molded article comprising the carbon-based metal composite material obtained as described above.

【0010】また、本発明の第二は、炭素成形体を、溶
融アルミニウム、溶融銅、溶融銀またはこれらの溶融金
属の合金と加圧下において接触させることにより、炭素
成形体に溶融金属を含浸させることからなる炭素質金属
複合材料板状成形体の製造方法であって、(1)前記炭
素成形体を不活性雰囲気下において前記溶融金属の融点
以上の温度に加熱する工程、(2)加熱された前記炭素
成形体に熔湯鍛造により前記溶融金属をプレス装置を用
いて押し子単位面積当たり200kg/cm2 以上の圧
力で加圧含浸させる工程、(3)工程(2)の加圧含浸
の終了後、前記溶融金属を冷却し凝固させる工程(4)
工程(3)にて得られた凝固体から前記炭素成形体を取
り出す工程および(5)工程(4)にて得られた金属含
浸炭素成形体を板状に成形する工程を含むことを特徴と
する炭素質金属複合材料板状成形体の製造方法に関する
ものである。
The second aspect of the present invention is to impregnate the carbon compact with the molten metal by bringing the carbon compact into contact with molten aluminum, molten copper, molten silver or an alloy of these molten metals under pressure. (1) heating the carbon compact to a temperature equal to or higher than the melting point of the molten metal in an inert atmosphere, and (2) heating the carbon compact in an inert atmosphere. Pressurizing and impregnating the carbon compact with the molten metal by melt forging using a pressing device at a pressure of at least 200 kg / cm 2 per unit area of the presser; and (3) pressure impregnation in step (2). After completion, a step of cooling and solidifying the molten metal (4)
A step of taking out the carbon compact from the solidified product obtained in the step (3); and (5) a step of forming the metal-impregnated carbon compact obtained in the step (4) into a plate shape. The present invention relates to a method for producing a carbonaceous metal composite material plate-like molded article.

【0011】[0011]

【発明の実施の形態】以下、本発明についてさらに具体
的に説明する。本発明の炭素基金属複合材料板状成形体
は、炭素質マトリックスおよび炭素質マトリックス中に
分散された金属成分とからなる炭素基金属複合材料を板
状に成形してなるものである。炭素質金属複合材料の板
状への成形方法は、特に限定されるものではなく、加圧
成形法またはドクターブレード法等を採用することがで
きるが炭素基金属複合材料から切り出す方法が好まし
い。成形の際には、所望の用途に適合するように成形体
の厚さを任意に決定すればよいが、電子機器用基板とし
ては0.1mm〜50mm、特に、0.3mm〜3mm
が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically. The plate-shaped carbon-based metal composite material of the present invention is obtained by forming a carbon-based metal composite material comprising a carbonaceous matrix and a metal component dispersed in the carbonaceous matrix into a plate shape. The method of forming the carbonaceous metal composite material into a plate shape is not particularly limited, and a pressure molding method, a doctor blade method, or the like can be employed, but a method of cutting out from the carbon-based metal composite material is preferable. At the time of molding, the thickness of the molded body may be arbitrarily determined so as to be suitable for a desired use. However, as a substrate for an electronic device, 0.1 mm to 50 mm, in particular, 0.3 mm to 3 mm
Is preferred.

【0012】本発明の炭素基金属複合材料板状成形体の
常温での密度はアルミニウムまたはアルミニウム合金を
含浸させた場合、2.0g/ml〜2.5g/mlであ
り、また、銅、銀、銅合金または銀合金を含浸させた場
合の常温での密度が2.3g/ml〜5.0g/mlで
ある。前記炭素基金属複合材料板状成形体の熱伝導率
は、室温における厚さ方向で150W/(m・K)以上
であり、好ましくは200W/(m・K)以上である。
また、熱膨張率は、4×10-6/℃〜12×10 -6
℃、好ましくは、5×10-6〜8×10-6に制御された
ものである。
[0012] The carbon-based metal composite material plate-like molded article of the present invention
The density at room temperature is limited to aluminum or aluminum alloy.
2.0 g / ml to 2.5 g / ml when impregnated
And copper, silver, copper alloy or silver alloy impregnated
When the density at normal temperature is 2.3 g / ml to 5.0 g / ml
is there. Thermal conductivity of the carbon-based metal composite plate-shaped compact
Is 150 W / (m · K) or more in the thickness direction at room temperature
And preferably at least 200 W / (m · K).
The coefficient of thermal expansion is 4 × 10-6/ ℃ ~ 12 × 10 -6/
° C, preferably 5 × 10-6~ 8 × 10-6Controlled by
Things.

【0013】また、本発明の炭素基金属複合材料板状成
形体としては、前記の熱伝導率と熱膨張率と共に特定の
弾性率を具有するものであり、面方向の弾性率が50G
Pa以下の範囲にあり、好ましくは3GPa〜15GP
aに制御されたものである。このような制御された性状
を具備させたことによりシリコン素子またはセラミック
スからなる電子回路とベース基板の接合をはがれのな
い、しかも熱サイクル試験に強いものにすることが可能
である。
The carbon-based metal composite plate-like molded article of the present invention has a specific elastic modulus in addition to the above-mentioned thermal conductivity and thermal expansion coefficient, and has an elastic modulus in the plane direction of 50 G.
Pa or less, preferably 3 GPa to 15 GPa
a. By providing such controlled properties, it is possible to make the bonding between the electronic circuit made of a silicon element or a ceramic and the base substrate not peeled off, and to make it more resistant to a heat cycle test.

【0014】前記の特性を有する炭素基金属複合材料の
板状成形体を構成する炭素質マトリックスとして用いる
炭素成形体は、非晶質炭素、黒鉛系炭素またはこれらの
混合物であり、特に、黒鉛系結晶を含むものが好まし
い。黒鉛系結晶はX線回折により測定され、平均面間隔
dが0.340nm以下、特に0.338nm以下のも
のが好ましい。炭素材料としては、(a)一般炭素材
料、(b)炭素粉、天然・人造黒鉛および炭素繊維の少
なくとも一種の炭素材料を含む加圧成形体等を挙げるこ
とができる。炭素成形体としては、熱処理され黒鉛化し
た炭素粒子を含有するものが好ましく、特に、最大粒子
径が長軸で0.1mm〜3mmの石油コークス、天然黒
鉛をフィラーとするものが好適である。最大粒子径が
0.1mmに満たないと成形体の熱伝導率が十分高くな
らず、一方、最大粒子系3mmを超えると基板面の面粗
度が急激に悪化し、基板としての使用が困難となるおそ
れが生ずる。また、炭素成形体中のフィラーとしての黒
鉛粒子は、体積基準で10%以上であり、ピッチ系炭素
繊維は体積基準で10%以上であるものが好ましい。
The carbon compact used as the carbonaceous matrix constituting the plate-like compact of the carbon-based metal composite material having the above-mentioned characteristics is amorphous carbon, graphite-based carbon, or a mixture thereof. Those containing crystals are preferred. Graphite-based crystals are measured by X-ray diffraction and have an average plane spacing d of 0.340 nm or less, particularly preferably 0.338 nm or less. Examples of the carbon material include (a) a general carbon material, (b) a carbon powder, and a press-formed body containing at least one carbon material of natural / artificial graphite and carbon fiber. As the carbon molded body, those containing carbon particles which have been heat-treated and graphitized are preferable, and in particular, those containing petroleum coke having a maximum particle diameter of 0.1 mm to 3 mm on a long axis and natural graphite as a filler are preferable. If the maximum particle size is less than 0.1 mm, the thermal conductivity of the molded body will not be sufficiently high, while if it exceeds 3 mm, the surface roughness of the substrate surface will rapidly deteriorate, making it difficult to use as a substrate. May occur. Further, the graphite particles as fillers in the carbon molded body are preferably 10% or more on a volume basis, and the pitch-based carbon fibers are preferably 10% or more on a volume basis.

【0015】次に、本発明の炭素基金属複合材料板状成
形体の製造方法について説明する。本発明の炭素基金属
複合材料板状成形体の製造方法に用いられる炭素成形体
は前記炭素材料を2800℃以上、特に3000℃以上
の温度で熱処理したものであり、黒鉛結晶が含有される
ように処理したものが好ましい。
Next, the method for producing the carbon-based metal composite plate-shaped compact of the present invention will be described. The carbon molded product used in the method for producing a carbon-based metal composite material plate-shaped molded product of the present invention is obtained by heat-treating the above-mentioned carbon material at a temperature of 2800 ° C. or more, particularly 3000 ° C. or more. Is preferred.

【0016】また、炭素成形体として、石油コークス、
ピッチ系の炭素繊維をフィラーとする炭素繊維・炭素複
合材料を2800℃以上、特に、3000℃以上で数時
間以上熱処理した成形体を使うことが効果的である。
Further, petroleum coke,
It is effective to use a molded article obtained by heat-treating a carbon fiber / carbon composite material containing pitch-based carbon fibers as a filler at 2800 ° C. or more, particularly 3000 ° C. or more for several hours or more.

【0017】本発明によれば、2800℃以上の温度で
熱処理され、黒鉛化した炭素粒子を含む炭素成形体を溶
融金属と加圧下において接触させることにより、該炭素
成形体に熔湯鍛造により該溶融金属を加圧含浸させ、得
られた複合材料を板状に成形することからなる炭素基金
属複合材料板状成形体の製造方法であって、少なくとも
次の工程(1)、(2)、(3)、(4)および(5)
を含む炭素基金属複合材料板状成形体の製造方法が提供
される。すなわち、(1)前記炭素成形体を不活性雰囲
気下において前記溶融金属の融点以上の温度に加熱する
工程、(2)前記溶融金属を供給し加熱された前記炭素
成形体に熔湯鍛造により該溶融金属をプレス装置を用い
て押し子単位面積当たり200kg/cm2 以上の圧力
で加圧含浸させる工程、(3)工程(2)の加圧含浸の
終了後、前記溶融金属を冷却し凝固させる工程(4)工
程(3)にて得られた凝固体から前記炭素成形体を取り
出す工程および(5)工程(4)にて得られた金属含浸
炭素成形体を板状に成形する工程を挙げることができ
る。
According to the present invention, the carbon compact containing heat-treated and graphitized carbon particles at a temperature of 2800 ° C. or more is brought into contact with the molten metal under pressure, whereby the carbon compact is subjected to melt forging. A method for producing a plate-shaped carbon-based metal composite material comprising impregnating a molten metal under pressure and molding the obtained composite material into a plate shape, comprising at least the following steps (1), (2), (3), (4) and (5)
A method for producing a carbon-based metal composite material plate-like molded product is provided. That is, (1) a step of heating the carbon molded body to a temperature equal to or higher than the melting point of the molten metal in an inert atmosphere; and (2) supplying the molten metal to the heated carbon molded body by melt forging. Pressurizing and impregnating the molten metal with a pressure of 200 kg / cm 2 or more per unit area of the presser using a press device; (3) cooling and solidifying the molten metal after completion of the pressure impregnation in step (2). Step (4): a step of taking out the carbon compact from the solidified product obtained in the step (3); and (5) a step of forming the metal-impregnated carbon compact obtained in the step (4) into a plate shape. be able to.

【0018】炭素成形体としては、前記の炭素質マトリ
ックスとして適する炭素材料のいずれのものも用いるこ
とができる。具体的には好ましい炭素成形体として密度
が1.4g/cm3 〜2g/cm3 であり、気孔率が5
0%以下、好ましくは35%以下、さらに好ましくは5
%〜25%のものを使用することができる。
As the carbon molded body, any of the carbon materials suitable as the above-mentioned carbonaceous matrix can be used. Density Preferred carbon molded body in particular is 1.4g / cm 3 ~2g / cm 3 , a porosity of 5
0% or less, preferably 35% or less, more preferably 5% or less.
% To 25% can be used.

【0019】次に各工程について具体的に説明する。前
記工程(1)において、炭素成形体は金型内に設置さ
れ、不活性雰囲気下において予備加熱される。不活性雰
囲気としてはアルゴンガス、窒素ガス等、好ましくはア
ルゴンガスを用いることができる。また、予備加熱は金
属成分の融点または融点以上、特に100℃以上、好ま
しくは100℃〜250℃に保持することにより行なわ
れる。この工程(1)を経ることで炭素と金属との界面
での反応を抑制しながら炭素材料の気孔に金属を充分含
浸することができるように考案したものである。
Next, each step will be specifically described. In the step (1), the carbon compact is placed in a mold and preheated in an inert atmosphere. As the inert atmosphere, argon gas, nitrogen gas, or the like, preferably argon gas can be used. The preheating is performed by maintaining the melting point of the metal component or higher than the melting point, particularly 100 ° C. or higher, preferably 100 ° C. to 250 ° C. Through this step (1), the present invention has been devised so that the pores of the carbon material can be sufficiently impregnated with the metal while suppressing the reaction at the interface between the carbon and the metal.

【0020】次に、工程(2)において、金属成分の融
点より50℃〜250℃高い温度で金属成分を溶融し、
溶融金属を金型に供給し、前記の予備加熱した炭素成形
体と接触させ、溶融金属にプレス装置を用いて押し子に
より該押し子面積当たり200kg/cm2 以上の圧力
をかけ熔湯鍛造により溶融金属を前記炭素成形体に加圧
含浸させる。工程(2)においてアルミニウムの場合に
は溶融金属の温度が融点より150℃を超えると潮解性
のある炭化アルミニウムを生成しやすくなり、実用的な
複合材料が得られない。また、圧力200kg/cm2
に達しないと効率よく金属成分の含浸が行なわれず、金
属充填率が低下するおそれがある。
Next, in the step (2), the metal component is melted at a temperature 50 ° C. to 250 ° C. higher than the melting point of the metal component,
The molten metal is supplied to a mold, brought into contact with the preheated carbon molded body, and the molten metal is subjected to a pressure of 200 kg / cm 2 or more per presser area by a press using a press device, and is subjected to melt forging. The molten metal is impregnated into the carbon compact under pressure. In the case of aluminum in the step (2), when the temperature of the molten metal exceeds 150 ° C. from the melting point, deliquescent aluminum carbide is easily generated, and a practical composite material cannot be obtained. The pressure is 200 kg / cm 2
If not reached, the metal component is not efficiently impregnated, and the metal filling rate may decrease.

【0021】本発明の炭素基金属複合材料の熔湯鍛造に
よる製造方法によれば、溶融金属を金型に入れ、金型内
に置かれた炭素成形体と接触させ高い圧力を加えて凝固
させる際に炭素成形体に熔融金属を含浸させる。熔湯鍛
造に用いられる装置は、内部に空間を有する主型と押し
子(パンチ)とからなり、該主型の開口部内壁面に該押
し子が密接し、内外部方向へ移動自由とし、加圧により
内部方向へ移動可能としたものである。熔湯鍛造方式と
しては図2に示すオープン−モールド方式、すなわち直
接加圧方式および図3に示すクローズド−モールド方式
(間接加圧方式)が挙げられるが、本発明の炭素基金属
複合材料板状成形体の製造にはオープン−モールド方式
を利用することが好ましい。本発明の炭素基金属複合材
料の製造方法における金属含浸方法の特徴は、溶融金属
を短時間で凝固させるため金属組織が緻密であると共
に、従来のガス加圧方式による金属含浸方法では困難な
大型複合材料を容易に製造できる点にある。
According to the method for producing a carbon-based metal composite material by molten forging of the present invention, a molten metal is put into a mold, brought into contact with a carbon molded body placed in the mold, and solidified by applying high pressure. At this time, the carbon compact is impregnated with the molten metal. The device used for molten forging comprises a main die having a space inside and a presser (punch). The presser is in close contact with the inner wall surface of the opening of the main die, and is free to move in the inner and outer directions. It can be moved inward by pressure. As the molten forging method, there are an open-mold method shown in FIG. 2, that is, a direct pressing method and a closed-mold method (indirect pressing method) shown in FIG. It is preferable to use an open-mold method for producing a molded body. The feature of the metal impregnation method in the method for producing a carbon-based metal composite material of the present invention is that the metal structure is dense in order to solidify the molten metal in a short time, and the large-sized metal impregnation method which is difficult by the conventional gas pressure method. The point is that the composite material can be easily manufactured.

【0022】前記工程(2)の終了後、工程(3)にお
いて溶融金属を冷却し凝固させ凝固体を得る。次に工程
(4)において工程(3)にて得られた凝固体を金型か
ら取り出し、金属部分を切削、溶解その他の方法で除き
炭素成形体を取り出し、工程(5)において板状成形体
への成形加工等の工程を経て炭素基金属複合材料板状成
形体を得ることができる。具体的には炭素基金属複合材
料は加工性が良いため、例えば、バンドソーまたはワイ
ヤーソーで切断することにより板状成形体を製造するこ
とができる。
After the step (2), the molten metal is cooled and solidified in a step (3) to obtain a solidified body. Next, in the step (4), the solidified body obtained in the step (3) is taken out of the mold, and the metal part is removed by cutting, melting or other methods to take out the carbon molded body. In the step (5), the plate-shaped molded body is taken out. Through a process such as molding into a carbon-based metal composite material, a plate-like molded product can be obtained. Specifically, since the carbon-based metal composite material has good workability, for example, a plate-shaped molded body can be manufactured by cutting with a band saw or a wire saw.

【0023】本発明の炭素基金属複合材料の製造方法に
用いられる装置の具体例を第1図〜第3図に示す。第1
図〜第3図において、1は金型、2は押し子であり、3
はプレス機を示す。金型1内に炭素成形体4を入れ、ア
ルゴンガス中で前記工程(1)による予備加熱を行な
い、その後、所定温度に加熱した溶融金属を供給し、押
し子3により金型内部の溶融金属を加圧し、所定時間同
条件にて維持する。所定時間経過後金型から金属凝固体
を金属の塊ごと取り出し金属部分を切削、溶解その他の
方法で除き金属含浸炭素基複合材料板状成形体を得るこ
とができる。
FIGS. 1 to 3 show specific examples of an apparatus used in the method for producing a carbon-based metal composite material of the present invention. First
In FIG. 3 to FIG. 3, 1 is a mold, 2 is a presser,
Indicates a press machine. The carbon molded body 4 is placed in the mold 1, pre-heated in the above-mentioned step (1) in an argon gas, and then a molten metal heated to a predetermined temperature is supplied. And maintained under the same conditions for a predetermined time. After a lapse of a predetermined time, the metal solidified body is taken out of the mold together with the lump of metal, and the metal portion is removed by cutting, melting or other methods to obtain a metal-impregnated carbon-based composite material plate-like molded body.

【0024】(電子機器用基板状成形体)次に、本発明
の炭素基金属複合材料板状成形体の用途としての電子機
器の熱分散体として有用な基板状成形体について説明す
る。半導体素子、抵抗体、トランス、コンデンサーまた
は配線から構成される電子回路の回路支持基板および回
路支持基板の支持体であるベース基板を包む電子機器に
おいては、電子回路から発生する熱の大部分は回路支持
基板およびベース基板から冷却装置に伝熱され最終的に
大気または冷却液体に放熱される。従来、ベース基板材
料としてアルミニウム、銅またはそれらの合金からなる
金属が使用されているが電子回路との間に熱膨張差があ
り、反りまたは剥がれの問題がある。本発明の炭素基金
属複合材料は、熱伝導率150W/(m・ K) 以上であ
り、熱膨張率4×10-6/℃〜12×10-6/℃を有す
るものであることから、熱伝導は同等で、前記問題点は
解消される。また、板状成形体の面方向の弾性率は、5
0GPa以下の範囲にあり、熱伝導率の異なる材料を接
合する場合、接合層にかかる熱応力を緩和することがで
きる。これにより剥がれ、または熱サイクルに強い接合
も可能となる。
(Substrate-like molded body for electronic device) Next, a substrate-like molded product useful as a heat disperser for electronic equipment as a use of the carbon-based metal composite material plate-like molded product of the present invention will be described. In electronic devices that enclose a circuit support substrate of an electronic circuit composed of semiconductor elements, resistors, transformers, capacitors or wiring and a base substrate that is a support of the circuit support substrate, most of the heat generated from the electronic circuit is a circuit. The heat is transferred from the support substrate and the base substrate to the cooling device and finally radiated to the atmosphere or a cooling liquid. Conventionally, a metal made of aluminum, copper, or an alloy thereof is used as a base substrate material, but there is a difference in thermal expansion between the electronic circuit and an electronic circuit, and there is a problem of warpage or peeling. Since the carbon-based metal composite material of the present invention has a thermal conductivity of 150 W / (m · K) or more and a thermal expansion coefficient of 4 × 10 −6 / ° C. to 12 × 10 −6 / ° C., The heat conduction is the same, and the above problem is solved. Further, the elastic modulus in the surface direction of the plate-like molded body is 5
When joining materials having a thermal conductivity of 0 GPa or less and having different thermal conductivity, thermal stress applied to the joining layer can be reduced. This also enables peeling or bonding that is resistant to thermal cycling.

【0025】本発明の電子機器用板状炭素成形体は、密
度2g/cm3 以上のものが好ましい。具体的にはアル
ミニウムまたはアルミニウム合金含浸基板状炭素成形体
は、密度2.0g/cm3 〜2.4g/cm3 のもの
が、また、銅または銅合金含浸基板状炭素成形体は、密
度2.3g/cm3 〜5.0g/cm3 のものが好適で
ある。
The plate-like carbon molded article for electronic equipment of the present invention preferably has a density of 2 g / cm 3 or more. The aluminum or aluminum alloy impregnated substrate like carbon molded body Specifically, those density 2.0g / cm 3 ~2.4g / cm 3 is also copper or a copper alloy impregnated substrate like carbon molded body has a density 2 It is preferably from 0.3 g / cm 3 to 5.0 g / cm 3 .

【0026】第4図に電子回路の熱分散体として使用し
た本発明の炭素基金属複合材料からなる基板状炭素成形
体を含む電子機器の具体例を示す。図中、本発明の炭素
基金属複合材料からなる基板6が接着層9を介してセラ
ミック絶縁基板7に接合される。接着層としては、合成
樹脂、ハンダ、金属ロウ材等が使用される。セラミック
絶縁基板7上に回路、回路素子および部品8が設けられ
る。回路、回路素子および部品8からは大量の熱が発散
され、基板6に伝熱され、基板6の下部に接合した冷却
装置(図は省略。)に放熱される。
FIG. 4 shows a specific example of an electronic apparatus including a substrate-like carbon molded article made of the carbon-based metal composite material of the present invention used as a heat dispersing element of an electronic circuit. In the figure, a substrate 6 made of the carbon-based metal composite material of the present invention is joined to a ceramic insulating substrate 7 via an adhesive layer 9. As the adhesive layer, a synthetic resin, solder, metal brazing material, or the like is used. Circuits, circuit elements, and components 8 are provided on a ceramic insulating substrate 7. A large amount of heat is radiated from the circuit, the circuit element, and the component 8, transmitted to the substrate 6, and radiated to a cooling device (not shown) joined to a lower portion of the substrate 6.

【0027】[0027]

【実施例】以下、実施例および比較例により本発明を具
体的に説明する。もっとも、本発明は実施例等により限
定されるものではない。なお、実施例および比較例によ
り作製した炭素基金属複合材料の品質・性能評価につい
て下記の測定方法を用いた。
The present invention will be described below in detail with reference to examples and comparative examples. However, the present invention is not limited by the examples and the like. In addition, the following measurement methods were used for quality / performance evaluation of the carbon-based metal composite materials produced in the examples and the comparative examples.

【0028】1)密度 株式会社島津製作所製電子分析天びんAEL−200を
用いてアルキメデス法により測定した。 2)曲げ強度 株式会社島津製作所製精密万能試験器AG−500を用
い、作成した強度試験片について曲げ強度を測定した。
試験片サイズ4mm×4mm×8mm、スパン間距離6
0mm、クロスヘッド降下速度0.5mm/分の条件で
測定した。 3)熱伝導率 熱伝導率は、熱拡散率と比熱および密度の積として求め
た。熱拡散率は、レーザーフラッシュ法により真空理工
(株)製TC−7000を用い25℃で測定した。ま
た、照射光としてルビーレーザー光(励起電圧2.5k
v、均一フィルターおよび滅光フィルター1枚)を使用
した。 4)熱膨張率 マックスサイエンス社製熱分析装置001、TD−50
20を用いて室温から300℃までの熱膨張率を測定し
た。 5)弾性率 強度試験の応力−歪データから計算で求めた。
1) Density The density was measured by an Archimedes method using an electronic analytical balance AEL-200 manufactured by Shimadzu Corporation. 2) Bending strength Using a precision universal testing machine AG-500 manufactured by Shimadzu Corporation, the bending strength of the prepared strength test piece was measured.
Test piece size 4mm × 4mm × 8mm, span distance 6
The measurement was performed under the conditions of 0 mm and a crosshead descent speed of 0.5 mm / min. 3) Thermal conductivity Thermal conductivity was determined as a product of thermal diffusivity, specific heat and density. The thermal diffusivity was measured at 25 ° C. using TC-7000 manufactured by Vacuum Riko Co., Ltd. by a laser flash method. Ruby laser light (excitation voltage 2.5 k
v, uniform filter and one extinction filter). 4) Thermal expansion coefficient Thermal analyzer 001, TD-50 manufactured by Max Science
20 was used to measure the coefficient of thermal expansion from room temperature to 300 ° C. 5) Elastic modulus It was calculated from the stress-strain data of the strength test.

【0029】実施例1 人造黒鉛材A、BおよびCの3種の炭素成形体を使用し
た。同成形体をアルゴンガス中で760℃に予熱し、5
00℃に予熱した金型に設置した。810℃で溶融した
純アルミニウムを金型内にいれた。熔湯鍛造により押し
子の押し面当り圧力500kg/cm2 になるようプレ
ス機で加圧し、その状態で30分保持した。冷却後アル
ミニウムの塊ごと取出し切削加工し、炭素基金属複合材
を得た。
Example 1 Three types of carbon moldings of artificial graphite materials A, B and C were used. The compact was preheated to 760 ° C. in argon gas,
Placed in a mold preheated to 00 ° C. Pure aluminum melted at 810 ° C. was placed in a mold. It was pressurized by a press so that the pressure per press surface of the presser was 500 kg / cm 2 by molten forging, and the state was maintained for 30 minutes. After cooling, the aluminum mass was taken out and cut to obtain a carbon-based metal composite.

【0030】[0030]

【表1】 [Table 1]

【0031】また、前記黒鉛材Aから試作した横33m
m、縦90mm、厚さ3mmの基板に無電解ニッケルメ
ッキを施し、アルミナ基板を高温ハンダで接着し、−5
5℃、150℃で温度サイクル試験を250回実施した
が異常はなかった。
A 33 m wide prototype made from the graphite material A was prepared.
m, length 90 mm, thickness 3 mm, electroless nickel plating on the substrate, glue the alumina substrate with high temperature solder, -5
The temperature cycle test was performed 250 times at 5 ° C. and 150 ° C., but no abnormality was found.

【0032】実施例2 人造黒鉛材(電極用)2種の炭素成形体を使用した。そ
れぞれの成形体をアルゴンガス中で960℃に予熱し、
600℃に予熱した金型に設置した。960℃の溶解し
た七三黄銅を金型内にいれた。押し子の押し面当り10
00kg/cm 2 で加圧し、その状態で30分保持し、
七三黄銅を含浸・複合化した。冷却後七三黄銅の塊ごと
取出し切削加工し、炭素基金属複合材料板状成形体を得
た。熱伝導率、熱膨張率および弾性率を測定したところ
表2に示す通りで要求性状を満たすものであった。
Example 2 Artificial graphite material (for electrodes) Two types of carbon molded bodies were used. So
Preheat each compact to 960 ° C. in argon gas,
It was placed in a mold preheated to 600 ° C. Dissolve at 960 ° C
Was put in the mold. 10 per push face
00kg / cm Two And hold for 30 minutes in that state,
Impregnated and compounded with Shichisan Brass. After cooling, each block of Shichisan Brass
Take out and cut to obtain a carbon-based metal composite material plate
Was. Measurement of thermal conductivity, coefficient of thermal expansion and elastic modulus
As shown in Table 2, the required properties were satisfied.

【0033】[0033]

【表2】 [Table 2]

【0034】比較例1 現在電子機器用基板に使用されている市販品の例として
アルミニウム/炭化珪素複合材(Al/SiC)の特性
値(カタログ値)を表1に示す。このなかで弾性率が本
発明の炭素基金属複合材料を用いた電子機器用基板と異
なる。
Comparative Example 1 Table 1 shows characteristic values (catalog values) of an aluminum / silicon carbide composite material (Al / SiC) as an example of a commercially available product currently used for a substrate for electronic equipment. Among them, the elastic modulus is different from that of an electronic device substrate using the carbon-based metal composite material of the present invention.

【0035】比較例2 黒鉛化処理していない炭素成形体を用意し、実施例1の
方法と同様の方法で溶融アルミニウムを含浸させた後、
板状成形体を得た。この板状成形体は85℃、相対湿度
85%の雰囲気24時間でクラックがはいり、実用に耐
え得ないことがわかった。これは、炭素とアルミニウム
が反応し、加水分解し易い炭化アルミニウムが生成した
ため考えられる。
COMPARATIVE EXAMPLE 2 A non-graphitized carbon compact was prepared and impregnated with molten aluminum in the same manner as in Example 1;
A plate-like molded body was obtained. It was found that the plate-like molded body cracked in an atmosphere of 85 ° C. and a relative humidity of 85% for 24 hours, and was not practically usable. This is considered because carbon and aluminum reacted to produce aluminum carbide which was easily hydrolyzed.

【0036】比較例3 炭素繊維・炭素複合材の成形体をアルゴンガス中で76
0℃に予熱し、500℃に予熱した金型内に設置した。
810℃で溶融した純アルミニウムを金型内に導入し
た。熔湯鍛造により押し子の押し面当り圧力500kg
/cm 2 になるようにプレス機で加圧し、その状態で3
0分間保持した。冷却後アルミニウムの塊ごと取出し切
削加工し、炭素基金属複合材を得た。
COMPARATIVE EXAMPLE 3 A molded article of carbon fiber / carbon composite material was heated to 76% in argon gas.
It was preheated to 0 ° C and placed in a mold preheated to 500 ° C.
Pure aluminum melted at 810 ° C is introduced into the mold
Was. 500kg pressure per press surface of presser by molten forging
/ Cm 2 with a press machine.
Hold for 0 minutes. After cooling, remove the aluminum block
By cutting, a carbon-based metal composite was obtained.

【0037】[0037]

【発明の効果】本発明の炭素基金属複合材料板状成形体
の熱伝導率は、含浸前の炭素成形体より最大100W/
(m・K)上昇する。また、熱膨張率は、炭素成形体の
種類または金属種を変えることにより、4×10-6/℃
〜12×10-6/℃の範囲において任意の数値のものを
製造することができる。この熱膨張率は、同基板に搭載
されるシリコンの熱膨張率3×10-6/℃〜4×10-6
/℃、窒化アルミニウムの4.5×10-6/℃、または
アルミナの7×10-6/℃〜8×10-6/℃に近いもの
である。また、基板の弾性率が小さいため接合層および
同界面にかかる熱応力を小さくすることができる。従っ
て、本発明の基板を使用することにより基板と搭載され
る電子機器の熱膨張差から生じる熱応力が小さくなり、
剥がれ等の不具合の発生を抑制することが可能となる。
According to the present invention, the thermal conductivity of the carbon-based metal composite plate-like molded product of the present invention is 100 W / max.
(MK) rises. The coefficient of thermal expansion can be changed to 4 × 10 −6 / ° C. by changing the type of the carbon molded body or the metal type.
Any number can be produced in the range of up to 12 × 10 −6 / ° C. The coefficient of thermal expansion is 3 × 10 −6 / ° C. to 4 × 10 −6 of silicon mounted on the substrate.
/ ° C., 4.5 × 10 −6 / ° C. for aluminum nitride, or 7 × 10 −6 / ° C. to 8 × 10 −6 / ° C. for alumina. Further, since the elastic modulus of the substrate is small, the thermal stress applied to the bonding layer and the interface can be reduced. Therefore, by using the substrate of the present invention, the thermal stress caused by the difference in thermal expansion between the substrate and the electronic device mounted is reduced,
It is possible to suppress the occurrence of problems such as peeling.

【0038】また、炭素基金属複合材料板状成形体が前
記の構成をとることにより脆性的な炭素材の性質を改善
でき、強度の優れた電子機器用基板となる。特に、機械
的な加工において、材料の割れ、欠けが生じにくくなり
加工が容易となり、また、加工精度の高いものを得るこ
とができる。
Further, by adopting the above-mentioned structure of the plate-shaped carbon-based metal composite material, the properties of brittle carbon material can be improved, and an electronic device substrate having excellent strength can be obtained. In particular, in mechanical processing, cracking and chipping of the material are less likely to occur, which facilitates the processing, and also enables to obtain a material having high processing accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造装置の基本構造を示す概略図であ
る。
FIG. 1 is a schematic diagram showing a basic structure of a manufacturing apparatus of the present invention.

【図2】本発明の製造装置の他の構造を示す概略図であ
る。
FIG. 2 is a schematic view showing another structure of the manufacturing apparatus of the present invention.

【図3】本発明の製造装置の他の構造を示す概略図であ
る。
FIG. 3 is a schematic view showing another structure of the manufacturing apparatus of the present invention.

【図4】炭素基金属複合材料基板を用いた電子機器の基
本構成図である。
FIG. 4 is a basic configuration diagram of an electronic device using a carbon-based metal composite material substrate.

【符号の説明】[Explanation of symbols]

1 金型 2 押し子 3 プレス機 4 炭素成形体 5 溶融金属 5’凝固体 6 炭素基金属複合材基板 7 セラミック絶縁基板 8 回路、回路素子及び部品 9 接着層(樹脂、はんだ、金属ロウ材) DESCRIPTION OF SYMBOLS 1 Die 2 Presser 3 Press machine 4 Carbon molded body 5 Molten metal 5 'solidified body 6 Carbon base metal composite substrate 7 Ceramic insulating substrate 8 Circuit, circuit element and parts 9 Adhesive layer (resin, solder, metal brazing material)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 47/12 C22C 47/12 H01L 23/14 H05K 1/05 B 23/373 H01L 23/14 M H05K 1/05 23/36 M (56)参考文献 特開 平4−147654(JP,A) 特開 平4−15985(JP,A) 特開 平11−80858(JP,A) 特開2000−303155(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 19/14 B22D 18/02 B22D 19/00 B22D 17/09 C22C 1/10 C22C 47/12 H01L 23/14 H01L 23/373 H05K 1/05 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI C22C 47/12 C22C 47/12 H01L 23/14 H05K 1/05 B 23/373 H01L 23/14 M H05K 1/05 23/36 M (56) References JP-A-4-147654 (JP, A) JP-A-4-15985 (JP, A) JP-A-11-80858 (JP, A) JP-A-2000-303155 (JP, A) ( 58) Field surveyed (Int.Cl. 7 , DB name) B22D 19/14 B22D 18/02 B22D 19/00 B22D 17/09 C22C 1/10 C22C 47/12 H01L 23/14 H01L 23/373 H05K 1 / 05

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 黒鉛化した炭素粒子を含む炭素成形
体であって、密度が1.4g/cm3〜2g/cm3、気
孔率が35%以下の炭素成形体にアルミニウムまたはア
ルミニウム合金を熔湯鍛造により加圧含浸させることに
より製造された炭素基金属複合材料からなり、該炭素基
金属複合材料の板状成形体の常温における密度が2.0
g/ml〜2.5g/ml、厚さ方向の熱伝導率が15
0W/(m・K)以上、熱膨張率が4×10-6/℃〜
×10-6/℃および面方向の弾性率が50GPa以下で
あることを特徴とする炭素基金属複合材料板状成形体。
1. A carbon molded body containing graphitized carbon particles, wherein the carbon molded body having a density of 1.4 g / cm 3 to 2 g / cm 3 and a porosity of 35% or less is added to aluminum or aluminum.
It is made of a carbon-based metal composite material produced by impregnating a aluminum alloy with pressure by melt forging, and the density of the plate-shaped molded body of the carbon-based metal composite material at room temperature is 2.0%.
g / ml-2.5 g / ml, thermal conductivity in the thickness direction of 15
0 W / (m · K) or more, coefficient of thermal expansion is 4 × 10 −6 / ° C. to 8
A carbon-based metal composite material plate-like molded product characterized by having a modulus of × 10 -6 / ° C and a plane direction of 50 GPa or less.
【請求項2】 黒鉛化した炭素粒子を含む炭素成形
体であって、密度が1.4g/cm 3 〜2g/cm 3 、気
孔率が35%以下の炭素成形体に、銅、銀または該金属
の合金を熔湯鍛造により加圧含浸させることにより製造
された炭素基金属複合材料からなり、該炭素基金属複合
材料の板状成形体の常温における密度が2.3g/ml
〜5.0g/ml、厚さ方向の熱伝導率が150W/
(m・K)以上、熱膨張率が4×10 -6 /℃〜12×1
-6 /℃および面方向の弾性率が50GPa以下である
ことを特徴とする炭素基金属複合材料板状成形体。
2. A carbon molding containing graphitized carbon particles.
A body having a density of 1.4 g / cm 3 to 2 g / cm 3 ,
Copper, silver or the metal is formed on a carbon molded body having a porosity of 35% or less.
Manufactured by impregnating alloys with pressure by molten forging
The carbon-based metal composite material
The density of the plate-shaped molding of the material at room temperature is 2.3 g / ml
~ 5.0 g / ml, thermal conductivity in the thickness direction is 150 W /
(M · K) or more, the coefficient of thermal expansion is 4 × 10 −6 / ° C. to 12 × 1
0 -6 / ° C and elastic modulus in plane direction is 50 GPa or less
A plate-shaped formed body of a carbon-based metal composite material, characterized in that:
【請求項3】 前記炭素成形体の気孔率が5%〜2
5%である請求項1または2に記載の炭素基金属複合材
料板状成形体。
3. The porosity of the carbon compact is 5% to 2%.
3. The carbon-based metal composite material plate-like molded product according to claim 1, wherein the content is 5%. 4.
【請求項4】 前記炭素基金属複合材料板状成形体
の厚さが0.1mm〜50mmである請求項1ないし3
のいずれかの1項に記載の炭素基金属複合材料板状成形
体。
The thickness of claim 4 wherein said carbon-based metal composite plate-like molded body to a claims 1 to 0.1Mm~50mm 3
The carbon-based metal composite material plate-shaped article according to any one of the above items .
【請求項5】 前記炭素成形体が、長径0.1mm
〜3mmの黒鉛粒子を体積分率で10%以上含有する板
状成形体である請求項1ないしのいずれかの1項に記
載の炭素基金属複合材料板状成形体。
5. The method according to claim 1, wherein the carbon molded body has a major axis of 0.1 mm.
The carbon-based metal composite material plate-like molded product according to any one of claims 1 to 4 , which is a plate-like molded product containing 10% or more by volume fraction of graphite particles of 3 to 3 mm.
【請求項6】 前記炭素基金属複合材料板状成形体
が、電子機器用基板である請求項1ないしのいずれか
の1項に記載の炭素質金属複合材料板状成形体。
Wherein said carbon-based metal composite plate-like molded body, carbonaceous metal composite plate-shaped molded body according to any one of claims 1 is a substrate for an electronic device 5.
【請求項7】 黒鉛化した炭素粒子を含む炭素成形
体であって、密度1.4g/cm3〜2g/cm3、気孔
率35%以下の炭素成形体を、溶融アルミニウム、溶融
銅、溶融銀またはこれらの溶融金属の合金と加圧下にお
いて接触させることにより、該炭素成形体に溶融金属を
含浸させることからなる炭素質金属複合材料板状成形体
の製造方法であって、 (1)前記炭素成形体を不活性雰囲気下において前記溶
融金属の融点以上の温度に加熱する工程、 (2)加熱された前記炭素成形体に熔湯鍛造により前記
溶融金属をプレス装置を用いて押し子単位面積当たり2
00kg/cm2 以上の圧力で加圧含浸させる工程、 (3)工程(2)の加圧含浸の終了後、前記溶融金属を
冷却し凝固させる工程、 (4)工程(3)にて得られた凝固体から前記炭素成形
体を取り出す工程および (5)工程(4)にて得られた金属含浸炭素成形体を板
状に成形する工程 を含むことを特徴とする炭素質金属複合材料板状成形体
の製造方法。
7. A carbon molded body containing graphitized carbon particles, the carbon molded body having a density of 1.4 g / cm 3 to 2 g / cm 3 and a porosity of 35% or less is formed by melting aluminum, molten copper, A method for producing a carbonaceous metal composite material plate-like molded body comprising impregnating a molten metal into said carbon molded body by bringing said carbon molded body into contact with silver or an alloy of these molten metals under pressure; A step of heating the carbon compact to a temperature equal to or higher than the melting point of the molten metal in an inert atmosphere; (2) pressing the molten metal to the heated carbon compact by molten metal forging using a pressing device to form a pressing unit area; Per 2
Pressure impregnation at a pressure of at least 00 kg / cm 2 , (3) a step of cooling and solidifying the molten metal after completion of the pressure impregnation in step (2), and (4) a step obtained in step (3). Removing the carbon compact from the solidified body obtained, and (5) forming the metal-impregnated carbon compact obtained in step (4) into a plate. A method for producing a molded article.
【請求項8】 請求項1もしくは2の炭素基金
属複合材料板状成形体または請求項7の製造方法により
得られた炭素基金属複合材料板状成形体の表面が、メッ
キまたは溶融金属または金属箔の金属で被覆され、また
はその端面が金属で縁どりして被覆された炭素基金属複
合材料板状成形体にセラミック回路、電子素子または部
品が接着層を介して接続されたことを特徴とする電子機
器用部品。
8. The method according to claim 7, wherein the carbon-based metal composite material sheet-like molded product according to claim 1 or 2 is formed.
The surface of the obtained carbon-based metal composite material plate-shaped molded body is coated with a plated or molten metal or a metal foil metal, or the end surface thereof is covered with a metal and coated with a metal. A component for electronic equipment, wherein a ceramic circuit, an electronic element or a component is connected to the component via an adhesive layer.
JP2000149848A 1999-06-11 2000-05-17 Carbon-based metal composite material plate-shaped body and manufacturing method Expired - Lifetime JP3351778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000149848A JP3351778B2 (en) 1999-06-11 2000-05-17 Carbon-based metal composite material plate-shaped body and manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-165499 1999-06-11
JP16549999 1999-06-11
JP2000149848A JP3351778B2 (en) 1999-06-11 2000-05-17 Carbon-based metal composite material plate-shaped body and manufacturing method

Publications (2)

Publication Number Publication Date
JP2001058255A JP2001058255A (en) 2001-03-06
JP3351778B2 true JP3351778B2 (en) 2002-12-03

Family

ID=26490213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000149848A Expired - Lifetime JP3351778B2 (en) 1999-06-11 2000-05-17 Carbon-based metal composite material plate-shaped body and manufacturing method

Country Status (1)

Country Link
JP (1) JP3351778B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009248164A (en) * 2008-04-09 2009-10-29 Denki Kagaku Kogyo Kk Aluminum-graphite-silicon carbide composite and manufacturing method thereof
JP2010029919A (en) * 2008-07-30 2010-02-12 Denki Kagaku Kogyo Kk Aluminum-graphite composite, circuit board using it, and manufacturing method therefor
JP2010109081A (en) * 2008-10-29 2010-05-13 Denki Kagaku Kogyo Kk Metal matrix composite substrate for led light emitting device, and led light emitting device using the same
CN102317236B (en) * 2009-02-12 2014-04-09 电气化学工业株式会社 Substrate comprising aluminum/graphite composite, heat dissipation part comprising same, and LED luminescent member
CN105081333A (en) * 2014-05-20 2015-11-25 中国科学院宁波材料技术与工程研究所 Graphite-metal heat conduction composite material and preparation method thereof
US9390999B2 (en) 2005-03-23 2016-07-12 Noriaki Kawamura Metal substrate/metal impregnated carbon composite material structure and method for manufacturing said structure

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60045152D1 (en) 1999-12-24 2010-12-09 Ngk Insulators Ltd Lung
JP2003201528A (en) 2001-10-26 2003-07-18 Ngk Insulators Ltd Heat sink material
KR100705868B1 (en) 2003-05-06 2007-04-10 후지 덴키 디바이스 테크놀로지 가부시키가이샤 Semiconductor device and the method of manufacturing the same
US7282265B2 (en) 2003-05-16 2007-10-16 Hitachi Metals, Ltd. Composite material having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate, and their production methods
JP2005095944A (en) * 2003-09-25 2005-04-14 Sentan Zairyo:Kk Metallic substrate-metal impregnated carbon composite structure, and method of producing the structure
JP4524426B2 (en) * 2004-03-25 2010-08-18 独立行政法人産業技術総合研究所 Manufacturing method of low elastic modulus amorphous carbon fiber reinforced aluminum composites
JP4490723B2 (en) * 2004-04-14 2010-06-30 東洋炭素株式会社 Metal-coated carbon material for heat-dissipating substrate of electronic device parts, and heat-dissipating substrate using the metal-coated carbon material
JP5082845B2 (en) * 2005-03-29 2012-11-28 日立金属株式会社 High thermal conductivity graphite particle dispersed composite and method for producing the same
US20080128067A1 (en) * 2006-10-08 2008-06-05 Momentive Performance Materials Inc. Heat transfer composite, associated device and method
JP5086174B2 (en) * 2008-05-23 2012-11-28 太平洋セメント株式会社 High heat dissipation carbon material and electronic parts using the same
JP5438288B2 (en) * 2008-06-17 2014-03-12 株式会社 エマージー Disc material for disc brake and its manufacturing method
JP2010098059A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Substrate for power module with heat sink, power module with heat sink, substrate for power module with buffer layer, and method of manufacturing substrate for power module with heat sink
JP2010098057A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Substrate for power module with heat sink, power module with heat sink and substrate for power module with buffer layer
JP2010098058A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Substrate for power module with heat sink, power module with heat sink and method of manufacturing substrate for power module with heat sink
JP5335361B2 (en) * 2008-10-15 2013-11-06 三菱マテリアル株式会社 Power module substrate with heat sink and power module with heat sink
JP5676278B2 (en) * 2009-01-22 2015-02-25 電気化学工業株式会社 Aluminum-graphite composite, heat dissipation component using the same, and LED light-emitting member
JP5467782B2 (en) * 2009-03-10 2014-04-09 株式会社エー・エム・テクノロジー Manufacturing method of heat dissipation board having electrical insulation
JP5646473B2 (en) * 2009-06-02 2014-12-24 電気化学工業株式会社 Aluminum-graphite composite, heat dissipation component using the same, and LED light-emitting member
RU2447171C1 (en) * 2010-12-24 2012-04-10 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Copper matrix alloy for production of composite materials by impregnation
JP6900149B2 (en) * 2016-03-04 2021-07-07 株式会社 東北テクノアーチ Carbon composite material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415985A (en) * 1990-05-09 1992-01-21 Mitsubishi Heavy Ind Ltd Base board for hybrid ic
JP2590603B2 (en) * 1990-10-09 1997-03-12 三菱電機株式会社 Substrates for mounting electronic components
JPH1180858A (en) * 1997-09-03 1999-03-26 Furukawa Electric Co Ltd:The Composite material and its production
JP2000303155A (en) * 1999-04-20 2000-10-31 Furukawa Electric Co Ltd:The Aluminum matrix composite material in which carbon fibers are dispersed

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9390999B2 (en) 2005-03-23 2016-07-12 Noriaki Kawamura Metal substrate/metal impregnated carbon composite material structure and method for manufacturing said structure
JP2009248164A (en) * 2008-04-09 2009-10-29 Denki Kagaku Kogyo Kk Aluminum-graphite-silicon carbide composite and manufacturing method thereof
JP2010029919A (en) * 2008-07-30 2010-02-12 Denki Kagaku Kogyo Kk Aluminum-graphite composite, circuit board using it, and manufacturing method therefor
JP2010109081A (en) * 2008-10-29 2010-05-13 Denki Kagaku Kogyo Kk Metal matrix composite substrate for led light emitting device, and led light emitting device using the same
CN102317236B (en) * 2009-02-12 2014-04-09 电气化学工业株式会社 Substrate comprising aluminum/graphite composite, heat dissipation part comprising same, and LED luminescent member
CN105081333A (en) * 2014-05-20 2015-11-25 中国科学院宁波材料技术与工程研究所 Graphite-metal heat conduction composite material and preparation method thereof

Also Published As

Publication number Publication date
JP2001058255A (en) 2001-03-06

Similar Documents

Publication Publication Date Title
JP3351778B2 (en) Carbon-based metal composite material plate-shaped body and manufacturing method
US6649265B1 (en) Carbon-based metal composite material, method for preparation thereof and use thereof
US7282265B2 (en) Composite material having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate, and their production methods
JP3974646B2 (en) Fine carbon fiber / metal composite material and method for producing the same
JP4344934B2 (en) High thermal conductivity / low thermal expansion composite material, heat dissipation substrate and manufacturing method thereof
JP4360061B2 (en) Semiconductor device member and semiconductor device using the same
TWI796503B (en) Metal-silicon carbide composite body, and method for manufacturing metal-silicon carbide composite body
KR20090004864A (en) Aluminum/silicon carbide composite and radiating part comprising the same
JPH10335538A (en) Semiconductor substrate material, semiconductor substrate, semiconductor device and manufacture thereof
JP3673436B2 (en) Carbon-based metal composite material and manufacturing method thereof
JP2020012194A (en) Metal-silicon carbide composite and production method of the same
JP5208616B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP5361273B2 (en) Aluminum-graphite composite, circuit board using the same, and method for producing the same
KR100710398B1 (en) Carbon-based metal composite board-shaped material and method for producing the same
CN111971789A (en) Anisotropic graphite, anisotropic graphite composite, and method for producing same
JP2016180185A (en) Aluminum alloy-ceramic composite, production method of the composite and stress buffer composed of the composite
JP5368766B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP4314675B2 (en) Silicon carbide powder, composite material using the same, and manufacturing method thereof
JP6263324B2 (en) Method for producing aluminum alloy-ceramic composite
JP5284706B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP2010024488A (en) Aluminum-silicon carbide composite body and method for producing the same
JPH11157964A (en) Tabular composite and heat dissipating component using the same
JP2001217364A (en) Al-SiC COMPOSITE
JP2001002476A (en) Aluminum-silicon carbide composite and its production
JPH11171673A (en) Composite and heat sink using the same, and their production

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3351778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130920

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term