JP3349396B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JP3349396B2
JP3349396B2 JP16927397A JP16927397A JP3349396B2 JP 3349396 B2 JP3349396 B2 JP 3349396B2 JP 16927397 A JP16927397 A JP 16927397A JP 16927397 A JP16927397 A JP 16927397A JP 3349396 B2 JP3349396 B2 JP 3349396B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
emitting device
semiconductor light
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16927397A
Other languages
Japanese (ja)
Other versions
JPH1117218A (en
Inventor
弘之 細羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16927397A priority Critical patent/JP3349396B2/en
Publication of JPH1117218A publication Critical patent/JPH1117218A/en
Application granted granted Critical
Publication of JP3349396B2 publication Critical patent/JP3349396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、AlGaInP系
の半導体発光素子に関し、特に発光効率及び信頼性を向
上できるAlGaInP系の半導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an AlGaInP-based semiconductor light emitting device, and more particularly to an AlGaInP-based semiconductor light emitting device capable of improving luminous efficiency and reliability.

【0002】[0002]

【従来の技術】AlGaInP系の半導体材料を用いた
半導体発光素子は、GaAs基板と格子整合が可能であ
ることと、III−V族化合物半導体の中で最も直接遷移
バンドギャップが大きいことから、可視領域の発光素子
として広く用いられている。特に、発光ダイオードとし
て550nmから690nmの範囲で直接遷移型の発光
を行うため、高い発光効率を得ることができる。
2. Description of the Related Art A semiconductor light-emitting device using an AlGaInP-based semiconductor material is visible since it can be lattice-matched to a GaAs substrate and has the largest direct transition band gap among III-V compound semiconductors. It is widely used as a light emitting element in a region. In particular, direct light emission is performed in the range of 550 nm to 690 nm as a light emitting diode, so that high luminous efficiency can be obtained.

【0003】従来の面発光型AlGaInP系半導体発
光素子の一例として、RobertM.Fletche
rらによりUnited States Patent
5,008,718で提案された発光ダイオードがあ
る。図10はこの発光ダイオードを示し、そこでは、電
流を広い発光部へ広げるために、GaPによる窓層(電
流拡散層)を設ける構成を採用している。
As an example of a conventional surface-emitting type AlGaInP-based semiconductor light-emitting device, Robert M. et al. Fletche
United States Patents
There is a light emitting diode proposed in 5,008,718. FIG. 10 shows this light emitting diode, in which a configuration in which a window layer (current diffusion layer) made of GaP is provided in order to spread the current to a wide light emitting portion is adopted.

【0004】以下に、図10に基づきその構成を今少し
具体的に説明する。この発光ダイオードは、n−GaA
s基板71上に、n−AlGaInPクラッド層73、
GaInP活性層74、p−AlGaInPクラッド層
75及びp−GaP窓層76をこの順に積層形成し、且
つ電極710及び711を取り付けた構成になってい
る。なお、n−AlGaInPクラッド層73、GaI
nP活性層74及びp−AlGaInPクラッド層75
で発光部が構成される。
Hereinafter, the configuration will be described in more detail with reference to FIG. This light emitting diode is n-GaAs
On an s substrate 71, an n-AlGaInP cladding layer 73,
A GaInP active layer 74, a p-AlGaInP cladding layer 75, and a p-GaP window layer 76 are laminated in this order, and electrodes 710 and 711 are attached. The n-AlGaInP cladding layer 73, GaI
nP active layer 74 and p-AlGaInP cladding layer 75
Constitutes a light emitting unit.

【0005】この構成によれば、GaP窓層76で電流
が広がり、広い範囲の活性層74で発光するため、発光
効率が向上する。また、発光した光はチップ上面から取
り出されるが、GaP窓層76はGaInP活性層74
よりもバンドギャップが大きいため、発光した光はGa
P窓層76で吸収されることなく透過し、高い発光効率
を得ることができる。
According to this structure, the current spreads in the GaP window layer 76 and light is emitted in the active layer 74 in a wide range, so that the luminous efficiency is improved. The emitted light is extracted from the upper surface of the chip, but the GaP window layer 76 is
The emitted light is Ga
The light is transmitted without being absorbed by the P window layer 76, and high luminous efficiency can be obtained.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
発光ダイオードにおいては、電流拡散層としてGaP窓
層76を用いているため、以下に示す問題点がある。
However, in the above-mentioned light emitting diode, since the GaP window layer 76 is used as the current diffusion layer, there are the following problems.

【0007】(1)結晶面の平坦性が著しく低下するた
め、発光ダイオード(半導体発光素子)の発光効率及び
信頼性が低い。
(1) Since the flatness of the crystal plane is significantly reduced, the luminous efficiency and reliability of the light emitting diode (semiconductor light emitting device) are low.

【0008】即ち、GaP窓層76は結晶中で、Ga原
子とP原子の結合エネルキーが大きいため、Ga原子が
成長面上を拡散(マイグレーション)しにくい。この結
果、良好な層状成長ではなく島状成長となり、結晶面の
平坦性が著しく低下する。このため、GaP電流拡散層
の上に電極を設ける場合は、密着性が低化し、電極の剥
がれにより抵抗率が大きくなったりして、半導体発光素
子の発光効率及び信頼性が低下する要因となっていた。
That is, since the GaP window layer 76 has a large coupling energy between Ga atoms and P atoms in the crystal, it is difficult for Ga atoms to diffuse (migrate) on the growth surface. As a result, island growth occurs instead of good layer growth, and the flatness of the crystal plane is significantly reduced. For this reason, when an electrode is provided on the GaP current diffusion layer, the adhesion is reduced and the resistivity is increased due to the peeling of the electrode, which causes a reduction in luminous efficiency and reliability of the semiconductor light emitting device. I was

【0009】(2)電流拡散層76と発光部との材料が
大きく異なるため、発光効率が低い。
(2) The luminous efficiency is low because the materials of the current diffusion layer 76 and the light emitting portion are greatly different.

【0010】即ち、GaP電流拡散層76は発光部であ
る(AlxGa1-x1-y In y P(0≦x≦1,0≦y≦
1)層上に成長され、両者の材料は大きく異なる。この
ため、成長界面付近に結晶性の低い層が形成され、Ga
P結晶中に結晶欠陥が発生しやすい。この結晶欠陥は発
光部からの光を吸収するなど、半導体発光素子の発光効
率の低下の要因となる。
That is, the GaP current diffusion layer 76 is a light emitting portion of (Al x Ga 1 -x ) 1 -y In y P (0 ≦ x ≦ 1, 0 ≦ y ≦
1) grown on layers, the materials of both are very different. Therefore, a layer having low crystallinity is formed near the growth interface, and Ga
Crystal defects tend to occur in the P crystal. This crystal defect causes a decrease in the luminous efficiency of the semiconductor light emitting element, such as absorption of light from the light emitting portion.

【0011】以上のように、従来の半導体発光素子は、
GaP層の材料に起因して、上記した2つの問題点があ
り、このことにより、発光効率及び信頼性が低いという
欠点を有していた。
As described above, the conventional semiconductor light emitting device is
There are two problems described above due to the material of the GaP layer, and this has the disadvantage of low luminous efficiency and low reliability.

【0012】本発明は、このような現状に鑑みてなされ
たものであり、窓層の平坦性を向上でき、結果的に発光
効率及び信頼性を大幅に向上できる半導体発光素子を提
供することを目的とする。
The present invention has been made in view of such circumstances, and provides a semiconductor light emitting device that can improve the flatness of a window layer and consequently greatly improve luminous efficiency and reliability. Aim.

【0013】[0013]

【課題を解決するための手段】本発明の半導体発光素子
は、基板上に活性層を含む発光部と電流拡散層が形成さ
れたAlGaInP系の半導体発光素子において、前記
電流拡散層が(AlxGa1-x1-yInyP(ただし、x
=y=0.01、x=y=0.1、x=y=0.20の
いずれか)であり、そのことにより上記目的が達成され
る。
Means for Solving the Problems] The semiconductor light emitting device of the present invention, in the AlGaInP-based semiconductor light-emitting device of the light emitting portion and the current diffusion layer is formed including an active layer on a substrate, wherein the current diffusion layer (Al x Ga 1-x ) 1-y In y P ( where x
= Y = 0.01, x = y = 0.1, x = y = 0.20
Either of them ), thereby achieving the above object.

【0014】好ましくは、電流阻止層と、前記基板の裏
面に形成された第1の電極と、前記電流拡散層の上に形
成された第2の電極とを更に備え、該第2の電極が該電
流拡散層の中央部における上面に形成され、該第2の電
極と対向する位置に該電流阻止層が形成されている構成
とする。
Preferably, the semiconductor device further comprises a current blocking layer, a first electrode formed on the back surface of the substrate, and a second electrode formed on the current diffusion layer. The current blocking layer is formed on the upper surface at the center of the current diffusion layer, and the current blocking layer is formed at a position facing the second electrode.

【0015】また、好ましくは、電流阻止層と、前記基
板の裏面に形成された第1の電極と、前記電流拡散層の
上に形成された第2の電極とを更に備え、該第2の電極
が該電流拡散層の周辺部における上面に形成され、該第
2の電極と対向する位置に該電流阻止層が形成されてい
る構成とする。
Preferably, the semiconductor device further includes a current blocking layer, a first electrode formed on the back surface of the substrate, and a second electrode formed on the current diffusion layer. An electrode is formed on an upper surface in a peripheral portion of the current diffusion layer, and the current blocking layer is formed at a position facing the second electrode.

【0016】また、好ましくは、前記基板として、その
面方位が(100)面から[011]方向に傾斜してい
るものを用いる構成とする。
Preferably, the substrate has a structure in which the plane orientation is inclined from the (100) plane in the [011] direction.

【0017】また、好ましくは、前記電流拡散層のエネ
ルギーギャップが前記活性層のエネルギーギャップより
も大きくなる構成とする。また、好ましくは、前記電流
拡散層の結晶表面の凹凸の深さが全ての領域において2
nm前後であり、結晶欠陥数が50個前後である。
た、好ましくは、前記電流拡散層の不純物濃度が5×1
18cm-3である。また、好ましくは、前記電流拡散層
の厚さが5μmである。
Preferably, the energy gap of the current diffusion layer is larger than the energy gap of the active layer. Also preferably, the current
The depth of the irregularities on the crystal surface of the diffusion layer is 2 in all regions.
nm, and the number of crystal defects is about 50. Ma
Preferably, the current diffusion layer has an impurity concentration of 5 × 1
0 18 cm -3 . Preferably, the thickness of the current diffusion layer is 5 μm.

【0018】以下に本発明の作用を説明する。The operation of the present invention will be described below.

【0019】上記のように、AlGaInP系の半導体
発光素子において、電流拡散層(窓層)の材料として、
(AlxGa1-x1-y In y Pを用いると、後述の図2か
らわかるように、In組成y=0であるGaPでは結晶
表面の凹凸の深さが40nmと非常に大きいのに対し、
(AlxGa1-x1-y In y P(0≦x≦1,y=0.0
1)層中にIn組成yが0でなくわずかでも含まれてい
れば、結晶表面の凹凸の深さはGaP層に比べて大幅に
減少し、全ての領域で2nm前後まで減少している。
As described above, in the AlGaInP-based semiconductor light emitting device, the material of the current diffusion layer (window layer) is
When (Al x Ga 1 -x ) 1 -y In y P is used, as can be seen from FIG. 2 described later, in GaP having an In composition y = 0, the depth of the irregularities on the crystal surface is as large as 40 nm. Against
(Al x Ga 1-x ) 1-y In y P (0 ≦ x ≦ 1, y = 0.0
1) If the layer contains a small amount of In composition y instead of 0, the depth of the irregularities on the crystal surface is significantly reduced as compared with the GaP layer, and is reduced to about 2 nm in all regions.

【0020】この理由としては、上述したように、Ga
P層は結晶中で、Ga原子とP原子の結合エネルギーが
大きいため、Ga原子が成長面上を拡散(マイグレーシ
ョン)しにくく、良好な層状成長ではなく島状成長とな
っており、結晶欠陥が発生しやすいことが原因となって
いる。
The reason for this is that, as described above, Ga
Since the P layer has a large bonding energy between Ga atoms and P atoms in the crystal, the Ga atoms are unlikely to diffuse (migrate) on the growth surface, so that the growth is not a good layer growth but an island growth, and crystal defects are caused. This is because it is easy to occur.

【0021】これに対し、In原子はP原子の結合エネ
ルギーが小さいため、In原子が成長面上を拡散しやす
く、良好な層状成長が得られる。このため、結晶表面の
凹凸の深さが大幅に低減し、平坦性が向上するのであ
る。
On the other hand, since the In atom has a small binding energy of the P atom, the In atom easily diffuses on the growth surface, and a good layer growth can be obtained. For this reason, the depth of the irregularities on the crystal surface is significantly reduced, and the flatness is improved.

【0022】また、後述の図3からわかるように、Al
組成x=0であるGaPでは、結品欠陥の数が1000
個近くと非常に大きいのに対し、(AlxGa1-x1-y
In y P(0≦x≦1,y=0.01)層中ではAl組
成xが0でなくわずかでも含まれていれば、結晶欠陥の
数はGaP層に比べて大幅に減少し、50個前後まで減
少している。
As can be seen from FIG.
In the case of GaP having a composition x = 0, the number of product defects is 1000
(Al x Ga 1-x ) 1-y
In the In y P (0 ≦ x ≦ 1, y = 0.01) layer, if the Al composition x is included rather than zero, the number of crystal defects is greatly reduced as compared with the GaP layer, and It has been reduced to around pieces.

【0023】この理由としては、Al原子はGa原子以
上にP原子の結合エネルギーが大きいため、成長面上を
拡散しにくいが、P原子の脱離によるP抜けに起因する
結晶欠陥の発生が大幅に低減されているためと考えられ
る。
The reason for this is that Al atoms have a larger binding energy of P atoms than Ga atoms, so that they are difficult to diffuse on the growth surface, but the generation of crystal defects due to the loss of P due to the desorption of P atoms is large. It is considered that it is reduced to.

【0024】以上のように、GaP層に比べて、(Al
xGa1-x1-y In y P(0<x<1,0<y<1)層は
In原子による拡散によって良好な層状成長が得られ、
また、Al原子によってP原子の脱離によるP抜けに起
因する結晶欠陥の発生が大幅に低減される。このため、
結晶欠陥の発生を大幅に低減できるので、結晶性が大幅
に改善され、平坦性も大幅に改善されることになる。こ
の結果、発光効率及び信頼性が大幅に改善された半導体
発光素子を実現できる。
As described above, compared to the GaP layer, (Al
x Ga 1-x) 1- y In y P (0 <x <1,0 <y <1) layer is good layer growth by diffusion due to In atoms is obtained,
Further, the generation of crystal defects due to the escape of P due to the elimination of P atoms by Al atoms is greatly reduced. For this reason,
Since the occurrence of crystal defects can be greatly reduced, the crystallinity is greatly improved and the flatness is also greatly improved. As a result, a semiconductor light emitting device having significantly improved luminous efficiency and reliability can be realized.

【0025】また、電流拡散層のバンドギャップを活性
層よりも大きくする構成によれば、活性層で発光した光
は窓層で吸収されることなく、上面から取り出されるこ
とになる。よって、その分、光取り出し効率を向上でき
る。
According to the configuration in which the band gap of the current diffusion layer is made larger than that of the active layer, light emitted from the active layer is extracted from the upper surface without being absorbed by the window layer. Therefore, the light extraction efficiency can be improved accordingly.

【0026】加えて、第2の電極が電流拡散層の中央部
における上面に形成され、第2の電極と対向する位置に
電流阻止層を形成する構成によれば、電極から注入され
た電流は、この窓層で更に拡がるので、光取り出し効率
を一層向上できる利点がある。
In addition, according to the configuration in which the second electrode is formed on the upper surface at the center of the current diffusion layer and the current blocking layer is formed at a position facing the second electrode, the current injected from the electrode can be reduced. Further, since the window layer is further expanded, there is an advantage that the light extraction efficiency can be further improved.

【0027】また、周辺部に電流阻止層を設ける構成に
よっても、電極から注入された電流は窓層で中央部に集
中されるので、光取り出し効率を一層向上できる利点が
ある。
Further, even with the configuration in which the current blocking layer is provided in the peripheral portion, the current injected from the electrode is concentrated in the central portion by the window layer, and thus there is an advantage that the light extraction efficiency can be further improved.

【0028】また、基板として、その面方位が(10
0)面から[011]方向に傾斜しているものを用いる
構成によれば、窓層の抵抗値を低減できるので、半導体
発光素子の駆動電圧を低減できる利点がある。
The substrate has a plane orientation of (10
According to the configuration using the one inclined in the [011] direction from the 0) plane, the resistance value of the window layer can be reduced, so that there is an advantage that the driving voltage of the semiconductor light emitting element can be reduced.

【0029】以下にその理由を後述の図7に基づき説明
する。面方位が[011]方向に傾斜すると、同図に示
すように、III族原子の1重結合を有する結晶表面であ
る(111)面がステップごとに、即ち階段状に形成さ
れる。この面(傾斜面)はIII族原子の1重結合が表面
を覆っているため、V族原子(この場合は、P原子)が
供給され、III族原子と結合することになる。しかしな
がら、1重結合のためその結合力は弱く、すぐに結合が
切れ、V族原子が表面上を拡散している状態になる。
The reason will be described below with reference to FIG. When the plane orientation is inclined in the [011] direction, a (111) plane, which is a crystal surface having a single bond of a group III atom, is formed step by step, that is, in a stepwise manner, as shown in FIG. Since this surface (inclined surface) is covered with a single bond of a group III atom, a group V atom (in this case, a P atom) is supplied and bonded to the group III atom. However, the bonding force is weak due to the single bond, the bond is broken immediately, and the group V atoms are diffused on the surface.

【0030】ここで、p−(AlxGa1-x1-y In y
窓層の抵抗率が高い理由の一つに、O(酸素)の混入が
ある。即ち、酸素はVI族元素であるため、V族サイトの
格子位置に入りやすいという性質を有する。
Here, p- (Al x Ga 1 -x ) 1 -y In y P
One of the reasons for the high resistivity of the window layer is the incorporation of O (oxygen). That is, since oxygen is a group VI element, oxygen has a property of easily entering a lattice position of a group V site.

【0031】しかるに、上記のように基板が[011]
方向に傾斜していると、V族原子が表面上を拡散してい
るため、結晶表面上にV族原子が多く存在する。このた
め、V族サイトの格子位置に酸素が入りにくくなる。よ
って、窓層の抵抗率を低減できるので、結局、半導体発
光素子の駆動電圧を低減できるのである。
However, as described above, the substrate is [011]
When inclined in the direction, group V atoms are diffused on the surface, so that there are many group V atoms on the crystal surface. This makes it difficult for oxygen to enter the lattice position of the group V site. Therefore, since the resistivity of the window layer can be reduced, the driving voltage of the semiconductor light emitting element can be reduced.

【0032】加えて、このような構成によれば、基板の
面方位が(100)面から[011]方向に傾斜してい
ることにより、(111)面がステップごとに形成さ
れ、このステップごとに良好な層状成長がしやすい結晶
表面となっているので、この点においても、結晶表面の
凹凸の深さを大幅に低減でき、平坦性を大幅に向上でき
る。
In addition, according to such a configuration, since the plane orientation of the substrate is inclined from the (100) plane in the [011] direction, the (111) plane is formed for each step. In this respect, the crystal surface can easily grow in a good layer, and in this regard, the depth of the irregularities on the crystal surface can be greatly reduced, and the flatness can be greatly improved.

【0033】[0033]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づき具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings.

【0034】(実施形態1) 図1〜図3は本発明半導体発光素子の実施形態1を示
す。本実施形態1は本発明を発光ダイオードに適用した
例を示す。以下に図1に基づき本実施形態1の発光ダイ
オードの構造を製造プロセスとともに説明する。
(Embodiment 1) FIGS. 1 to 3 show Embodiment 1 of the semiconductor light emitting device of the present invention. Embodiment 1 shows an example in which the present invention is applied to a light emitting diode. Hereinafter, the structure of the light emitting diode according to the first embodiment will be described with reference to FIG.

【0035】まず、n−GaAs基板1上に、n−Ga
Asバッファ層2(例えば、Si濃度5×1017
-3)を0.5μm、n−(AlxGa1-x1-y In y
(0≦x≦1,0≦y≦1)クラッド層3(例えば、x
=1.0,y=0.5,Si濃度5×1017cm-3)を
1.0μm、(AlxGa1-x1-y In y P(0≦x≦
1,0≦y≦1)活性層4(例えば、x=0.45,y
=0.5)を0.5μm、p−(AlxGa1-x1-y
y P(0≦x≦1,0≦y≦1)クラッド層5(例え
ば、x=1.0,y=0.5,Zn濃度5×1017cm
-3)を1.0μm、p−(AlxGa1-x1-y In y
(0<x<1,0<y<1)窓層6(例えば、x=0.
01,y=0.01,Zn濃度5×1018cm-3)を5
μm順次積層成長する。
First, on an n-GaAs substrate 1, n-Ga
As buffer layer 2 (for example, Si concentration 5 × 10 17 c
m -3) of 0.5μm, n- (Al x Ga 1 -x) 1-y In y P
(0 ≦ x ≦ 1, 0 ≦ y ≦ 1) cladding layer 3 (for example, x
= 1.0, y = 0.5, Si concentration 5 × 10 17 cm -3) of 1.0μm, (Al x Ga 1- x) 1-y In y P (0 ≦ x ≦
1,0 ≦ y ≦ 1) active layer 4 (for example, x = 0.45, y
= 0.5) to 0.5 μm, p- (Al x Ga 1-x ) 1-y I
n y P (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) cladding layer 5 (for example, x = 1.0, y = 0.5, Zn concentration 5 × 10 17 cm)
-3) The 1.0μm, p- (Al x Ga 1 -x) 1-y In y P
(0 <x <1, 0 <y <1) window layer 6 (for example, x = 0.
01, y = 0.01, Zn concentration 5 × 10 18 cm −3 )
μm is sequentially grown.

【0036】次に、n−GaAs基板1の裏面全面にn
型用の電極10を形成し、また、電流拡散層である窓層
6の上面中央部にp型用の電極11を形成する。以上の
工程を経て本実施形態1の発光ダイオードが作製され
る。
Next, n-GaAs substrate 1 has n
An electrode 10 for the mold is formed, and an electrode 11 for the p-type is formed at the center of the upper surface of the window layer 6 which is the current diffusion layer. Through the above steps, the light emitting diode of the first embodiment is manufactured.

【0037】上記のように、本実施形態1の発光ダイオ
ードは、窓層6の材料として、(AlxGa1-x1-y
y Pを用いており、以下に図2及び図3に基づきその
効果について説明する。但し、図2は(AlxGa1-x
1-y In y P(x=0.01,0≦y≦1)層中のIn組
成yに対する結晶表面の凹凸の深さの関係を示してお
り、図3は(AlxGa1-x1-y In y P(0≦x≦1,
y=0.01)層中のAl組成xに対する結晶欠陥の数
(1cm2当たり)の関係を示している。
As described above, in the light emitting diode of the first embodiment, (Al x Ga 1 -x ) 1 -y I is used as the material of the window layer 6.
uses a n y P, described the effect on the basis of FIGS. 2 and 3 below. However, FIG. 2 shows (Al x Ga 1-x )
1-y In y P (x = 0.01,0 ≦ y ≦ 1) shows the relationship between the depth of unevenness of the crystal surface to the In composition y in layer, Figure 3 (Al x Ga 1-x ) 1-y In y P (0 ≦ x ≦ 1,
(y = 0.01) shows the relationship between the number of crystal defects (per 1 cm 2 ) and the Al composition x in the layer.

【0038】図2からわかるように、In組成y=0で
あるGaPでは結晶表面の凹凸の深さが40nmと非常
に大きいのに対し、(AlxGa1-x1-y In y P(0≦
x≦1,y=0.01)層中にIn組成yが0でなくわ
ずかでも含まれていれば、結晶表面の凹凸の深さはGa
P層に比べて大幅に減少し、全ての領域で2nm前後ま
で減少している。
As can be seen from FIG. 2, in the case of GaP having an In composition of y = 0, the depth of the irregularities on the crystal surface is as large as 40 nm, whereas (Al x Ga 1 -x ) 1 -y In y P (0 ≦
x ≦ 1, y = 0.01) If the In composition y is included in the layer even if it is not 0 but a little, the depth of the irregularities on the crystal surface is Ga
It is significantly reduced as compared with the P layer, and is reduced to about 2 nm in all regions.

【0039】この理由としては、上述したように、Ga
P層は結晶中で、Ga原子とP原子の結合エネルギーが
大きいため、Ga原子が成長面上を拡散(マイグレーシ
ョン)しにくく、良好な層状成長ではなく島状成長とな
っており、結晶欠陥が発生しやすいことが原因となって
いる。
The reason for this is, as described above, that Ga
Since the P layer has a large bonding energy between Ga atoms and P atoms in the crystal, the Ga atoms are unlikely to diffuse (migrate) on the growth surface, so that the growth is not a good layer growth but an island growth, and crystal defects are caused. This is because it is easy to occur.

【0040】これに対し、本実施形態1では、In原子
はP原子の結合エネルギーが小さいため、In原子が成
長面上を拡散しやすく、良好な層状成長が得られる。こ
のため、結晶表面の凹凸の深さが大幅に低減し、平坦性
が向上しているのである。
On the other hand, in the first embodiment, since the In atom has a small binding energy of the P atom, the In atom easily diffuses on the growth surface, and good layer growth can be obtained. For this reason, the depth of the irregularities on the crystal surface is greatly reduced, and the flatness is improved.

【0041】また、図3からわかるように、Al組成x
=0であるGaPでは、結品欠陥の数(1cm2当た
り)が1000個近くと非常に大きいのに対し、本実施
形態1の(AlxGa1-x1-y In y P(0≦x≦1,y
=0.01)層中ではAl組成xが0でなくわずかでも
含まれていれば、結晶欠陥の数はGaP層に比べて大幅
に減少し、50個前後まで減少している。
As can be seen from FIG. 3, the Al composition x
= In 0 a is GaP, whereas the number of binding product defects (1 cm 2 per) is very large and 1000 near, the present embodiment 1 (Al x Ga 1-x ) 1-y In y P (0 ≤x≤1, y
= 0.01) If the Al composition x is contained in the layer even if it is a little rather than 0, the number of crystal defects is significantly reduced as compared with the GaP layer, and is reduced to about 50.

【0042】この理由としては、Al原子はGa原子以
上にP原子の結合エネルギーが大きいため、成長面上を
拡散しにくいが、P原子の脱離によるP抜けに起因する
結晶欠陥の発生が大幅に低減されているためと考えられ
る。
The reason for this is that Al atoms have a larger binding energy of P atoms than Ga atoms, so that they are difficult to diffuse on the growth surface, but the generation of crystal defects due to the loss of P due to the desorption of P atoms is large. It is considered that it is reduced to.

【0043】以上のように、GaP層に比べて、(Al
xGa1-x1-y In y P(0<x<1,0<y<1)層は
In原子による拡散によって良好な層状成長が得られ、
また、Al原子によってP原子の脱離によるP抜けに起
因する結晶欠陥の発生が大幅に低減される。このため、
結晶欠陥の発生を大幅に低減できるので、結晶性が大幅
に改善され、平坦性も大幅に改善されることになる。
As described above, compared to the GaP layer, (Al
x Ga 1-x) 1- y In y P (0 <x <1,0 <y <1) layer is good layer growth by diffusion due to In atoms is obtained,
Further, the generation of crystal defects due to the escape of P due to the elimination of P atoms by Al atoms is greatly reduced. For this reason,
Since the occurrence of crystal defects can be greatly reduced, the crystallinity is greatly improved and the flatness is also greatly improved.

【0044】加えて、本実施形態1では、(AlxGa
1-x1-y In y P(x=0.45,y=0.5)活性層
4(Eg=2.1eV)に対し、窓層6にp−(Alx
Ga1-x1-y In y P(x=0.01,y=0.01)
を用いているため、窓層6(Eg=2.26eV)の方
がバンドギャップが大きい。この結果、活性層4で発光
した光は窓層6で吸収されることなく、上面から取り出
されることになる。
In addition, in the first embodiment, (Al x Ga
1-x ) 1-y In y P (x = 0.45, y = 0.5) Active layer 4 (Eg = 2.1 eV) and window layer 6 have p- (Al x
Ga 1-x ) 1-y In y P (x = 0.01, y = 0.01)
Is used, the window layer 6 (Eg = 2.26 eV) has a larger band gap. As a result, light emitted from the active layer 4 is extracted from the upper surface without being absorbed by the window layer 6.

【0045】このような本実施形態1の発光ダイオード
によれば、特性では波長560nmの緑色発光ダイオー
ドで、従来例よりも発光効率が20%、信頼性も20m
A駆動時で60℃条件下において光度が半分となるまで
の時間が1.5倍に増加できることを確認できた。
According to the light emitting diode of the first embodiment, a green light emitting diode having a wavelength of 560 nm has a luminous efficiency of 20% and a reliability of 20 m as compared with the conventional example.
It was confirmed that the time required for the luminous intensity to be reduced to half under the condition of 60 ° C. at the time of driving A can be increased by 1.5 times.

【0046】なお、本実施形態1の発光ダイオードにお
いて、(AlxGa1-x1-y In y P(0≦x≦1,0≦
y≦1)の組成比x,yは、その範囲内で適宜変更して
も上記同様の効果を奏することを確認できた。
In the light emitting diode of the first embodiment, (Al x Ga 1 -x ) 1 -y In y P (0 ≦ x ≦ 1, 0 ≦
It was confirmed that the same effects as described above were obtained even if the composition ratios x and y of y ≦ 1) were appropriately changed within the range.

【0047】(参考例) 図4は本発明半導体発光素子の参考例を示す。この参考
例も本発明をAlGaInP系の発光ダイオードに適用
した例を示す。この参考例の発光ダイオードは、(Al
xGa1-x1-yInyP層のAl組成x、In組成yが実
施形態1の発光ダイオードと異なる他は同様の構造にな
っている。即ち、実施形態1では本発明を緑色発光ダイ
オードに適用しているが、この参考例では赤色発光ダイ
オードに適用している。以下に図4に基づきの参考例
発光ダイオードの構造を製造プロセスとともに説明す
る。
( Reference Example ) FIG. 4 shows a reference example of the semiconductor light emitting device of the present invention. This reference
The example also shows an example in which the present invention is applied to an AlGaInP-based light emitting diode. The light emitting diode of this reference example is (Al
x Ga 1-x ) 1 -y In y The P layer has the same structure except that the Al composition x and the In composition y are different from those of the light emitting diode of the first embodiment. That is, in the first embodiment, the present invention is applied to a green light emitting diode, but in this reference example , the present invention is applied to a red light emitting diode. Hereinafter, the structure of the light emitting diode of the reference example based on FIG.

【0048】まず、n−GaAs基板21上に、n−G
aAsバッファ層22(例えば、Si濃度5×1017
-3)を0.5μm、n−(AlxGa1-x1-y In y
(0≦x≦1,0≦y≦1)クラッド層23(例えば、
x=0.7,y=0.5,Si濃度5×1017cm-3
を1.0μm、(AlxGa1-x1-y In y P(0≦x≦
1,0≦y≦1)活性層24(例えば、x=0.05,
y=0.5)を0.5μm、p−(AlxGa1-x1-y
In y P(0≦x≦1,0≦y≦1)クラッド層25
(例えば、x=0.7,y=0.5,Zn濃度5×10
17cm-3)を1.0μm、p−(AlxGa1-x1-y
y P(0<x<1,0<y<1)窓層26(例えば、
x=0.5,y=0.5)を5μm順次積層成長する。
First, an n-GaAs substrate 21 is provided with n-G
aAs buffer layer 22 (for example, Si concentration 5 × 10 17 c
m -3) of 0.5μm, n- (Al x Ga 1 -x) 1-y In y P
(0 ≦ x ≦ 1, 0 ≦ y ≦ 1) cladding layer 23 (for example,
x = 0.7, y = 0.5, Si concentration 5 × 10 17 cm −3 )
To 1.0 μm, (Al x Ga 1-x ) 1-y In y P (0 ≦ x ≦
1,0 ≦ y ≦ 1) active layer 24 (for example, x = 0.05,
y = 0.5) is 0.5 μm and p- (Al x Ga 1-x ) 1-y
In y P (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) cladding layer 25
(For example, x = 0.7, y = 0.5, Zn concentration 5 × 10
17 cm -3 ) to 1.0 μm, p- (Al x Ga 1-x ) 1-y I
n y P (0 <x <1, 0 <y <1) window layer 26 (for example,
x = 0.5, y = 0.5) are sequentially grown by 5 μm.

【0049】次に、n−GaAs基板21の裏面全面に
n型用の電極210を形成し、また、電流拡散層である
窓層26の上面中央部にp型用の電極211を形成す
る。以上の工程を経て参考例の発光ダイオードが作製さ
れる。
Next, an n-type electrode 210 is formed on the entire back surface of the n-GaAs substrate 21, and a p-type electrode 211 is formed at the center of the upper surface of the window layer 26 which is a current diffusion layer. Through the above steps, the light emitting diode of the reference example is manufactured.

【0050】この参考例の発光ダイオードにおいても、
上記図2より結晶表面の凹凸の深さを大幅に低減でき、
図3よりGaP窓層に比べて実施形態1同様に結晶欠陥
の発生を大幅に低減できることがわかる。よって、実施
形態1同様に、結晶性が大幅に改善され、平坦性も大幅
に改善されるので、実施形態1同様の効果を奏すること
ができる。
In the light emitting diode of this reference example ,
From FIG. 2 described above, the depth of the irregularities on the crystal surface can be significantly reduced,
FIG. 3 shows that the generation of crystal defects can be significantly reduced as in the first embodiment, as compared with the GaP window layer. Therefore, similar to the first embodiment, the crystallinity is greatly improved and the flatness is also significantly improved, so that the same effects as in the first embodiment can be obtained.

【0051】また、この参考例では、(AlxGa1-x
1-yInyP(x=0,y=0.5)活性層24(Eg=
1.9eV)に対し、窓層26にp−(AlxGa1-x
1-yInyP(x=0.5,y=0.5)を用いているた
め、窓層26(Eg=2.0eV)の方がバンドギャッ
プが大きいので、活性層24で発光した光は窓層26で
吸収されることなく、上面から取り出されることにな
る。
In this reference example , (Al x Ga 1 -x )
1-y In y P (x = 0, y = 0.5) active layer 24 (Eg =
1.9 eV), p- (Al x Ga 1-x ) is applied to the window layer 26.
Since 1-y In y P (x = 0.5, y = 0.5) is used, the window layer 26 (Eg = 2.0 eV) has a larger band gap, so that light was emitted from the active layer 24. The light is extracted from the upper surface without being absorbed by the window layer 26.

【0052】この参考例の発光ダイオードは、特性では
波長650nmの赤色発光ダイオードで従来例よりも発
光効率が20%、信頼性も20mA駆動時で60℃条件
下において光度が半分となるまでの時間が1.5倍に増
加できることを確認できた。
The light-emitting diode of this reference example is a red light-emitting diode having a wavelength of 650 nm, which has a luminous efficiency of 20% and a reliability that is lower than that of the conventional example at a drive time of 20 mA until the luminous intensity is reduced to half at 60 ° C. Can be increased by 1.5 times.

【0053】(実施形態2) 図5は本発明半導体発光素子の実施形態2を示す。本実
施形態2も本発明をAlGaInP系の発光ダイオード
に適用した例を示す。本実施形態3の発光ダイオード
は、(AlxGa1-x1-yInyP層のAl組成x、In
組成yが実施形態1,2の発光ダイオードと異なる他は
同様の構造になっている。即ち、本実施形態2では黄色
発光ダイオードに適用した例を示している。以下に図5
に基づき本実施形態2の発光ダイオードの構造を製造プ
ロセスとともに説明する。
Embodiment 2 FIG. 5 shows Embodiment 2 of the semiconductor light emitting device of the present invention. Real truth
Embodiment 2 also shows an example in which the present invention is applied to an AlGaInP-based light emitting diode. The light emitting diode of the third embodiment has an Al composition x, In of the (Al x Ga 1 -x ) 1 -y In y P layer.
The structure is the same except that the composition y is different from the light emitting diodes of the first and second embodiments. That is, the second embodiment shows an example in which the present invention is applied to a yellow light emitting diode. Figure 5 below
The structure of the light emitting diode of the second embodiment will be described together with the manufacturing process based on the above.

【0054】まず、n−GaAs基板31上に、n−G
aAsバッファ層32(例えば、Si濃度5×1017
-3)を0.5μm、n−(AlxGa1-x1-y In y
(0≦x≦1,0≦y≦1)クラッド層33(例えば、
x=1.0,y=0.5,Si濃度5×1017cm-3
を1.0μm、(AlxGa1-x1-y In y P(0≦x≦
1,0≦y≦1)活性層34(例えば、x=0.30,
y=0.5)を0・5μm、p−(AlxGa1-x1-y
In y P(0≦x≦1,0≦y≦1)クラッド層35
(例えば、x=1.0,y=0.5,Zn濃度5×10
17cm-3)を1.0μm、p−(AlxGa1-x1-y
y P(0<x<1,0<y<1)窓層36(例えば、
x=0.1,y=0.1)を5μm順次積層成長する。
First, the n-GaAs substrate 31 is provided with n-G
aAs buffer layer 32 (for example, Si concentration 5 × 10 17 c
m -3) of 0.5μm, n- (Al x Ga 1 -x) 1-y In y P
(0 ≦ x ≦ 1, 0 ≦ y ≦ 1) cladding layer 33 (for example,
x = 1.0, y = 0.5, Si concentration 5 × 10 17 cm −3 )
To 1.0 μm, (Al x Ga 1-x ) 1-y In y P (0 ≦ x ≦
1,0 ≦ y ≦ 1) active layer 34 (for example, x = 0.30,
y = 0.5) is 0.5 μm, p- (Al x Ga 1-x ) 1-y
In y P (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) cladding layer 35
(For example, x = 1.0, y = 0.5, Zn concentration 5 × 10
17 cm -3 ) to 1.0 μm, p- (Al x Ga 1-x ) 1-y I
n y P (0 <x <1, 0 <y <1) window layer 36 (for example,
x = 0.1, y = 0.1) are sequentially grown by 5 μm.

【0055】次に、n−GaAs基板31の裏面全面に
n型用の電極310を形成し、また、電流拡散層である
窓層36の上面中央部にp型用の電極311を形成す
る。以上の工程を経て本実施形態2の発光ダイオードが
作製される。
Next, an n-type electrode 310 is formed on the entire back surface of the n-GaAs substrate 31, and a p-type electrode 311 is formed at the center of the upper surface of the window layer 36 which is a current diffusion layer. Through the above steps, the light emitting diode of Embodiment 2 is manufactured.

【0056】本実施形態2の発光ダイオードにおいて
も、上記図2及び図3より、結晶表面の凹凸の深さを大
幅に低減でき、結晶欠陥の発生を大幅に低減できること
がわかる。よって、結晶性を大幅に改善でき、平坦性も
大幅に改善できるので、上記実施形態同様の効果を奏す
ることがわかる。
Also in the light emitting diode of the second embodiment, it can be seen from FIGS. 2 and 3 that the depth of the irregularities on the crystal surface can be greatly reduced and the occurrence of crystal defects can be significantly reduced. Therefore, the crystallinity can be greatly improved, and the flatness can also be significantly improved, so that it can be seen that the same effects as in the above embodiment can be obtained.

【0057】また、本実施形態2では、(Alx
1-x1-yInyP(x=0.30,y=0.5)活性
層34((Eg=2.05eV)に対し、窓層36に
(AlxGa1-x1-yInyP(x=0.1,y=0.
1)を用いているため、窓層36(Eg=2.25e
V)の方がバンドギャップが大きいので、活性層34で
発光した光は窓層36で吸収されることなく、上面から
取り出されることになる。
In the second embodiment , (Al x G
a 1-x ) 1-y In y P (x = 0.30, y = 0.5) For the active layer 34 ((Eg = 2.05 eV), the window layer 36 has (Al x Ga 1-x ). 1-y In y P (x = 0.1, y = 0.
1), the window layer 36 (Eg = 2.25e)
Since V) has a larger band gap, light emitted from the active layer 34 is extracted from the upper surface without being absorbed by the window layer 36.

【0058】本実施形態2の発光ダイオードは、特性で
は波長590nmの黄色発光ダイオードで従来例より発
光効率が20%、信頼性も20mA駆動時で60℃条件
下において光度が半分となるまでの時間が1.5倍に増
加できることを確認できた。
The light emitting diode according to the second embodiment is a yellow light emitting diode having a wavelength of 590 nm and has a luminous efficiency of 20% and a reliability that is lower than that of the conventional example. Can be increased by 1.5 times.

【0059】(参考例) 図6及び図7は本発明半導体発光素子の参考例を示す。
この参考例もAlGaInP系の発光ダイオードに適用
した例を示す。この参考例の発光ダイオードは、面方位
が(100)面から[011]方向に傾斜している基板
を用いている点が上記各実施形態の発光ダイオードとは
異なっている。以下に図6に基づき本参考例の発光ダイ
オードの構造を製造プロセスとともに説明する。
( Reference Example ) FIGS. 6 and 7 show a reference example of the semiconductor light emitting device of the present invention.
This reference example also shows an example applied to an AlGaInP-based light emitting diode. The light emitting diode of this reference example differs from the light emitting diodes of the above embodiments in that a substrate whose plane orientation is inclined from the (100) plane in the [011] direction is used. Hereinafter, the structure of the light emitting diode of this embodiment will be described with reference to FIG.

【0060】まず、面方位が(100)面から[01
1]方向に15度傾斜しているn−GaAs基板41
(図7参照)上に、n−GaAsバッファ層42(例え
ば、Si濃度5×1017cm-3)を0.5μm、n−
(AlxGa1-x1-y In y P(0≦x≦1,0≦y≦
1)クラッド層43(例えば、x=1.0,y=0.
5,Si濃度5×1017cm-3)を1.0μm、(Al
xGa1-x1-y In y P(0≦x≦1,0≦y≦1)活性
層44(例えば、x=0.20,y=0.5)を0・5
μm、p−(AlxGa1-x1-y In y P(0≦x≦1,
0≦y≦1)クラッド層45(例えば、x=1.0,y
=0.5,Zn濃度5×1017cm-3)を1.0μm、
p−(AlxGa1-x1-y In y P(0<x<1,0<y
<1)窓層46(例えば、x=0.80,y=0.5
0,Zn濃度5×1018cm-3)を5μm順次積層成長
する。
First, the plane orientation is changed from the (100) plane to [01].
N-GaAs substrate 41 inclined at an angle of 15 degrees in the [1] direction
An n-GaAs buffer layer 42 (for example, a Si concentration of 5 × 10 17 cm −3 ) having a thickness of 0.5 μm and an n-
(Al x Ga 1-x ) 1-y In y P (0 ≦ x ≦ 1, 0 ≦ y ≦
1) Cladding layer 43 (for example, x = 1.0, y = 0.
5, Si concentration of 5 × 10 17 cm −3 ) was changed to 1.0 μm, (Al
x Ga 1-x) 1- y In y P (0 ≦ x ≦ 1,0 ≦ y ≦ 1) active layer 44 (e.g., x = 0.20, y = 0.5 ) to 0 · 5
μm, p- (Al x Ga 1-x ) 1-y In y P (0 ≦ x ≦ 1,
0 ≦ y ≦ 1) cladding layer 45 (for example, x = 1.0, y
= 0.5, Zn concentration 5 × 10 17 cm −3 ) to 1.0 μm,
p- (Al x Ga 1-x ) 1-y In y P (0 <x <1,0 <y
<1) Window layer 46 (for example, x = 0.80, y = 0.5)
And a Zn concentration of 5 × 10 18 cm −3 ) is sequentially grown by 5 μm.

【0061】次に、n−GaAs基板41の裏面全面に
n型用の電極410を形成し、また、電流拡散層である
窓層46の上面中央部にp型用の電極411を形成す
る。以上の工程を経て参考例の発光ダイオードが作製さ
れる。
Next, an n-type electrode 410 is formed on the entire back surface of the n-GaAs substrate 41, and a p-type electrode 411 is formed at the center of the upper surface of the window layer 46 which is a current diffusion layer. Through the above steps, the light emitting diode of the reference example is manufactured.

【0062】この参考例では、(AlxGa1-x1-y
y P(x=0.20,y=0.50)活性層44(E
g=2.05eV)に対し、窓層46にp−(Alx
1-x1-y In y P(x=0.80,y=0.50)を
用いているため、窓層46(Eg=2.25eV)の方
がバンドギャップが大きいので、活性層44で発光した
光は窓層46で吸収されることなく、上面から取り出さ
れることになる。
In this reference example , (Al x Ga 1 -x ) 1 -y I
n y P (x = 0.20, y = 0.50) active layer 44 (E
g = 2.05 eV), the window layer 46 has p- (Al x G
a 1-x ) 1-y In y P (x = 0.80, y = 0.50) is used, so that the window layer 46 (Eg = 2.25 eV) has a larger band gap, so Light emitted from the layer 44 is extracted from the upper surface without being absorbed by the window layer 46.

【0063】また、この参考例では、実施形態1同様に
窓層46にp−(AlxGa1-x1-y In y P(x=0.
80,y=0.50)を用いているが、参考例では、面
方位が(100)面から[011]方向に傾斜している
基板を用いているため、窓層46の抵抗値を低減でき
る。
In this reference example , p- (Al x Ga 1 -x ) 1 -y In y P (x = 0.
80, y = 0.50), but in the reference example , since the substrate whose plane orientation is inclined from the (100) plane in the [011] direction is used, the resistance value of the window layer 46 is reduced. it can.

【0064】以下にその理由を図7に基づき説明する。
但し、図7はIII−V族の結晶表面を表現したモデル図
であり、面方位が(100)面はV族原子の2重結合が
表面上にある。
The reason will be described below with reference to FIG.
However, FIG. 7 is a model diagram expressing a III-V group crystal surface, and a (100) plane has double bonds of group V atoms on the surface.

【0065】ところで、面方位が[011]方向に傾斜
すると、同図に示すように、III族原子の1重結合を有
する結晶表面である(111)面がステップごとに、即
ち階段状に形成される。この面(傾斜面)はIII族原子
の1重結合が表面を覆っているため、V族原子(この場
合は、P原子)が供給され、III族原子と結合すること
になる。しかしながら、1重結合のためその結合力は弱
く、すぐに結合が切れ、V族原子が表面上を拡散してい
る状態になる。
When the plane orientation is inclined in the [011] direction, as shown in the figure, the (111) plane, which is a crystal surface having a single bond of group III atoms, is formed step by step, ie, stepwise. Is done. Since this surface (inclined surface) is covered with a single bond of a group III atom, a group V atom (in this case, a P atom) is supplied and bonded to the group III atom. However, the bonding force is weak due to the single bond, the bond is broken immediately, and the group V atoms are diffused on the surface.

【0066】ここで、p−(AlxGa1-x1-y In y
(0<x<1,0<y<1)窓層46の抵抗率が高い理
由の一つに、O(酸素)の混入がある。即ち、酸素はVI
族元素であるため、V族サイトの格子位置に入りやすい
という性質を有する。
Here, p- (Al x Ga 1 -x ) 1 -y In y P
(0 <x <1, 0 <y <1) One of the reasons why the resistivity of the window layer 46 is high is mixing of O (oxygen). That is, oxygen is VI
Since it is a group element, it has a property of easily entering a lattice position of a group V site.

【0067】しかるに、この参考例では、上記のように
基板が[011]方向に傾斜しており、V族原子が表面
上を拡散しているため、結晶表面上にV族原子が多く存
在する。このため、V族サイトの格子位置に酸素が入り
にくくなる。よって、この参考例によれば、窓層46の
抵抗率を低減できるので、結局、半導体発光素子、つま
り発光ダイオードの駆動電圧を低減できるのである。
However, in this reference example , since the substrate is inclined in the [011] direction as described above and the group V atoms are diffused on the surface, many group V atoms exist on the crystal surface. . This makes it difficult for oxygen to enter the lattice position of the group V site. Therefore, according to this reference example , since the resistivity of the window layer 46 can be reduced, the driving voltage of the semiconductor light emitting element, that is, the light emitting diode can be reduced.

【0068】加えて、この参考例によれば、n−GaA
s基板46の面方位が(100)面から[011]方向
に傾斜していることにより、(111)面がステップご
とに形成され、このステップごとに良好な層状成長がし
やすい結晶表面となっている。従って、この点において
も、結晶表面の凹凸の深さを大幅に低減でき、平坦性を
大幅に向上できる。
In addition, according to this reference example , n-GaAs
Since the plane orientation of the s-substrate 46 is inclined from the (100) plane in the [011] direction, the (111) plane is formed for each step, and each step becomes a crystal surface on which good layer growth can be easily performed. ing. Therefore, also in this respect, the depth of the irregularities on the crystal surface can be significantly reduced, and the flatness can be greatly improved.

【0069】この参考例の発光ダイオードは、特性では
波長6100nmの橙色発光ダイオードで従来例より発
光効率が20%、信頼性も20mA駆動時で60℃条件
下において光度が半分となるまでの時間が2.0倍に増
加できることを確認できた。
The light emitting diode of this reference example is an orange light emitting diode having a wavelength of 6100 nm and has a luminous efficiency of 20% and a reliability of 20 mA at a driving time of 20 mA. It was confirmed that it could be increased by 2.0 times.

【0070】なお、この参考例においても、(Alx
1-x1-y In y P(0≦x≦1,0≦y≦1)の組成
比x,yを、適宜変更しても上記同様の効果を奏するこ
とを確認できた。
In this reference example , (Al x G
a 1-x) 1-y In y P (0 ≦ x ≦ 1,0 ≦ y ≦ 1) composition ratio x, the y, it was confirmed that even appropriately changed achieves the same effect as described above.

【0071】(実施形態3) 図8は本発明半導体発光素子の実施形態3を示す。本実
施形態3も本発明をAlGaInP系の発光ダイオード
に適用した例を示す。本実施形態3の発光ダイオード
は、例えば、実施形態1の発光ダイオードとは、クラッ
ド層55と窓層56との間の中央部に電流阻止層58を
設けた点が異なっている。以下に図8に基づき本実施形
態3の発光ダイオードの構造を製造プロセスとともに説
明する。
( Embodiment 3 ) FIG. 8 shows Embodiment 3 of the semiconductor light emitting device of the present invention. Real truth
Embodiment 3 also shows an example in which the present invention is applied to an AlGaInP-based light emitting diode. The light emitting diode according to the third embodiment is different from the light emitting diode according to the first embodiment, for example, in that a current blocking layer 58 is provided at the center between the cladding layer 55 and the window layer 56. This embodiment is described below with reference to FIG.
The structure of the light emitting diode of the third embodiment will be described together with the manufacturing process.

【0072】まず、n−GaAs基板51上に、n−G
aAsバッファ層52(例えば、Si濃度5×1017
-3)を0.5μm、n−(AlxGa1-x1-y In y
(0≦x≦1,0≦y≦1)クラッド層53(例えば、
x=1.0,y=0.5,Si濃度5×1017cm-3
を1.0μm、(AlxGa1-x1-y In y P(0≦x≦
1,0≦y≦1)活性層54(例えば、x=0.38,
y=0.5)を0・5μm、p−(AlxGa1-x1-y
In y P(0≦x≦1,0≦y≦1)クラッド層55
(例えば、x=1.0,y=0.5,Zn濃度5×10
17cm-3)を1.0μm、n−(AlxGa1-x1-y
y P(0≦x≦1,0≦y≦1)電流阻止層58(例
えば、x=0.20,y=0.20,Si濃度5×10
17cm-3)を0.5μm、p−(AlxGa1-x1-y
y P(0<x<1,0<y<1)窓層46(例えば、
x=0.20,y=0.20,Zn濃度5×1018cm
-3)を5μm順次積層成長する。
First, on an n-GaAs substrate 51, nG
aAs buffer layer 52 (for example, Si concentration 5 × 10 17 c
m -3) of 0.5μm, n- (Al x Ga 1 -x) 1-y In y P
(0 ≦ x ≦ 1, 0 ≦ y ≦ 1) cladding layer 53 (for example,
x = 1.0, y = 0.5, Si concentration 5 × 10 17 cm −3 )
To 1.0 μm, (Al x Ga 1-x ) 1-y In y P (0 ≦ x ≦
1,0 ≦ y ≦ 1) active layer 54 (for example, x = 0.38,
y = 0.5) is 0.5 μm, p- (Al x Ga 1-x ) 1-y
In y P (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) cladding layer 55
(For example, x = 1.0, y = 0.5, Zn concentration 5 × 10
17 cm -3 ) to 1.0 μm, n- (Al x Ga 1-x ) 1-y I
n y P (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) current blocking layer 58 (for example, x = 0.20, y = 0.20, Si concentration 5 × 10
17 cm -3) of 0.5μm, p- (Al x Ga 1 -x) 1-y I
n y P (0 <x <1, 0 <y <1) window layer 46 (for example,
x = 0.20, y = 0.20, Zn concentration 5 × 10 18 cm
-3 ) is sequentially grown by 5 μm.

【0073】なお、図8に示すように、電流阻止層58
はクラッド層55と窓層56との間の中央部に形成され
ている。
As shown in FIG. 8, the current blocking layer 58
Is formed at the center between the cladding layer 55 and the window layer 56.

【0074】次に、n−GaAs基板51の裏面全面に
n型用の電極510を形成し、また、電流拡散層である
窓層56の上面中央部にp型用の電極511を形成す
る。以上の工程を経て本実施形態5の発光ダイオードが
作製される。
Next, an n-type electrode 510 is formed on the entire back surface of the n-GaAs substrate 51, and a p-type electrode 511 is formed at the center of the upper surface of the window layer 56 which is a current diffusion layer. Through the above steps, the light emitting diode of Embodiment 5 is manufactured.

【0075】本実施形態3の発光ダイオードは、上記の
ように電流阻止層58を設けているため、これにより、
電極51から注入された電流は、例えば実施形態1の場
合に比べて窓層56で更に拡がるので、光取り出し効率
を一層向上できる利点がある。
In the light emitting diode of the third embodiment , the current blocking layer 58 is provided as described above.
Since the current injected from the electrode 51 is further expanded in the window layer 56 as compared with the case of the first embodiment, for example, there is an advantage that the light extraction efficiency can be further improved.

【0076】また、本実施形態3では、(Alx
1-x1-yInyP(x=0.38,y=0.50)活
性層54(Eg=2.05eV)に対し、窓層56にp
−(AlxGa1-x1-yInyP(x=0.20,y=
0.20)を用いているため、窓層56(Eg=2.2
5eV)の方がバンドギャップが大きいので、活性層5
4で発光した光は窓層56で吸収されることなく、上面
から取り出されることになる。
In the third embodiment , (Al x G
a 1-x ) 1-y In y P (x = 0.38, y = 0.50) Active layer 54 (Eg = 2.05 eV)
− (Al x Ga 1-x ) 1-y In y P (x = 0.20, y =
0.20), the window layer 56 (Eg = 2.2)
5 eV) has a larger band gap, so that the active layer 5
The light emitted at 4 is taken out from the upper surface without being absorbed by the window layer 56.

【0077】本実施形態3の発光ダイオードは、特性で
は波長570nmの黄緑色発光ダイオードで従来例より
発光効率が30%、信頼性も20mA駆動時で60℃条
件下において光度が半分となるまでの時間が2.5倍に
増加できることを確認できた。
The light emitting diode according to the third embodiment is a yellow-green light emitting diode having a wavelength of 570 nm and has a luminous efficiency of 30% as compared with the conventional example. It was confirmed that the time could be increased by 2.5 times.

【0078】(参考例) 図9は本発明半導体発光素子の参考例を示す。この参考
も本発明をAlGaInP系の発光ダイオードに適用
した例を示す。この参考例の発光ダイオードは、例え
ば、実施形態3の発光ダイオードとは、クラッド層65
と窓層66との間の周辺部に電流阻止層68を設けた点
が異なっている。以下に図9に基づきこの参考例の発光
ダイオードの構造を製造プロセスとともに説明する。
( Reference Example ) FIG. 9 shows a reference example of the semiconductor light emitting device of the present invention. This reference
The example also shows an example in which the present invention is applied to an AlGaInP-based light emitting diode. Light emitting diode of this Example is, for example, the light emitting diode of the third embodiment, the cladding layer 65
A different point is that a current blocking layer 68 is provided in a peripheral portion between the current blocking layer 68 and the window layer 66. Hereinafter, the structure of the light emitting diode of this reference example will be described together with the manufacturing process with reference to FIG.

【0079】まず、n−GaAs基板61上に、n−G
aAsバッファ層62(例えば、Si濃度5×1017
-3)を0.5μm、n−(AlxGa1-x1-y In y
(0≦x≦1,0≦y≦1)クラッド層63(例えば、
x=1.0,y=0.5,Si濃度5×1017cm-3
を1.0μm、(AlxGa1-x1-y In y P(0≦x≦
1,0≦y≦1)活性層64(例えば、x=0.15,
y=0.5)を0.5μm、p−(AlxGa1-x1-y
In y P(0≦x≦1,0≦y≦1)クラッド層65
(例えば、x=1.0,y=0.5,Zn濃度5×10
17cm-3)を1.0μm、n−(AlxGa1-x1-y
y P(0≦x≦1,0≦y≦1)電流阻止層68(例
えば、x=0.01,y=0.01,Si濃度5×10
17cm-3)を0.5μm、p−(AlxGa1-x1-y
y P(0<x<1,0<y<1)窓層46(例えば、
x=0.20,y=0.20,Zn濃度5×1018cm
-3)を5μm順次積層成長する。
First, on an n-GaAs substrate 61, n-G
aAs buffer layer 62 (for example, Si concentration 5 × 10 17 c
m -3) of 0.5μm, n- (Al x Ga 1 -x) 1-y In y P
(0 ≦ x ≦ 1, 0 ≦ y ≦ 1) cladding layer 63 (for example,
x = 1.0, y = 0.5, Si concentration 5 × 10 17 cm −3 )
To 1.0 μm, (Al x Ga 1-x ) 1-y In y P (0 ≦ x ≦
1,0 ≦ y ≦ 1) active layer 64 (for example, x = 0.15,
y = 0.5) is 0.5 μm and p- (Al x Ga 1-x ) 1-y
In y P (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) cladding layer 65
(For example, x = 1.0, y = 0.5, Zn concentration 5 × 10
17 cm -3 ) to 1.0 μm, n- (Al x Ga 1-x ) 1-y I
n y P (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) current blocking layer 68 (for example, x = 0.01, y = 0.01, Si concentration 5 × 10
17 cm -3) of 0.5μm, p- (Al x Ga 1 -x) 1-y I
n y P (0 <x <1, 0 <y <1) window layer 46 (for example,
x = 0.20, y = 0.20, Zn concentration 5 × 10 18 cm
-3 ) is sequentially grown by 5 μm.

【0080】なお、図9に示すように、電流阻止層68
はクラッド層65と窓層66との間の図上左右両側の周
辺部に形成されている。
As shown in FIG. 9, the current blocking layer 68
Are formed between the cladding layer 65 and the window layer 66 on the left and right sides in the figure.

【0081】次に、n−GaA基板61の裏面全面にn
型用の電極610を形成し、また、電流拡散層である窓
層66の上面の電流阻止層68と対応する周辺部にp型
用の電極611を形成する。以上の工程を経てこの参考
の発光ダイオードが作製される。
Next, n is applied to the entire back surface of the n-GaAs substrate 61.
An electrode 610 for the mold is formed, and an electrode 611 for the p-type is formed on the upper surface of the window layer 66, which is the current diffusion layer, in the peripheral portion corresponding to the current blocking layer 68. Through the above steps, this reference
An example light emitting diode is made.

【0082】この参考例では、上記のようにクラッド層
65と窓層66との間の周辺部に電流阻止層68を設け
ているため、これにより、電極61から注入された電流
は窓層66で中央部に集中されるので、例えば実施形態
1に比べて光取り出し効率を一層向上できる利点があ
る。
In this reference example , the current blocking layer 68 is provided in the peripheral portion between the cladding layer 65 and the window layer 66 as described above. Therefore, there is an advantage that the light extraction efficiency can be further improved as compared with the first embodiment, for example.

【0083】また、この参考例では、(AlxGa1-x
1-yInyP(x=0.15,y=0.50)活性層64
(Eg=2.05eV)に対し、窓層66にp−(Al
xGa1-x1-yInyP(x=0.20,y=0.20)
を用いているため、窓層66(Eg=2.27eV)の
方がバンドギャップが大きいので、活性層64で発光し
た光は窓層66で吸収されることなく、上面から取り出
されることになる。
In this reference example , (Al x Ga 1 -x )
1-y In y P (x = 0.15, y = 0.50) active layer 64
(Eg = 2.05 eV), p- (Al
x Ga 1-x) 1- y In y P (x = 0.20, y = 0.20)
Is used, the window layer 66 (Eg = 2.27 eV) has a larger band gap, so that light emitted from the active layer 64 is extracted from the upper surface without being absorbed by the window layer 66. .

【0084】この参考例の発光ダイオードは、特性では
波長550nmの緑色発光ダイオードで従来例より発光
効率が35%、信頼性も20mA駆動時で60℃条件下
において光度が半分となるまでの時間が2.7倍に増加
できることを確認できた。
The light-emitting diode of this reference example is a green light-emitting diode having a wavelength of 550 nm and has a luminous efficiency of 35% and a reliability of 20 mA at a driving time of 20 mA. It was confirmed that it could be increased by 2.7 times.

【0085】(その他の実施形態) 面方位が(100)面から[011]方向に傾斜(例え
ば、15度)しているn−GaAs基板は、参考例以外
の他の実施形態に係る半導体発光素子にも適用すること
が可能である。また、組成については、各実施形態で例
示したものに限定されないことは勿論である。更に、構
造についても、各実施形態で例示したものに限定されな
いことは勿論である。
(Other Embodiments) An n-GaAs substrate whose plane orientation is inclined (for example, 15 degrees) from the (100) plane in the [011] direction is a semiconductor light emitting device according to another embodiment other than the reference example. It is also possible to apply to an element. Further, the composition is, of course, not limited to those exemplified in each embodiment. Further, the structure is, of course, not limited to those exemplified in each embodiment.

【0086】[0086]

【発明の効果】以上の本発明半導体発光素子によれば、
AlGaInP系の半導体発光素子において、電流拡散
層(窓層)の材料として、(AlxGa1-x1-y In y
を用いる構成をとるので、結晶表面の凹凸の深さを窓層
としてGaP層を用いる場合に比べて大幅に減少でき
る。
According to the semiconductor light emitting device of the present invention described above,
In an AlGaInP-based semiconductor light emitting device, (Al x Ga 1 -x ) 1 -y In y P is used as a material of a current diffusion layer (window layer).
, The depth of the irregularities on the crystal surface can be greatly reduced as compared with the case where a GaP layer is used as the window layer.

【0087】また、窓層としてGaP層を用いる場合に
比べて、結晶欠陥の数を大幅に減少できる。
The number of crystal defects can be greatly reduced as compared with the case where a GaP layer is used as the window layer.

【0088】このため、本発明によれば、結晶性が大幅
に改善され、平坦性も大幅に改善されることになるの
で、発光効率及び信頼性が大幅に改善された半導体発光
素子を実現できる。
Therefore, according to the present invention, since the crystallinity is greatly improved and the flatness is also greatly improved, it is possible to realize a semiconductor light-emitting device having greatly improved luminous efficiency and reliability. .

【0089】また、特に、電流拡散層のバンドギャップ
を活性層よりも大きくする構成とすることにより、活性
層で発光した光は窓層で吸収されることなく、上面から
取り出されることになる。よって、その分、光取り出し
効率を向上できる。
In particular, by making the band gap of the current spreading layer larger than that of the active layer, light emitted by the active layer is extracted from the upper surface without being absorbed by the window layer. Therefore, the light extraction efficiency can be improved accordingly.

【0090】また、第2の電極が電流拡散層の中央部に
おける上面に形成され、第2の電極と対向する位置に電
流阻止層を形成する構成とすることにより、電極から注
入された電流は、この窓層で更に拡がるので、光取り出
し効率を一層向上できる利点がある。
Further , the second electrode is formed on the upper surface at the center of the current diffusion layer, and the current blocking layer is formed at a position facing the second electrode, so that the current injected from the electrode can be reduced . Further, since the window layer is further expanded, there is an advantage that the light extraction efficiency can be further improved.

【0091】また、周辺部に電流阻止層を設ける構成と
することによっても、電極から注入された電流は窓層で
中央部に集中されるので、光取り出し効率を一層向上で
きる利点がある。
A structure in which a current blocking layer is provided in a peripheral portion,
By doing so, the current injected from the electrode is concentrated at the central portion in the window layer, and thus there is an advantage that the light extraction efficiency can be further improved.

【0092】また、面方位が(100)面から[01
1]方向に傾斜した基板を用いる構成とすることによ
、窓層の抵抗値を低減でき、半導体発光素子の駆動電
圧を低減できる利点がある。
Further , the plane orientation is [01] from the (100) plane.
1] to be configured to use a substrate which is inclined in a direction
Therefore , there is an advantage that the resistance value of the window layer can be reduced and the driving voltage of the semiconductor light emitting element can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1を示す、発光ダイオードの
断面図。
FIG. 1 is a cross-sectional view of a light emitting diode according to a first embodiment of the present invention.

【図2】本発明の実施形態1を示す、(AlxGa1-x
1-yInyP(x=0.01,0≦y≦1)層中のIn組
成yに対する結晶表面の凹凸の深さの関係を示すグラ
フ。
FIG. 2 shows Embodiment 1 of the present invention, (Al x Ga 1-x ).
6 is a graph showing the relationship between the In composition y in a 1-y In y P (x = 0.01, 0 ≦ y ≦ 1) layer and the depth of irregularities on the crystal surface.

【図3】本発明の実施形態1を示す、(AlxGa1-x
1-y In y P(0≦x≦1,y=0.01)層中のAl組
成xに対する結晶欠陥の数(1cm2当たり)の関係を
示すグラフ。
FIG. 3 shows Embodiment 1 of the present invention, (Al x Ga 1-x )
9 is a graph showing the relationship between the Al composition x in a 1-y In y P (0 ≦ x ≦ 1, y = 0.01) layer and the number of crystal defects (per 1 cm 2 ).

【図4】本発明の参考例を示す、発光ダイオードの断面
図。
FIG. 4 is a cross-sectional view of a light-emitting diode showing a reference example of the present invention.

【図5】本発明の実施形態2を示す、発光ダイオードの
断面図。
FIG. 5 is a cross-sectional view of a light-emitting diode, showing Embodiment 2 of the present invention.

【図6】参考例の発光ダイオードの断面図。FIG. 6 is a cross-sectional view of a light-emitting diode of a reference example.

【図7】その参考例における、III−V族の結晶表面を
表現したモデル図。
FIG. 7 is a model diagram showing a III-V group crystal surface in the reference example.

【図8】本発明の実施形態3を示す、発光ダイオードの
断面図。
FIG. 8 is a cross-sectional view of a light-emitting diode according to a third embodiment of the present invention.

【図9】本発明の他の参考例を示す、発光ダイオードの
断面図。
FIG. 9 is a cross-sectional view of a light-emitting diode showing another reference example of the present invention.

【図10】発光ダイオードの従来例を示す断面図。FIG. 10 is a sectional view showing a conventional example of a light emitting diode.

【符号の説明】[Explanation of symbols]

1、21、31、41、51、61 n−GaAs基板 2、22、32、42、52、62 n−GaAsバッ
ファ層 3、23、33、43、53、63 n−(AlxGa
1-x1-yInyPクラッド層 4、24、34、44、54、64 (AlxGa1-x
1-yInyP活性層 5、25、35、45、55、65 p−(AlxGa
1-x1-yInyPクラッド層 6、26、36、46、56、66 p−(AlxGa
1-x1-yInyP窓層 10、210、310、410、510、610 n型
用の電極 11、211、311、411、511、611 p型
用の電極 58、68 電流阻止層
1, 21, 31, 41, 51, 61 n-GaAs substrate 2, 22, 32, 42, 52, 62 n-GaAs buffer layer 3, 23, 33, 43, 53, 63 n- (Al x Ga)
1-x ) 1-y In y P clad layer 4, 24, 34, 44, 54, 64 (Al x Ga 1-x )
1-y In y P active layer 5, 25, 35, 45, 55, 65 p- (Al x Ga
1-x) 1-y In y P cladding layer 6,26,36,46,56,66 p- (Al x Ga
1-x) 1-y In y P window layer electrodes 58 and 68 current blocking layer for the electrode 11,211,311,411,511,611 p-type for 10,210,310,410,510,610 n-type

フロントページの続き (56)参考文献 特開 平6−90020(JP,A) 特開 平5−335619(JP,A) 特開 平5−41537(JP,A) 特開 平4−212479(JP,A) 特開 平4−167486(JP,A) 特開 平3−283674(JP,A) 特開 平3−148189(JP,A) 特開 平2−214801(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 JICSTファイル(JOIS)Continuation of front page (56) References JP-A-6-90020 (JP, A) JP-A-5-335619 (JP, A) JP-A-5-41537 (JP, A) JP-A-4-212479 (JP) JP-A-4-167486 (JP, A) JP-A-3-283674 (JP, A) JP-A-3-148189 (JP, A) JP-A-2-214801 (JP, A) Field surveyed (Int. Cl. 7 , DB name) H01L 33/00 JICST file (JOIS)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に活性層を含む発光部と電流拡散
層が形成されたAlGaInP系の半導体発光素子にお
いて、 前記電流拡散層が(AlxGa1-x1-yInyP(ただ
し、x=y=0.01、x=y=0.1、x=y=0.
20のいずれか)である半導体発光素子。
1. An AlGaInP-based semiconductor light emitting device having a light emitting portion including an active layer and a current diffusion layer formed on a substrate, wherein the current diffusion layer is composed of (Al x Ga 1 -x ) 1 -y In y P ( However
X = y = 0.01, x = y = 0.1, x = y = 0.
20 ).
【請求項2】 電流阻止層と、前記基板の裏面に形成さ
れた第1の電極と、前記電流拡散層の上に形成された第
2の電極とを更に備え、該第2の電極が該電流拡散層の
中央部における上面に形成され、該第2の電極と対向す
る位置に該電流阻止層が形成されている請求項1記載の
半導体発光素子。
2. The semiconductor device according to claim 1, further comprising a current blocking layer, a first electrode formed on a back surface of the substrate, and a second electrode formed on the current diffusion layer. 2. The semiconductor light emitting device according to claim 1, wherein said current blocking layer is formed at a position facing said second electrode, said current blocking layer being formed on an upper surface in a central portion of said current diffusion layer.
【請求項3】 電流阻止層と、前記基板の裏面に形成さ
れた第1の電極と、前記電流拡散層の上に形成された第
2の電極とを更に備え、該第2の電極が該電流拡散層の
周辺部における上面に形成され、該第2の電極と対向す
る位置に該電流阻止層が形成されている請求項1記載の
半導体発光素子。
3. The semiconductor device further comprises a current blocking layer, a first electrode formed on a back surface of the substrate, and a second electrode formed on the current diffusion layer, wherein the second electrode is 2. The semiconductor light emitting device according to claim 1, wherein said current blocking layer is formed at a position opposed to said second electrode and formed on an upper surface of a peripheral portion of said current diffusion layer.
【請求項4】 前記基板として、その面方位が(10
0)面から[011]方向に傾斜しているものを用いる
請求項1〜請求項3のいずれかに記載の半導体発光素
子。
4. A substrate having a plane orientation of (10)
The semiconductor light emitting device according to any one of claims 1 to 3, wherein the semiconductor light emitting device is used which is inclined from the (0) plane in the [011] direction.
【請求項5】 前記電流拡散層のエネルギーギャップが
前記活性層のエネルギーギャップよりも大きくなってい
る請求項1〜請求項4のいずれかに記載の半導体発光素
子。
5. The semiconductor light emitting device according to claim 1, wherein an energy gap of the current diffusion layer is larger than an energy gap of the active layer.
【請求項6】 前記電流拡散層の結晶表面の凹凸の深さ
が全ての領域において2nm前後であり、結晶欠陥数が
50個前後である請求項1記載の半導体発光素子。
6. The semiconductor light emitting device according to claim 1, wherein the depth of the irregularities on the crystal surface of the current diffusion layer is about 2 nm in all regions, and the number of crystal defects is about 50.
【請求項7】 前記電流拡散層の不純物濃度が5×10
18cm-3である請求項1記載の半導体発光素子。
7. The current diffusion layer having an impurity concentration of 5 × 10
2. The semiconductor light emitting device according to claim 1, wherein the density is 18 cm -3 .
【請求項8】 前記電流拡散層の厚さが5μmである請
求項1記載の半導体発光素子。
8. The semiconductor light emitting device according to claim 1, wherein said current diffusion layer has a thickness of 5 μm.
JP16927397A 1997-06-25 1997-06-25 Semiconductor light emitting device Expired - Fee Related JP3349396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16927397A JP3349396B2 (en) 1997-06-25 1997-06-25 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16927397A JP3349396B2 (en) 1997-06-25 1997-06-25 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH1117218A JPH1117218A (en) 1999-01-22
JP3349396B2 true JP3349396B2 (en) 2002-11-25

Family

ID=15883459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16927397A Expired - Fee Related JP3349396B2 (en) 1997-06-25 1997-06-25 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3349396B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068554A (en) 1998-08-21 2000-03-03 Sharp Corp Semiconductor light emitting element
JP3472714B2 (en) * 1999-01-25 2003-12-02 シャープ株式会社 Method for manufacturing semiconductor light emitting device
JP4278437B2 (en) 2003-05-27 2009-06-17 シャープ株式会社 Light emitting diode and manufacturing method thereof
US9450147B2 (en) 2013-12-27 2016-09-20 Apple Inc. LED with internally confined current injection area
US9583466B2 (en) 2013-12-27 2017-02-28 Apple Inc. Etch removal of current distribution layer for LED current confinement

Also Published As

Publication number Publication date
JPH1117218A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
KR100208108B1 (en) Semiconductor light-emitting device and method for producing the same
JP3063756B1 (en) Nitride semiconductor device
JP3240097B2 (en) Semiconductor light emitting device
JP2000244013A (en) Nitride semiconductor element
JPH0823124A (en) Light-emitting element of gallium nitride compound semiconductor
JPH04212479A (en) Semiconductor light-emitting device
JPH0614564B2 (en) Semiconductor light emitting element
US6433364B2 (en) Semiconductor light emitting device capable of increasing light emitting efficiency
JPH08228022A (en) Semiconductor light-emitting element
JP4121551B2 (en) Light emitting device manufacturing method and light emitting device
US5814838A (en) Light emitting semiconductor element with ZN doping
JP3251603B2 (en) Semiconductor light emitting device
JP3349396B2 (en) Semiconductor light emitting device
JP3124694B2 (en) Semiconductor light emitting device
JP2004200303A (en) Light emitting diode
JP3625088B2 (en) Semiconductor light emitting device
US5917196A (en) Group III-V type nitride compound semiconductor light-emitting device
JP3332785B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH08293623A (en) Method of manufacturing light emitting diode
JP3237972B2 (en) Semiconductor light emitting device
JP2001168382A (en) Semiconductor light emitting element
JPH09307140A (en) Semiconductor light emitting device
JP2000174341A (en) Gallium nitride based compound semiconductor light- emitting element
JP3587699B2 (en) Semiconductor light emitting device
JP2931678B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04