JP3343936B2 - Amorphous lithium ion conductive solid electrolyte and its synthesis method - Google Patents

Amorphous lithium ion conductive solid electrolyte and its synthesis method

Info

Publication number
JP3343936B2
JP3343936B2 JP11869092A JP11869092A JP3343936B2 JP 3343936 B2 JP3343936 B2 JP 3343936B2 JP 11869092 A JP11869092 A JP 11869092A JP 11869092 A JP11869092 A JP 11869092A JP 3343936 B2 JP3343936 B2 JP 3343936B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
conductive solid
ion conductive
lithium ion
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11869092A
Other languages
Japanese (ja)
Other versions
JPH05310418A (en
Inventor
登 青谷
繁雄 近藤
和典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14742766&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3343936(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP11869092A priority Critical patent/JP3343936B2/en
Publication of JPH05310418A publication Critical patent/JPH05310418A/en
Application granted granted Critical
Publication of JP3343936B2 publication Critical patent/JP3343936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Glass Compositions (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、全固体電池、コンデン
サ、固体エレクトロクロミック表示素子等の固体電気化
学素子の電解質として利用されるリチウムイオン伝導性
固体電解質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion conductive solid electrolyte used as an electrolyte for solid electrochemical devices such as all solid state batteries, capacitors and solid state electrochromic display devices.

【0002】[0002]

【従来の技術】近年、リチウムイオン伝導性固体電解質
を用いたリチウム電池の全固体化に関する研究が盛んに
行われている。
2. Description of the Related Art In recent years, studies on all solidification of a lithium battery using a lithium ion conductive solid electrolyte have been actively conducted.

【0003】この様なリチウムイオン伝導性固体電解質
の一つとしてLi2 S・X(XはSiS2 ,GeS2
2 5 ,B2 3 のうち少なくとも一種の硫化物)系
硫化物ガラスが存在する。
As one of such lithium ion conductive solid electrolytes, Li 2 SX (X is SiS 2 , GeS 2 ,
There is at least one sulfide-based sulfide glass of P 2 S 5 and B 2 S 3 .

【0004】Li2 S・X系硫化物ガラスは、XがSi
2 のLi2 S・SiS2 系において最も高い伝導率の
値を有し、その値は、5×10-4S/cm程度である。
In Li 2 S.X sulfide glass, X is Si
It has the highest conductivity value in the Li 2 S.SiS 2 system of S 2 , and the value is about 5 × 10 −4 S / cm.

【0005】また、さらに高いイオン伝導性を得るため
に、これら硫化物ガラスにヨウ化リチウム(LiI)あ
るいはリン酸リチウム(Li3 PO4 )を添加した擬3
成分系ガラスの提案が行われている。
Further, in order to obtain higher ion conductivity, pseudo sulfide obtained by adding lithium iodide (LiI) or lithium phosphate (Li 3 PO 4 ) to these sulfide glasses.
Component-based glasses have been proposed.

【0006】[0006]

【発明が解決しようとする課題】これら各種の固体電解
質の提案は、そのイオン伝導性を向上させることを目的
としている。伝導率は可動イオンの濃度と移動度の積に
比例するため、固体電解質の伝導率を向上させるために
は可動イオンの濃度を上げることが必要となる。例えば
LiS2 ・X(XはSiS2 ,GeS2 ,P2 5 ,B
2 3 のうち少なくとも一種の硫化物)2成分系ガラス
ではLi2 S成分を増やすことにより伝導率が向上す
る。
The proposal of these various solid electrolytes aims at improving the ionic conductivity. Since the conductivity is proportional to the product of the concentration of the mobile ions and the mobility, it is necessary to increase the concentration of the mobile ions in order to improve the conductivity of the solid electrolyte. For example, LiS 2 .X (X is SiS 2 , GeS 2 , P 2 S 5 , B
In a two- component glass of at least one sulfide of 2 S 3 ), the conductivity is improved by increasing the Li 2 S component.

【0007】しかしながら、これらの系でのガラス化領
域は限られており、Li2 Sの組成比を大きくするとガ
ラス形成が不可能となり逆に伝導率が低下する結果とな
る。
However, the vitrification region in these systems is limited, and if the composition ratio of Li 2 S is increased, glass formation becomes impossible, resulting in a decrease in conductivity.

【0008】本発明は、以上の課題を解決し、より高い
リチウムイオン伝導性を有する固体電解質とその合成法
を提供することを目的とする。
An object of the present invention is to solve the above problems and to provide a solid electrolyte having higher lithium ion conductivity and a method for synthesizing the same.

【0009】[0009]

【課題を解決するための手段】本発明の非晶質リチウム
イオン伝導性固体電解質は、一般式aLi3 PO4 ・b
Li2 S・cX(a+b+c=1、XはSiS2 ,Ge
2 ,P2 5 ,B23 のうち少なくとも一種の硫化
物)で表され、組成比a、b、c、がa<0.3かつb
>0.3かつc>0.2をみたすことを特徴とする。
The amorphous lithium ion conductive solid electrolyte of the present invention has the general formula aLi 3 PO 4 .b
Li 2 S · cX (a + b + c = 1, X is SiS 2 , Ge
Is represented by S 2, at least one sulfide of P 2 S 5, B 2 S 3), the composition ratio a, b, c, but a <0.3 and b
> 0.3 and c> 0.2.

【0010】尚、前記一般式aLi3 PO4 ・bLi2
S・cX(a+b+c=1、XはSiS2 ,GeS2
2 5 ,B2 3 のうち少なくとも一種の硫化物)で
表される非晶質リチウムイオン伝導性固体電解質は、組
成比a、b、c、がa≦0.1かつb≧0.5かつc≧
0.3をみたす領域を用いることが好ましい。
The general formula aLi 3 PO 4 .bLi 2
S · cX (a + b + c = 1, X is SiS 2 , GeS 2 ,
The amorphous lithium ion conductive solid electrolyte represented by at least one sulfide of P 2 S 5 and B 2 S 3 ) has composition ratios a, b, and c of a ≦ 0.1 and b ≧ 0. .5 and c ≧
It is preferable to use a region satisfying 0.3.

【0011】また、前記非晶質リチウムイオン伝導性固
体電解質は、Li3 PO4 とLi2SとX(XはSiS
2 ,GeS2 ,P2 5 ,B2 3 のうち少なくとも一
種の硫化物)の混合物を溶融し、その後急冷することに
より合成するのが好ましい。
The amorphous lithium ion conductive solid electrolyte is composed of Li 3 PO 4 , Li 2 S and X (X is SiS
2 , a mixture of GeS 2 , P 2 S 5 , and B 2 S 3 ) is preferably melted and then quenched to synthesize.

【0012】[0012]

【作用】LiS2 ・X(XはSiS2 ,GeS2 ,P2
5 ,B2 3 のうち少なくとも一種の硫化物)擬2成
分系ガラスに第3成分としてLi3 PO4 を加えること
で、可動イオンであるリチウムイオンの濃度が大きなも
のとなり、伝導率が向上する。またさらに、Li3 PO
4 の成分であるPO4 3-はガラスネットワーク形成能を
有することから、2成分系ではガラス化が不可能であっ
たLi2 S成分が多い組成領域でもガラス化が可能とな
る。
[Function] LiS 2 · X (X is SiS 2 , GeS 2 , P 2
By adding Li 3 PO 4 as a third component to the pseudo-two-component glass of at least one of sulfides of S 5 and B 2 S 3 ), the concentration of lithium ions, which are mobile ions, becomes large, and the conductivity becomes high. improves. Furthermore, Li 3 PO
Since PO 4 3-, which is the component 4 , has a glass network forming ability, it can be vitrified even in a composition region containing a large amount of Li 2 S component, which cannot be vitrified in the two-component system.

【0013】一般式aLi3 PO4 ・bLi2 S・cX
(a+b+c=1、XはSiS2 ,GeS2 ,P
2 5 ,B2 3 のうち少なくとも一種の硫化物)を主
成分とするリチウムイオン伝導性固体電解質では、組成
比a、b、cがa<0.3かつb>0.3かつc>0.
2をみたす組成領域でガラス化が可能となり、高いイオ
ン伝導性を示す非晶質リチウムイオン伝導性固体電解質
を得ることができる。
General formula aLi 3 PO 4 .bLi 2 S.cX
(A + b + c = 1, X is SiS 2 , GeS 2 , P
In a lithium ion conductive solid electrolyte whose main component is at least one sulfide of 2 S 5 and B 2 S 3 ), the composition ratios a, b and c are a <0.3 and b> 0.3 and c > 0.
Vitrification is possible in a composition region that satisfies No. 2 and an amorphous lithium ion conductive solid electrolyte having high ion conductivity can be obtained.

【0014】さらにこの組成領域の中でも、組成比a、
b、cがa≦0.1かつb≧0.5かつc≧0.3をみ
たす組成領域で可動イオンの濃度が高いものとなり、伝
導率が極大を示すことから、特に好ましく用いられる。
Further, in this composition region, the composition ratio a,
It is particularly preferably used because the concentration of mobile ions becomes high in the composition region where b and c satisfy a ≦ 0.1, b ≧ 0.5 and c ≧ 0.3, and the conductivity shows a maximum.

【0015】aLi3 PO4 ・bLi2 S・cX(a+
b+c=1)を主成分とする化合物において、XがSi
2 であるときガラス化が容易にできることから、Xと
してSiS2 が特に好ましく用いられる。
ALi 3 PO 4 .bLi 2 S.cX (a +
b + c = 1), X is Si
When S 2 , SiS 2 is particularly preferably used as X because vitrification can be easily performed.

【0016】また、擬3成分系硫化物ガラスを作製する
には、一般に擬2成分系ガラスを母材として作製し、こ
れに第3成分を混合、溶融し、ガラスを作製するといっ
た2段階のプロセスをとる方法が一般的であるが、Li
3 PO4 ・Li2 S・X(XはSiS2 ,GeS2 ,P
2 5 ,B2 3 のうち少なくとも一種の硫化物)擬3
成分系ガラスを作製するには、PO4 3-がガラスネット
ワーク形成に寄与するために、このような2段階のプロ
セスをとる必要はなく、材料を一度に混合し、溶融した
後、急冷することで合成の際の工数を簡略化することが
できる。
In order to produce pseudo-ternary sulfide glass, a two-stage process is generally performed in which a pseudo-binary glass is prepared as a base material, a third component is mixed and melted, and a glass is prepared. Although the method of taking a process is common, Li
3 PO 4 · Li 2 S · X (X is SiS 2, GeS 2, P
At least one sulfide of 2 S 5 and B 2 S 3 ) pseudo 3
To prepare a component system glass for PO 4 3- contribute to glass network formation, it is not necessary to take a process of such a two-step, after mixing the materials at once melted, rapidly cooling Thus, the number of steps in the synthesis can be simplified.

【0017】[0017]

【実施例】以下、本発明を具体的実施例により詳細に説
明するが、本発明は、これら実施例に限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to these examples.

【0018】(実施例1)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・SiS2 で表される非晶質リチウムイオン伝導性固体
電解質を以下の方法で合成した。
(Example 1) Among the amorphous lithium ion conductive solid electrolytes according to the present invention, Li 3 PO 4 .Li 2 S
· SiS 2 in amorphous lithium ion conductive solid electrolyte represented were synthesized by the following method.

【0019】母材としてLi2 S・SiS2 系硫化物ガ
ラスを合成し、これにLi3 PO4を添加して、aLi
3 PO4 ・bLi2 S・cSiS2 (a+b+c+=
1)を合成した。
A Li 2 S.SiS 2 -based sulfide glass was synthesized as a base material, and Li 3 PO 4 was added thereto to form aLi
3 PO 4 .bLi 2 S.cSiS 2 (a + b + c + =
1) was synthesized.

【0020】先ず、Li2 S・SiS2 系硫化物ガラス
の合成法を示すと、硫化リチウム(Li2 S)と硫化珪
素(SiS2 )を所定の組成となるように混合した材料
粉末をガラス状カーボン坩堝にいれ、これを、アルゴン
気流中950°Cで1.5時間溶融し反応させた後、液
体窒素中に投入して急冷し、Li2 S・SiS2 を合成
し母材とした。
First, a method for synthesizing Li 2 S.SiS 2 -based sulfide glass is described. A material powder obtained by mixing lithium sulfide (Li 2 S) and silicon sulfide (SiS 2 ) so as to have a predetermined composition is mixed with glass. The mixture was melted at 950 ° C. for 1.5 hours in an argon gas stream and reacted, then poured into liquid nitrogen and quenched to synthesize Li 2 S.SiS 2 and used as a base material. .

【0021】次に、これらの母材を粉砕し、これにリン
酸リチウム(Li3 PO4 )をaLi3 PO4 ・bLi
2 S・cSiS2 (a+b+c=1)の所定の組成とな
るように加えて混合し、得られた材料粉末をガラス状カ
ーボン坩堝にいれ、これを、アルゴン気流中950°C
で1.5時間溶融し反応させた後、液体窒素中に投入し
て急冷し、aLi3 PO4 ・bLi2 S・cSiS
2 (a+b+c=1)リチウムイオン伝導性固体電解質
を合成した。
Next, these base materials were pulverized, and lithium phosphate (Li 3 PO 4 ) was added thereto with aLi 3 PO 4 .bLi.
2 S · cSiS 2 (a + b + c = 1) is added and mixed so as to have a predetermined composition, and the obtained material powder is placed in a glassy carbon crucible, which is placed in an argon stream at 950 ° C.
And reacted for 1.5 hours, then poured into liquid nitrogen and quenched, and then aLi 3 PO 4 .bLi 2 S.cSiS
2 (a + b + c = 1) A lithium ion conductive solid electrolyte was synthesized.

【0022】合成の結果、生成物がガラス化する組成領
域とガラス化しない組成領域がみられた。ガラス化範囲
は図1に示すように、a<0.3、b>0.3、c>
0.2の範囲であり、Li2 S・SiS2 擬2成分系で
はガラス化しない組成、例えば0.65Li2 S・0.
35SiS2 に対し、リン酸リチウムを加えて0.05
Li3 PO4 ・(0.65Li2 S・0.35Si
2 )とすることによりガラス化が可能であることがわ
かった。
As a result of the synthesis, there were a composition region where the product vitrified and a composition region where the product did not vitrify. As shown in FIG. 1, the vitrification range is a <0.3, b> 0.3, c>.
In the range of 0.2, the composition does not vitrify the Li 2 S · SiS 2 quasi-two-component system, for example 0.65Li 2 S · 0.
Lithium phosphate was added to 35SiS 2 to add 0.05
Li 3 PO 4. (0.65Li 2 S.0.35Si
It was found that vitrification was possible by setting S 2 ).

【0023】以上のようにして合成した固体電解質のイ
オン伝導率を、交流インピーダンス法により測定した。
The ionic conductivity of the solid electrolyte synthesized as described above was measured by the AC impedance method.

【0024】測定の結果、a≦0.1、b≧0.5、c
≧0.3の組成領域で特に高い伝導率を示し、2×10
-4〜7×10-4S/cmであった。伝導率が最大となる
組成は、0.03Li3 PO4 ・0.63Li2 S・
0.34SiS2 であった。
As a result of the measurement, a ≦ 0.1, b ≧ 0.5, c
A particularly high conductivity is exhibited in a composition region of ≧ 0.3, and 2 × 10
−4 to 7 × 10 −4 S / cm. The composition having the maximum conductivity is 0.03Li 3 PO 4 .0.63Li 2 S.
0.34 SiS 2 .

【0025】以上のように、本発明によると、Li2
・SiS2 擬2成分系ではガラス化しなかった組成もリ
ン酸リチウムを加えることによりガラス化が可能とな
り、また、よりイオン伝導率の大きな固体電解質とする
ことができる。
As described above, according to the present invention, Li 2 S
Addition of lithium phosphate to a composition that was not vitrified in the SiS 2 pseudo two-component system can be vitrified, and a solid electrolyte having a higher ionic conductivity can be obtained.

【0026】(実施例2)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・GeS2 で表される非晶質リチウムイオン伝導性固体
電解質を、SiS 2 にかえてGeS2 を用いた以外は実
施例1と同様の方法で合成した。
Example 2 Amorphous lithium according to the present invention
Among the ion-conductive solid electrolytes, LiThreePOFour・ LiTwoS
・ GeSTwoAmorphous lithium ion conductive solid represented by
The electrolyte is SiS TwoGeS insteadTwoOther than using
Synthesized in the same manner as in Example 1.

【0027】合成の結果、生成物がガラス化する組成領
域とガラス化しない組成領域が見られた。ガラス化範囲
は図2で示すように、a<0.3、b>0.3、c>
0.2の範囲であり、Li2 S・GeS2 擬2成分系で
はガラス化しない組成、例えば0.65Li2 S・0.
35GeS2 に対し、リン酸リチウムを加えて0.05
Li3 PO4 ・(0.65Li2 S・0.35Ge
2 )とすることによりガラス化が可能であることがわ
かった。
As a result of the synthesis, a composition region where the product was vitrified and a composition region where the product was not vitrified were observed. As shown in FIG. 2, the vitrification range is a <0.3, b> 0.3, c>.
In the range of 0.2, the composition does not vitrify the Li 2 S · GeS 2 quasi-two-component system, for example 0.65Li 2 S · 0.
Lithium phosphate was added to 35 GeS 2 to obtain 0.05
Li 3 PO 4. (0.65Li 2 S.0.35Ge
It was found that vitrification was possible by setting S 2 ).

【0028】以上のようにして合成した固体電解質のイ
オン伝導率を、交流インピーダンス法により測定した。
The ionic conductivity of the solid electrolyte synthesized as described above was measured by the AC impedance method.

【0029】測定の結果、a≦0.1かつb≧0.5か
つc≧0.3の組成領域で特に高い伝導率を示し、1×
10-4〜3×10-4S/cmとなった。伝導率が最大と
なる組成は、0.03Li3 PO4 ・0.63Li2
・0.34GeS2 であった。
As a result of the measurement, a particularly high conductivity was exhibited in the composition range of a ≦ 0.1, b ≧ 0.5 and c ≧ 0.3, and 1 ×
10-4 became ~3 × 10 -4 S / cm. The composition having the maximum conductivity is 0.03Li 3 PO 4 .0.63Li 2 S
· 0.34GeS was 2.

【0030】以上のように、本発明によると、Li2
・GeS2 擬2成分系ではガラス化しなかった組成もリ
ン酸リチウムを加えることによりガラス化が可能とな
り、また、よりイオン伝導率の大きな固体電解質とする
ことができる。
As described above, according to the present invention, Li 2 S
The composition that was not vitrified in the GeS 2 pseudo-two-component system can be vitrified by adding lithium phosphate, and a solid electrolyte having higher ionic conductivity can be obtained.

【0031】(実施例3)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・P2 5 で表される非晶質リチウムイオン伝導性固体
電解質を、SiS 2 にかえてP2 5 を用いた以外は実
施例1と同様の方法で合成した。
Example 3 Amorphous lithium according to the present invention
Among the ion-conductive solid electrolytes, LiThreePOFour・ LiTwoS
・ PTwoSFiveAmorphous lithium ion conductive solid represented by
The electrolyte is SiS TwoInstead of PTwoSFiveOther than using
Synthesized in the same manner as in Example 1.

【0032】合成の結果、生成物がガラス化する組成領
域とガラス化しない組成領域が見られた。ガラス化範囲
は図3で示すように、a<0.3、b>0.3、c>
0.2の範囲であり、Li2 S・P2 5 擬2成分系で
はガラス化しない組成、例えば0.65Li2 S・0.
35P2 5 に対し、リン酸リチウムを加えて0.05
Li3 PO4 ・(0.65Li2 S・0.35P
2 5 )とすることによりガラス化が可能であることが
わかった。
As a result of the synthesis, a composition region where the product was vitrified and a composition region where the product was not vitrified were observed. As shown in FIG. 3, the vitrification range is a <0.3, b> 0.3, c>.
In the range of 0.2, the composition does not vitrify the Li 2 S · P 2 S 5 quasi-two-component system, for example 0.65Li 2 S · 0.
Lithium phosphate was added to 35P 2 S 5 to add 0.05
Li 3 PO 4・ (0.65Li 2 S ・ 0.35P
It was found that vitrification was possible by using 2 S 5 ).

【0033】以上のようにして合成した固体電解質のイ
オン伝導率を、交流インピーダンス法により測定した。
The above way the ionic conductivity of the composite solid electrolyte was measured by the AC impedance method.

【0034】測定の結果、a≦0.1、b≧0.5、c
≧0.3の組成領域で特に高い伝導率を示し、2×10
-4〜4×10-4S/cmとなった。伝導率が最大となる
組成は、0.03Li3 PO4 ・0.65Li2 S・
0.32P2 5 であった。
As a result of the measurement, a ≦ 0.1, b ≧ 0.5, c
A particularly high conductivity is exhibited in a composition region of ≧ 0.3, and 2 × 10
−4 to 4 × 10 −4 S / cm. The composition having the maximum conductivity is 0.03Li 3 PO 4 · 0.65Li 2 S ·
0.32P was 2 S 5.

【0035】以上のように、本発明によると、Li2
・P2 5 擬2成分系ではガラス化しなかった組成もリ
ン酸リチウムを加えることによりガラス化が可能とな
り、また、よりイオン伝導率の大きな固体電解質とする
ことができる。
As described above, according to the present invention, Li 2 S
The composition that was not vitrified in the P 2 S 5 pseudo two-component system can be vitrified by adding lithium phosphate, and a solid electrolyte having higher ionic conductivity can be obtained.

【0036】(実施例4)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・B2 3 で表される非晶質リチウムイオン伝導性固体
電解質を、SiS 2 にかえてB2 3 を用いた以外は実
施例1と同様の方法で合成した。
Example 4 Amorphous lithium according to the present invention
Among the ion-conductive solid electrolytes, LiThreePOFour・ LiTwoS
・ BTwoSThreeAmorphous lithium ion conductive solid represented by
The electrolyte is SiS TwoB insteadTwoSThreeOther than using
Synthesized in the same manner as in Example 1.

【0037】合成の結果、生成物がガラス化する組成領
域とガラス化しない組成領域が見られた。ガラス化範囲
は図4で示すように、a<0.3、b>0.3、c>
0.2の範囲であり、Li2 S・B2 3 擬2成分系で
はガラス化しない組成、例えば0.65Li2 S・0.
35B2 3 に対し、リン酸リチウムを加えて0.05
Li3 PO4 ・(0.65Li2 S・0.35B
2 3 )とすることによりガラス化が可能であることが
わかった。
As a result of the synthesis, a composition region where the product was vitrified and a composition region where the product was not vitrified were observed. As shown in FIG. 4, the vitrification range is a <0.3, b> 0.3, c>.
In the range of 0.2, the composition does not vitrify the Li 2 S · B 2 S 3 pseudo binary system, for example 0.65Li 2 S · 0.
Lithium phosphate was added to 35B 2 S 3 to add 0.05
Li 3 PO 4・ (0.65Li 2 S ・ 0.35B
It was found that vitrification was possible by setting to 2 S 3 ).

【0038】以上のようにして合成した固体電解質のイ
オン伝導率を、交流インピーダンス法により測定した。
The ionic conductivity of the solid electrolyte synthesized as described above was measured by the AC impedance method.

【0039】測定の結果、a≦0.1、b≧0.5、c
≧0.3の組成領域で特に高い伝導率を示し、1×10
-4〜3×10-4S/cmとなった。伝導率が最大となる
組成は、0.03Li3 PO4 ・0.53Li2 S・
0.44B2 3 であった。
As a result of the measurement, a ≦ 0.1, b ≧ 0.5, c
Particularly high conductivity is exhibited in the composition range of ≧ 0.3 and 1 × 10
−4 to 3 × 10 −4 S / cm. The composition having the maximum conductivity is 0.03Li 3 PO 4 .0.53Li 2 S.
0.44B was 2 S 3.

【0040】以上のように、本発明によると、Li2
・B2 3 擬2成分系ではガラス化しなかった組成もリ
ン酸リチウムを加えることによりガラス化が可能とな
り、また、よりイオン伝導率の大きな固体電解質とする
ことができる。
As described above, according to the present invention, Li 2 S
The composition that was not vitrified in the B 2 S 3 pseudo two-component system can be vitrified by adding lithium phosphate, and a solid electrolyte having higher ionic conductivity can be obtained.

【0041】(実施例5)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・SiS2 で表される非晶質リチウムイオン伝導性固体
電解質を以下の方法で合成した。
Example 5 Of the amorphous lithium ion conductive solid electrolyte according to the present invention, Li 3 PO 4 .Li 2 S
· SiS 2 in amorphous lithium ion conductive solid electrolyte represented were synthesized by the following method.

【0042】所定の組成となるように、リン酸リチウム
(Li3 PO4 )と硫化リチウム(Li2 S)と硫化珪
素(SiS2 )を混合した材料粉末をガラス状カーボン
坩堝にいれ、これを、アルゴン気流中950°Cで1.
5時間溶融し反応させた後、液体窒素中に投入して急冷
し、aLi3 PO4 ・bLi2 S・cSiS2 (a+b
+c=1)リチウムイオン伝導性固体電解質を合成し
た。
A material powder obtained by mixing lithium phosphate (Li 3 PO 4 ), lithium sulfide (Li 2 S) and silicon sulfide (SiS 2 ) is placed in a glassy carbon crucible so as to have a predetermined composition. At 950 ° C. in an argon stream.
After melting and reacting for 5 hours, it is poured into liquid nitrogen and rapidly cooled, and aLi 3 PO 4 .bLi 2 S.cSiS 2 (a + b
+ C = 1) A lithium ion conductive solid electrolyte was synthesized.

【0043】合成の結果、ガラス化領域や伝導率の特性
は、実施例1で示した場合とほぼ同様となった。
As a result of the synthesis, the characteristics of the vitrified region and the conductivity were almost the same as those shown in Example 1.

【0044】以上のように、本発明によると、母材の合
成工程を経ることなしに、高いイオン伝導率を示すリチ
ウムイオン伝導性固体電解質を得ることができる。
As described above, according to the present invention, a lithium ion conductive solid electrolyte having a high ionic conductivity can be obtained without going through a step of synthesizing a base material.

【0045】(実施例6)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・GeS2 で表される非晶質リチウムイオン伝導性固体
電解質を、SiS 2 にかえてGeS2 を用いた以外は実
施例5と同様の方法で合成した。
Example 6 Amorphous lithium according to the present invention
Among the ion-conductive solid electrolytes, LiThreePOFour・ LiTwoS
・ GeSTwoAmorphous lithium ion conductive solid represented by
The electrolyte is SiS TwoGeS insteadTwoOther than using
The compound was synthesized in the same manner as in Example 5.

【0046】合成の結果、ガラス化領域や伝導率の特性
は、実施例2で示した場合とほぼ同様となった。
As a result of the synthesis, the properties of the vitrified region and the conductivity were almost the same as those shown in Example 2.

【0047】以上のように、本発明によると、母材の合
成工程を経ることなしに、高いイオン伝導率を示すリチ
ウムイオン伝導性固体電解質を得ることができる。
As described above, according to the present invention, a lithium ion conductive solid electrolyte having a high ionic conductivity can be obtained without going through a step of synthesizing a base material.

【0048】(実施例7)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・P2 5 で表される非晶質リチウムイオン伝導性固体
電解質をSiS2にかえてP2 5 を用いた以外は実施
例5と同様の方法で合成した。
Embodiment 7 Among the amorphous lithium ion conductive solid electrolytes according to the present invention, Li 3 PO 4 .Li 2 S
· P 2 S except that the amorphous lithium ion conductive solid electrolyte represented by 5 with P 2 S 5 in place of SiS 2 was synthesized in the same manner as in Example 5.

【0049】合成の結果、ガラス化領域や伝導率の特性
は、実施例3で示した場合とほぼ同様となった。
As a result of the synthesis, the characteristics of the vitrified region and the conductivity were almost the same as those shown in Example 3.

【0050】以上のように、本発明によると、母材の合
成工程を経ることなしに、高いイオン伝導率を示すリチ
ウムイオン伝導性固体電解質を得ることができる。
As described above, according to the present invention, a lithium ion conductive solid electrolyte exhibiting high ionic conductivity can be obtained without going through a base material synthesis step.

【0051】(実施例8)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・B2 3 で表される非晶質リチウムイオン伝導性固体
電解質を、SiS 2 にかえてB2 3 を用いた以外は実
施例5と同様の方法で合成した。
Example 8 Amorphous lithium according to the present invention
Among the ion-conductive solid electrolytes, LiThreePOFour・ LiTwoS
・ BTwoSThreeAmorphous lithium ion conductive solid represented by
The electrolyte is SiS TwoB insteadTwoSThreeOther than using
The compound was synthesized in the same manner as in Example 5.

【0052】合成の結果、ガラス化領域や伝導率の特性
は、実施例4で示した場合とほぼ同様となった。
As a result of the synthesis, the properties of the vitrified region and the conductivity were almost the same as those shown in Example 4.

【0053】以上のように、本発明によると、母材の合
成工程を経ることなしに、高いイオン伝導率を示すリチ
ウムイオン伝導性固体電解質を得ることができる。
As described above, according to the present invention, a lithium ion conductive solid electrolyte exhibiting high ionic conductivity can be obtained without going through a step of synthesizing a base material.

【0054】尚、本発明の実施例においては、一般式L
3 PO4 ・Li2 S・Xで表される固体電解質とし
て、XがSiS2 ,GeS2 ,P2 5 ,B2 3 であ
るものについて説明を行ったが、XとしてSiS2 とG
eS2 の混合物など、SiS2,GeS2 ,P2 5
2 3 から選ばれる複数の硫化物の混合物を用いても
同様の結果が得られることはいうまでもなく、本発明は
Li3 PO4 ・Li2 S・XにおけるXとして単一の硫
化物に限定されるものではない。
In the embodiment of the present invention, the general formula L
As solid electrolyte represented by i 3 PO 4 · Li 2 S · X, but X has been described what is SiS 2, GeS 2, P 2 S 5, B 2 S 3, and SiS 2 as X G
such as a mixture of eS 2, SiS 2, GeS 2 , P 2 S 5,
It goes without saying that the same result can be obtained by using a mixture of a plurality of sulfides selected from B 2 S 3 , and the present invention relates to a single sulfide as X in Li 3 PO 4 .Li 2 S.X. It is not limited to objects.

【0055】[0055]

【発明の効果】一般式aLi3 PO4 ・bLi2 S・c
X(a+b+c=1、XはSiS2 ,GeS2 ,P2
5 ,B2 3 のうち少なくとも一種の硫化物)で表され
るリチウムイオン伝導性固体電解質において、その組成
比a、b、cをa<0.3、b>0.3、c>0.2と
することで、高いイオン伝導性を示す非晶質リチウムイ
オン伝導性固体電解質を得ることができる。
The general formula aLi 3 PO 4 .bLi 2 S.c
X (a + b + c = 1, X is SiS 2 , GeS 2 , P 2 S
5 , at least one sulfide of B 2 S 3 ), the composition ratios a, b, and c of a <0.3, b> 0.3, c> 0 .2, an amorphous lithium ion conductive solid electrolyte exhibiting high ion conductivity can be obtained.

【0056】また、組成比a、b、cをa≦0.1、b
≧0.5、c≧0.3とすることで、特に高いイオン伝
導性を示す非晶質リチウムイオン伝導性固体電解質を得
ることができる。
Further, when the composition ratios a, b, and c are a ≦ 0.1, b
By setting ≧ 0.5 and c ≧ 0.3, it is possible to obtain an amorphous lithium ion conductive solid electrolyte exhibiting particularly high ion conductivity.

【0057】また、Li3 PO4 とLi2 SとX(Xは
SiS2 ,GeS2 ,P2 5 ,B 2 3 のうち少なく
とも一種の硫化物)の混合物を溶融し、その後急冷する
ことで、母材の合成工程を経ることなしに高いイオン伝
導性を示す前記非晶質リチウムイオン伝導性固体電解質
を得ることができる。
In addition, LiThreePOFourAnd LiTwoS and X (X is
SiSTwo, GeSTwo, PTwoSFive, B TwoSThreeLess of
And quenching after quenching)
High ion transfer without going through the base material synthesis process
The amorphous lithium ion conductive solid electrolyte exhibiting conductivity
Can be obtained.

【0058】また、特に、前記一般式aLi3 PO4
bLi2 S・cX(a+b+c=1)で表される化合物
において、XとしてSiS2 を用いることで、高いイオ
ン伝導性を示す非晶質リチウムイオン伝導性固体電解質
を得ることができる。
Further, in particular, the general formula aLi 3 PO 4.
By using SiS 2 as X in the compound represented by bLi 2 S · cX (a + b + c = 1), an amorphous lithium ion conductive solid electrolyte having high ion conductivity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】aLi3 PO4 ・bLi2 S・cSiS2 擬3
成分系のガラス化領域を示す三成分組成図
FIG. 1 aLi 3 PO 4 .bLi 2 S.cSiS 2 pseudo 3
Three-component composition diagram showing the vitrification region of the component system

【図2】aLi3 PO4 ・bLi2 S・cGeS2 擬3
成分系のガラス化領域を示す三成分組成図
FIG. 2 aLi 3 PO 4 .bLi 2 S.cGeS 2 pseudo 3
Three-component composition diagram showing the vitrification region of the component system

【図3】aLi3 PO4 ・bLi2 S・cP2 5 擬3
成分系のガラス化領域を示す三成分組成図
FIG. 3 aLi 3 PO 4 .bLi 2 S.cP 2 S 5 pseudo 3
Three-component composition diagram showing the vitrification region of the component system

【図4】aLi3 PO4 ・bLi2 S・cB2 3 擬3
成分系のガラス化領域を示す三成分組成図
FIG. 4 aLi 3 PO 4 .bLi 2 S.cB 2 S 3 pseudo 3
Three-component composition diagram showing the vitrification region of the component system

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01M 6/18 H01M 6/18 Z 10/36 10/36 A (56)参考文献 特開 平4−231346(JP,A) 特開 平4−202024(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01D 15/00 C01B 25/30 C01B 17/22 C03C 3/32 C03C 4/14 H01B 1/06 H01M 6/18 H01M 10/36 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI H01M 6/18 H01M 6/18 Z 10/36 10/36 A (56) References JP-A-4-231346 (JP, A) JP-A-4-202024 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01D 15/00 C01B 25/30 C01B 17/22 C03C 3/32 C03C 4/14 H01B 1 / 06 H01M 6/18 H01M 10/36

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式aLi3 PO4 ・bLi2 S・c
X(a+b+c=1、XはSiS2 ,GeS2 ,P2
5 ,B2 3 のうち少なくとも一種の硫化物)で表さ
れ、組成比a、b、c、がa<0.3かつb>0.3か
つc>0.2をみたすことを特徴とする非晶質リチウム
イオン伝導性固体電解質。
1. The formula aLi 3 PO 4 .bLi 2 S.c
X (a + b + c = 1, X is SiS 2 , GeS 2 , P 2 S
5 , at least one sulfide of B 2 S 3 ), wherein the composition ratios a, b, and c satisfy a <0.3, b> 0.3, and c> 0.2. Amorphous lithium ion conductive solid electrolyte.
【請求項2】 組成比a、b、c、がa≦0.1かつb
≧0.5かつc≧0.3をみたすことを特徴とする請求
項1記載の非晶質リチウムイオン伝導性固体電解質。
2. The composition ratio a, b, c is a ≦ 0.1 and b
2. The amorphous lithium ion conductive solid electrolyte according to claim 1, wherein ≧ 0.5 and c ≧ 0.3 are satisfied.
【請求項3】 Li3 PO4 とLi2 SとX(XはSi
2 ,GeS2 ,P25 ,B2 3 のうち少なくとも
一種の硫化物)の混合物を溶融し、その後急冷すること
を特徴とする請求項1または請求項2記載の非晶質リチ
ウムイオン伝導性固体電解質の合成法。
3. Li 3 PO 4 , Li 2 S and X (X is Si
3. The amorphous lithium according to claim 1, wherein a mixture of at least one sulfide of S 2 , GeS 2 , P 2 S 5 and B 2 S 3 ) is melted and then quenched. A method for synthesizing an ion conductive solid electrolyte.
JP11869092A 1992-05-12 1992-05-12 Amorphous lithium ion conductive solid electrolyte and its synthesis method Expired - Lifetime JP3343936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11869092A JP3343936B2 (en) 1992-05-12 1992-05-12 Amorphous lithium ion conductive solid electrolyte and its synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11869092A JP3343936B2 (en) 1992-05-12 1992-05-12 Amorphous lithium ion conductive solid electrolyte and its synthesis method

Publications (2)

Publication Number Publication Date
JPH05310418A JPH05310418A (en) 1993-11-22
JP3343936B2 true JP3343936B2 (en) 2002-11-11

Family

ID=14742766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11869092A Expired - Lifetime JP3343936B2 (en) 1992-05-12 1992-05-12 Amorphous lithium ion conductive solid electrolyte and its synthesis method

Country Status (1)

Country Link
JP (1) JP3343936B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150943B2 (en) 2001-02-28 2006-12-19 Sumitomo Electric Industries, Ltd. Inorganic solid electrolyte and lithium cell component
US7416815B2 (en) 2004-04-01 2008-08-26 Sumitomo Electric Industries, Ltd. Negative electrode member for lithium battery and process for producing the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755940A (en) * 1994-06-13 1998-05-26 Mitsui Petrochemical Industries, Ltd. Lithium ionic conducting glass thin film and carbon dioxide sensor comprising the glass thin film
EP0704920B1 (en) * 1994-09-21 2000-04-19 Matsushita Electric Industrial Co., Ltd. Solid-state lithium secondary battery
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
JP3744665B2 (en) 1997-12-09 2006-02-15 トヨタ自動車株式会社 Lithium ion conductive solid electrolyte and battery
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
EP1052711A4 (en) * 1998-12-02 2005-03-30 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary cell
US6605386B1 (en) 1998-12-02 2003-08-12 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
WO2000033402A1 (en) 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell and its charging method
JP4759256B2 (en) * 2004-11-29 2011-08-31 公立大学法人大阪府立大学 Novel high ion conductive ion glass composition and method for producing the same
JP4165536B2 (en) 2005-06-28 2008-10-15 住友電気工業株式会社 Lithium secondary battery negative electrode member and manufacturing method thereof
JP4996120B2 (en) * 2006-03-31 2012-08-08 出光興産株式会社 Solid electrolyte, method for producing the same, and all-solid-state secondary battery
JP4834442B2 (en) * 2006-03-31 2011-12-14 出光興産株式会社 Solid electrolyte, method for producing the same, and all-solid-state secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150943B2 (en) 2001-02-28 2006-12-19 Sumitomo Electric Industries, Ltd. Inorganic solid electrolyte and lithium cell component
US7517616B2 (en) 2001-02-28 2009-04-14 Sumitomo Electric Industries, Ltd. Inorganic solid electrolyte and lithium cell component
US7416815B2 (en) 2004-04-01 2008-08-26 Sumitomo Electric Industries, Ltd. Negative electrode member for lithium battery and process for producing the same

Also Published As

Publication number Publication date
JPH05310418A (en) 1993-11-22

Similar Documents

Publication Publication Date Title
JP3343936B2 (en) Amorphous lithium ion conductive solid electrolyte and its synthesis method
JP3125506B2 (en) Sulfide-based lithium ion conductive solid electrolyte and its synthesis method
JP3151925B2 (en) Amorphous lithium ion conductive solid electrolyte and its synthesis method
US5217826A (en) Lithium-ion conducting solid electrolyte
JP3510420B2 (en) Lithium ion conductive solid electrolyte and method for producing the same
US4331750A (en) Alkaline cation conductive vitreous composition and a method of preparing such a composition
US4513070A (en) Vitreous materials with ionic conductivity, the preparation of same and the electrochemical applications thereof
JP3163741B2 (en) Amorphous lithium ion conductive solid electrolyte and method for producing the same
JP3343934B2 (en) Amorphous lithium ion conductive solid electrolyte and its synthesis method
EP0207242A2 (en) Quaternary vitreous solid lithium cation conductive electrolyte
JP3184517B2 (en) Lithium ion conductive solid electrolyte
JP4953406B2 (en) All-solid lithium secondary battery
JP3284215B2 (en) Method for producing sulfide-based lithium ion conductive solid electrolyte
JP3134595B2 (en) Sulfide-based lithium ion conductive solid electrolyte and its synthesis method
JP3149524B2 (en) Amorphous lithium ion conductive solid electrolyte and method for producing the same
US20020142219A1 (en) Lithium iron thiophosphate compound, process for producing the compound, and lithium battery using the compound
JP3125507B2 (en) Sulfide-based lithium ion conductive solid electrolyte and its synthesis method
US7351502B2 (en) Solid inorganic glassy electrolyte and method of production thereof
JP3129018B2 (en) Lithium ion conductive solid electrolyte and its synthesis method
JPH0556384B2 (en)
JP7301005B2 (en) Sulfide-based solid electrolyte and all-solid lithium-ion battery
JP2001316583A (en) Lithium-ion conductive organic-inorganic composite
WO2024085045A1 (en) Sulfide solid electrolyte and method for producing same, electrode mixture, solid electrolyte layer, and all-solid-state lithium ion secondary battery
JP7301013B2 (en) Sulfide-based solid electrolyte and all-solid lithium-ion battery
KR100659049B1 (en) Inorganic solid electrolyte

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070830

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10