JP3340021B2 - Lead-free solder alloy - Google Patents

Lead-free solder alloy

Info

Publication number
JP3340021B2
JP3340021B2 JP09181496A JP9181496A JP3340021B2 JP 3340021 B2 JP3340021 B2 JP 3340021B2 JP 09181496 A JP09181496 A JP 09181496A JP 9181496 A JP9181496 A JP 9181496A JP 3340021 B2 JP3340021 B2 JP 3340021B2
Authority
JP
Japan
Prior art keywords
temperature
solder alloy
soldering
alloy
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09181496A
Other languages
Japanese (ja)
Other versions
JPH09253882A (en
Inventor
敏一 村田
博司 野口
貞雄 岸田
稔孫 田口
隆志 堀
良 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Senju Metal Industry Co Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Senju Metal Industry Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP09181496A priority Critical patent/JP3340021B2/en
Application filed by Panasonic Corp, Senju Metal Industry Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to DE69632866T priority patent/DE69632866T2/en
Priority to PCT/JP1996/002774 priority patent/WO1997012719A1/en
Priority to EP96931990A priority patent/EP0855242B1/en
Priority to CN96197287A priority patent/CN1087994C/en
Priority to MYPI96004016A priority patent/MY114565A/en
Publication of JPH09253882A publication Critical patent/JPH09253882A/en
Priority to US09/050,078 priority patent/US6241942B1/en
Priority to US09/828,164 priority patent/US6488888B2/en
Application granted granted Critical
Publication of JP3340021B2 publication Critical patent/JP3340021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、鉛を全く含有せず、し
かも従来のSn−Pb共晶はんだに近い特性を有するは
んだ合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solder alloy containing no lead and having characteristics close to those of conventional Sn-Pb eutectic solder.

【0002】[0002]

【従来の技術】電子機器のはんだ付けに用いられるはん
だ合金としては、Sn−Pb合金が一般的であり、古来
より長い間使用されてきていた。Sn−Pb合金は、共
晶組成(63Sn−Pb)の融点が183℃という低い
ものであり、そのはんだ付け温度は230〜240℃と
いう熱に弱い電子部品に対しては熱損傷を与えることが
ない温度である。しかもSn−Pb合金は、はんだ付け
性が極めて良好であるとともに、液相線温度と固相線温
度間の温度差がなく、はんだ付け時に直ぐに凝固して、
はんだ付け部に振動や衝撃が加わってもヒビ割れや剥離
を起こさないという優れた特長を有している。
2. Description of the Related Art As a solder alloy used for soldering electronic equipment, an Sn-Pb alloy is generally used, and has been used for a long time since ancient times. The Sn-Pb alloy has a eutectic composition (63Sn-Pb) having a low melting point of 183 ° C. and a soldering temperature of 230 to 240 ° C., which may cause thermal damage to electronic components that are weak to heat. No temperature. Moreover, the Sn-Pb alloy has extremely good solderability, and there is no temperature difference between the liquidus temperature and the solidus temperature, so that it solidifies immediately during soldering,
It has an excellent feature that it does not crack or peel off even when vibration or impact is applied to the soldered part.

【0003】一般に、テレビ、ビデオ、ラジオ、テープ
レコーダー、コンピューター、複写機のような電子機器
は、故障したり、古くなって使い勝手が悪くなったりし
た場合は、廃棄処分される。これらの電子機器は、外枠
やプリント基板がプラスチックのような合成樹脂であ
り、また導体部やフレームが金属製であるため、焼却処
分ができず、ほとんどが地中に埋められている。
[0003] Generally, electronic devices such as televisions, videos, radios, tape recorders, computers, and copiers are disposed of when they break down or become old and inconvenient. In these electronic devices, since the outer frame and the printed circuit board are made of synthetic resin such as plastic, and the conductor and the frame are made of metal, they cannot be incinerated and are mostly buried in the ground.

【0004】ところで近年、ガソリン、重油等の石化燃
料の多用により、大気中に硫黄酸化物が大量に放出さ
れ、その結果、地上に降る雨は酸性雨となっている。酸
性雨は地中に埋められた電子機器のはんだを溶出させて
地下に染み込み、地下水を汚染するようになる。このよ
うに鉛を含んだ地下水を長年飲用していると、人体に鉛
分が蓄積され、鉛毒を起こす虞が出てくる。このような
機運から、電子機器業界では鉛を含まないはんだ、所謂
「鉛フリーはんだ合金」の出現が望まれてきている。
[0004] In recent years, due to the heavy use of petroleum fuels such as gasoline and heavy oil, a large amount of sulfur oxides has been released into the atmosphere, and as a result, the rain falling on the ground has been acid rain. Acid rain dissolves solder in electronic equipment buried underground and soaks into the ground, polluting groundwater. If the groundwater containing lead has been drunk for many years, lead may accumulate in the human body and lead to poisoning. Due to such momentum, the appearance of solder that does not contain lead, that is, a so-called “lead-free solder alloy” has been desired in the electronic equipment industry.

【0005】従来より鉛フリーはんだ合金としてSn主
成分のSn−Ag合金やSn−Sb合金はあった。Sn
−Ag合金は、最も溶融温度の低い組成がSn−3.5
Agの共晶組成で、溶融温度が221℃である。この組
成のはんだ合金のはんだ付け温度は260〜280℃と
いうかなり高い温度であり、この温度ではんだ付けを行
うと熱に弱い電子部品は熱損傷を受けて機能劣化や破壊
等を起こしてしまうものである。またSn−Sb合金
は、最も溶融温度の低い組成がSn−5Sbであるが、
この組成の溶融温度は、固相線温度が235℃、液相線
温度が240℃という高い温度であるため、はんだ付け
温度は、Sn−3.5Ag合金よりもさらに高い280
〜300℃となり、やはり熱に弱い電子部品を熱損傷さ
せてしまうものである。
Conventionally, Sn-Ag alloys and Sn-Sb alloys containing Sn as main components have been used as lead-free solder alloys. Sn
-Ag alloy has a composition with the lowest melting temperature of Sn-3.5.
The eutectic composition of Ag has a melting temperature of 221 ° C. The soldering temperature of a solder alloy of this composition is a considerably high temperature of 260 to 280 ° C. If soldering is performed at this temperature, heat-sensitive electronic components will be damaged by heat and cause functional deterioration or destruction. It is. In the Sn-Sb alloy, the composition having the lowest melting temperature is Sn-5Sb.
The melting temperature of this composition is as high as 235 ° C. in solidus temperature and 240 ° C. in liquidus temperature.
To 300 ° C., which also thermally damages electronic components that are also vulnerable to heat.

【0006】このようにSn−Ag合金やSn−Sb合
金は溶融温度が高いため、これらの合金の溶融温度を下
げる手段を講じたはんだ合金が多数提案されている。
(参照:特開平6−15476号公報、同6−3441
80号公報、同7−1178号公報、同7−40079
号公報)
As described above, since the melting temperature of Sn-Ag alloy and Sn-Sb alloy is high, many solder alloys which take measures to lower the melting temperature of these alloys have been proposed.
(Reference: JP-A-6-15476, JP-A-6-3441)
Nos. 80, 71-1178, 7-40079
No.)

【0007】[0007]

【発明が解決しようとする課題】ところで電子部品を熱
損傷させないはんだ付け温度としては、250℃以下が
適当であり、この温度ではんだ付けするためには、はん
だ合金の液相線温度は200℃以下が望ましい。しかし
ながら、液相線温度を下げる手段を講じた従来のはんだ
合金でも液相線温度を200℃以下にすることは困難で
あるばかりでなく、たとえ液相線温度を200℃以下に
することができたとしても、合金が凝固する温度が低く
すぎて、はんだ付け後にはんだ合金が凝固するまでに時
間がかかり、はんだ付け直後に少しでも振動や衝撃(以
下、振動等という)を受けると、はんだ付け部にヒビ割
れが起こってしまうものであった。また従来の鉛フリー
はんだ合金において液相線温度を下げ、凝固する温度を
液相線温度に近付けたとしても、はんだ付け後の接着強
度に弱いという問題があった。
A suitable soldering temperature at which electronic parts are not thermally damaged is 250 ° C. or less. To solder at this temperature, the liquidus temperature of the solder alloy is 200 ° C. The following is desirable. However, even with conventional solder alloys that take measures to lower the liquidus temperature, it is not only difficult to keep the liquidus temperature below 200 ° C., but even if the liquidus temperature can be made below 200 ° C. Even so, the temperature at which the alloy solidifies is too low and it takes time for the solder alloy to solidify after soldering. If any vibration or impact (hereinafter referred to as vibration) is received immediately after soldering, the soldering There was a crack in the part. Further, even if the liquidus temperature of the conventional lead-free solder alloy is lowered and the solidification temperature is brought close to the liquidus temperature, there is a problem that the bonding strength after soldering is weak.

【0008】本発明は、液相線温度が200℃以下であ
るとともに、凝固する温度が液相線温度に近く、しかも
はんだ付け後の接着強度が強いという鉛フリーはんだ合
金を提供することにある。
An object of the present invention is to provide a lead-free solder alloy having a liquidus temperature of 200 ° C. or lower, a solidification temperature close to the liquidus temperature, and a high adhesive strength after soldering. .

【0009】[0009]

【課題を解決するための手段】Sn主成分でSn−Pb
合金の共晶に近い溶融温度を有する合金としては、Sn
−9Zn(共晶温度:199℃)があるが、Sn−9Z
nは、はんだとして使用した場合、機械的強度が弱いと
いう欠点があった。そこでSn−9Znの機械的強度を
向上させるためにAg、Cu等を添加したものもある
が、これらの金属を添加して機械的強度を強くすると、
溶融温度が高くなり、はんだ付け時に電子部品を熱損傷
させてしまうことになる。
The main component of Sn is Sn-Pb.
Alloys having a melting temperature close to the eutectic of the alloy include Sn
-9Zn (eutectic temperature: 199 ° C), but Sn-9Z
When n was used as a solder, there was a disadvantage that the mechanical strength was weak. In order to improve the mechanical strength of Sn-9Zn, there is also one in which Ag, Cu, etc. are added, but when these metals are added to increase the mechanical strength,
The melting temperature becomes high, and the electronic components are thermally damaged during soldering.

【0010】そこで本発明者等は、鉛を含まないSn主
成分のはんだで最も溶融温度の低いSn−Zn系はんだ
合金を利用し、機械的強度を強くするとともに、溶融温
度を上げないことについて鋭意研究を重ねた結果、Sn
−Zn系はんだ合金にAgとBiを同時に添加すれば溶
融温度を上げずに機械的強度を向上できることを見いだ
し本発明を完成させた。
Therefore, the present inventors have proposed to use a Sn-Zn-based solder alloy having the lowest melting temperature among Sn-based solders containing no lead to increase the mechanical strength and not to increase the melting temperature. After intensive research, Sn
-It has been found that if Ag and Bi are simultaneously added to a Zn-based solder alloy, the mechanical strength can be improved without increasing the melting temperature, and the present invention has been completed.

【0011】本発明は、Zn6重量%を超え10重量%
以下、Bi10〜30重量%、Ag0.05〜2重量
%、残部Snからなり、しかも液相線温度が200℃以
下であるとともにピ−ク温度が170℃以上であること
を特徴とする鉛フリーはんだ合金である。
[0011] The present invention provides a method for manufacturing a semiconductor device, comprising:
A lead-free material comprising 10 to 30% by weight of Bi, 0.05 to 2% by weight of Ag, and the balance of Sn, and having a liquidus temperature of 200 ° C. or less and a peak temperature of 170 ° C. or more. It is a solder alloy.

【0012】[0012]

【発明の実施の形態】一般に、合金を溶融した状態から
冷却していくと、液体中に固体を晶出し始める液相線温
度と、全てが完全に凝固し終わる固相線温度に熱の大き
な放出がある。これを示差熱分析してみると液相線温度
と固相線温度のところでチャートは山形となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In general, when an alloy is cooled from a molten state, a large heat is applied to a liquidus temperature at which a solid begins to crystallize in a liquid and a solidus temperature at which all solidification is completed. There is release. When this is analyzed by differential thermal analysis, the chart has a mountain shape at the liquidus temperature and the solidus temperature.

【0013】しかるに、合金成分が三成分以上になると
液相線温度と固相線温度の間に固相線温度よりも熱の放
出の多い温度があり、固相線温度に至らないうちに、こ
の温度でほとんどが凝固してしまうことがある。このよ
うな合金を示差熱分析してみると、液相線温度と固相線
温度の間に固相線温度よりも熱放出の大きな山形のチャ
ートを描くところから、この熱放出の大きい温度をピー
ク温度と称している。このピーク温度の大きい合金は、
固相線温度まで下がらなくても、ほとんどが凝固して実
質的な固相線温度となるものである。ピーク温度は17
0℃以上であれば、固相線温度がさらに低くいところに
あっても、はんだ合金として充分使用可能となる。
However, when the number of alloy components becomes three or more, there is a temperature at which more heat is released than the solidus temperature between the liquidus temperature and the solidus temperature, and before reaching the solidus temperature, At this temperature most can solidify. Differential thermal analysis of such an alloy reveals a chevron chart that releases more heat than the solidus temperature between the liquidus temperature and the solidus temperature. It is called the peak temperature. This alloy with a large peak temperature
Even if the temperature does not drop to the solidus temperature, most of the solidification will solidify to a substantial solidus temperature. Peak temperature is 17
When the temperature is 0 ° C. or more, even if the solidus temperature is even lower, it can be sufficiently used as a solder alloy.

【0014】本発明では、Sn−Pb共晶はんだと同等
の特性を有するはんだ合金とすべく開発したものであ
り、溶融温度、即ち液相線温度とピーク温度はSn−P
b合金の共晶温度である183℃近辺となるようにして
ある。本発明で好ましい液相線温度は200℃以下であ
る。はんだの液相線温度が200℃以下であれば、Sn
−Pbの共晶組成のはんだと同様にはんだ付け温度を2
50℃以下とすることができ、電子部品への熱影響が少
なくなる。
In the present invention, a solder alloy having the same characteristics as the Sn-Pb eutectic solder has been developed, and the melting temperature, that is, the liquidus temperature and the peak temperature are Sn-Pb eutectic solder.
The temperature is set to be around 183 ° C., which is the eutectic temperature of the alloy b. The preferred liquidus temperature in the present invention is 200 ° C. or lower. If the liquidus temperature of the solder is 200 ° C or less, Sn
-Soldering temperature of 2 as with Pb eutectic solder
The temperature can be set to 50 ° C. or less, and the thermal effect on the electronic component is reduced.

【0015】一般にはんだ合金は、固相線温度がなるべ
く液相線温度に近いものがよい。その理由は、固相線温
度が低くてはんだ付け後にはんだが凝固するまでに時間
がかかると、その間にはんだ付け部に多少の振動等が加
わった場合、完全に凝固していないはんだ付け部にヒビ
割れを生じさせてしまうからである。ところでSn−Z
n系合金にBiを大量に添加すると液相線温度が下がる
が、固相線温度はSn−Biの共晶温度である135℃
が出てきてしまう。しかしながらSn−Zn−Bi系は
んだ合金は、適宜な組合せを選択することにより、固相
線温度が135℃であってもピーク温度を170℃以上
にすることができる。
In general, the solder alloy preferably has a solidus temperature as close as possible to a liquidus temperature. The reason is that when the solidus temperature is low and it takes time for the solder to solidify after soldering, if some vibrations are applied to the soldered part during that time, the soldered part that has not completely solidified This is because it causes cracks. By the way, Sn-Z
When a large amount of Bi is added to the n-based alloy, the liquidus temperature decreases, but the solidus temperature is 135 ° C., which is the eutectic temperature of Sn—Bi.
Comes out. However, the peak temperature of the Sn—Zn—Bi-based solder alloy can be increased to 170 ° C. or more even when the solidus temperature is 135 ° C. by selecting an appropriate combination.

【0016】従って、はんだ合金の固相線温度がたとえ
低くて、液相線温度と固相線温度間の温度差が大きくて
も、ピーク温度を液相線温度に近付けるようにすればS
n−Pb共晶はんだと同等に使用できるようになる。
Therefore, even if the solidus temperature of the solder alloy is low and the temperature difference between the liquidus temperature and the solidus temperature is large, if the peak temperature is close to the liquidus temperature, S
It can be used in the same manner as n-Pb eutectic solder.

【0017】本発明は、Zn6重量%を超え10重量%
以下、Bi10〜30重量%、Ag0.05〜2重量
%、残部Snからなるはんだ合金であり、この組成範囲
内で適宜な配合率にすると、ピーク温度が170℃以
上、液相線温度が200℃以下のはんだ合金を得ること
ができる。この合金では、固相線温度としてSn−Bi
の共晶温度である135℃が出てくるが、ピーク温度を
180℃近くにすることができる。従って、本発明のは
んだ合金でのはんだ付け時、はんだ合金は凝固する時間
が早く、冷却時に振動等を受けてもはんだ付け部にヒビ
割れは起こらない。
According to the present invention, the content of Zn is more than 6 % by weight and 10 % by weight.
Hereinafter, a solder alloy composed of 10 to 30% by weight of Bi, 0.05 to 2% by weight of Ag, and the balance of Sn. If the mixing ratio is appropriately set within this composition range, the peak temperature is 170 ° C. or more and the liquidus temperature is 200%. It is possible to obtain a solder alloy having a temperature of not more than ℃. In this alloy, the solidus temperature is Sn-Bi
Although 135 ° C., which is the eutectic temperature, comes out, the peak temperature can be made close to 180 ° C. Therefore, when soldering with the solder alloy of the present invention, the solidification time of the solder alloy is short, and cracks do not occur in the soldered portion even when subjected to vibration or the like during cooling.

【0018】はんだの機械的特性については、接合強度
がはんだ合金自体の引張り強度と略一致するものである
ため、或る程度の引張り強度を有していなければならな
い。電子機器のはんだ付け用として必要な引張り強度は
5Kgf/mm2以上である。
Regarding the mechanical properties of the solder, the solder must have a certain degree of tensile strength because its joining strength is substantially equal to the tensile strength of the solder alloy itself. The tensile strength required for soldering electronic equipment is 5 kgf / mm 2 or more.

【0019】またはんだ合金に要求される特性として
は、伸びがある。はんだ合金に液相線温度やピーク温度
を下げるためにBiを大量に添加すると、はんだ合金は
脆くなる。この脆さの傾向は伸びで判断でき、伸びが大
きい程、脆さが少ないものである。本発明のはんだ合金
は、伸びが10%以上となるものを使用して脆さが出な
いようにする。
One of the properties required of a solder alloy is elongation. If a large amount of Bi is added to the solder alloy to lower the liquidus temperature or peak temperature, the solder alloy becomes brittle. This tendency of brittleness can be determined by elongation, and the greater the elongation, the less brittleness. The solder alloy of the present invention has an elongation of 10% or more so as to prevent brittleness.

【0020】[0020]

【実施例】本発明で、Znの添加量が2重量%より少な
かったり、10重量%よりも多くなったりすると、本発
明が目的とする液相線温度を200℃以下にすることが
できなくなる。
In the present invention, if the amount of Zn added is less than 2% by weight or more than 10% by weight, the liquidus temperature targeted by the present invention cannot be reduced to 200 ° C. or less. .

【0021】また本発明で、Biの添加量が10重量%
よりも少ないとSn−Zn系の液相線温度を200℃以
下に下げることができず、しかるに30重量%を越えて
添加すると伸びが少なくなって脆さが出てきてしまう。
In the present invention, the amount of Bi added is 10% by weight.
If it is less than this, the Sn-Zn liquidus temperature cannot be lowered to 200 ° C. or lower, and if it exceeds 30% by weight, elongation decreases and brittleness appears.

【0022】Agは機械的強度を改善するとともに、S
n−Zn合金の耐食性を向上させる効果がある。Agは
0.05重量%より少ない添加では、これらの効果が現
れず、しかるに2重量%を越えて添加すると、液相線温
度が急激に上昇してしまい、はんだ付け温度が高くなっ
て電子部品に熱損傷を与えるようになる。
Ag improves the mechanical strength,
This has the effect of improving the corrosion resistance of the n-Zn alloy. If the addition of Ag is less than 0.05% by weight, these effects do not appear. However, if the addition exceeds 2% by weight, the liquidus temperature rises sharply, and the soldering temperature rises to increase the electronic component. Heat damage.

【0023】Znは非常に酸化しやすい金属であるた
め、Znを含むはんだ合金を溶融させると、優先的に酸
化され、はんだ付け時に多量にZnの酸化物が発生して
はんだ付け不良を起こすことがある。そのためZnを含
むはんだ合金にPを添加すると、Pは溶融したはんだ合
金の表面に薄い膜を形成し、はんだ合金が直接空気と触
れるのを妨げて、はんだ合金自体が酸化するのを抑制す
ることができる。Pの添加量は0.001重量%より少
ないと酸化抑制の効果が現れず、しかるに1重量%より
も多くなるとはんだ付け性を害するようになる。
Since Zn is a metal that is very easily oxidized, when a solder alloy containing Zn is melted, it is preferentially oxidized, and a large amount of Zn oxide is generated at the time of soldering, resulting in poor soldering. There is. Therefore, when P is added to a solder alloy containing Zn, P forms a thin film on the surface of the molten solder alloy, preventing the solder alloy from directly contacting the air and suppressing the oxidation of the solder alloy itself. Can be. If the amount of P is less than 0.001% by weight, the effect of suppressing oxidation is not exhibited, and if it is more than 1% by weight, the solderability is impaired.

【0024】ここで本発明の代表的な実施例について記
す。
Here, a typical embodiment of the present invention will be described.

【0025】○実施例1 Zn8重量%、Bi11重量%、Ag0.1重量%、残
部Snからなるはんだ合金は、固相線温度が164℃、
ピーク温度が189℃、液相線温度が195℃であり、
このはんだ合金を自動はんだ付け装置のはんだ槽に入
れ、はんだ合金の温度を250℃にしてプリント基板の
はんだ付けを行ったところ、熱による電子部品の損傷や
劣化はなかった。はんだ合金自体の引張り強度は11.
6Kgf/mm2であり、この値は充分電子機器のはんだ付け
に使用できるものである。また伸びも12%であるた
め、はんだ付け後の振動等によるヒビ割れの心配もな
い。
Example 1 A solder alloy consisting of 8% by weight of Zn, 11% by weight of Bi, 0.1% by weight of Ag, and the balance of Sn has a solidus temperature of 164 ° C.
A peak temperature of 189 ° C, a liquidus temperature of 195 ° C,
When this solder alloy was put into a solder bath of an automatic soldering apparatus and the temperature of the solder alloy was set to 250 ° C., and the printed circuit board was soldered, there was no damage or deterioration of the electronic component due to heat. Tensile strength of the solder alloy itself is 11.
The value is 6 kgf / mm 2 , which is sufficient for soldering electronic equipment. Also, since the elongation is 12%, there is no fear of cracking due to vibration or the like after soldering.

【0026】○実施例2 Zn9重量%、Bi16重量%、Ag0.2重量%、残
部Snからなるはんだ合金は、固相線温度が135℃、
ピーク温度が185℃、液相線温度が193℃であり、
はんだ付け温度は250℃で電子部品に対する熱影響も
なかった。また引張り強度は11.4Kgf/mm2という強
い値である。伸びは10%と少し下がるが、はんだ付け
後の振動等によるヒビ割れは何ら問題のない値である。
Example 2 A solder alloy consisting of 9% by weight of Zn, 16% by weight of Bi, 0.2% by weight of Ag and the balance of Sn has a solidus temperature of 135 ° C.
A peak temperature of 185 ° C., a liquidus temperature of 193 ° C.,
The soldering temperature was 250 ° C., and there was no thermal effect on electronic components. Further, the tensile strength is a strong value of 11.4 kgf / mm 2 . Although the elongation is slightly reduced to 10%, cracks due to vibration or the like after soldering have no problem at all.

【0027】○実施例3 Zn10重量%、Bi20重量%、Ag0.2重量%、
P0.01重量%、残部Snからなるはんだ合金は、固
相線温度が136℃、ピーク温度が180℃、液相線温
度が187℃であり、はんだ付けを240℃で行ったと
ころ、電子部品に対する熱影響はなかった。またこのは
んだ合金をはんだ槽で溶融させたとき、実施例1、2よ
りも酸化物の発生量が少なく、酸化物回収作業が少なく
て済むものであった。
Example 3 10% by weight of Zn, 20% by weight of Bi, 0.2% by weight of Ag,
The solder alloy composed of 0.01% by weight of P and the balance of Sn has a solidus temperature of 136 ° C., a peak temperature of 180 ° C., a liquidus temperature of 187 ° C., and soldering at 240 ° C. There was no thermal effect on. Further, when this solder alloy was melted in a solder bath, the amount of generated oxide was smaller than in Examples 1 and 2, and the work of collecting the oxide was reduced.

【0028】実施例および比較例を表1に示す。Examples and comparative examples are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例におけるはんだ合金は、はんだ付け
温度を250℃以下にすることができるため電子部品へ
の熱影響がなく、またピーク温度が液相線温度に近いた
め、はんだ付け後のヒビ割れが起きにくく、さらに電子
部品のはんだ付けに要求される引張り強度と伸びを有し
ている。
The soldering alloy in the embodiment has a soldering temperature of 250 ° C. or less, so that there is no thermal effect on electronic components. Further, since the peak temperature is close to the liquidus temperature, cracking after soldering is performed. Hardly occurs, and furthermore, it has tensile strength and elongation required for soldering electronic components.

【0031】比較例1、2、3、4、5、6は引張り強
度が充分でなく、はんだ付け後の信頼性に劣るものであ
る。また比較例2、3、4は液相線温度が高いため、は
んだ付け温度も高くせざるを得ず、電子部品に対する熱
損傷が心配される。比較例4、5は固相線温度が低く、
はんだ付け後の冷却時にヒビ割れの虞がある。比較例
5、6は伸びが少ないため、電子機器に組み込み後、衝
撃を受けると剥離しやすくなる。
Comparative Examples 1, 2, 3, 4, 5, and 6 have insufficient tensile strength and poor reliability after soldering. In Comparative Examples 2, 3, and 4, since the liquidus temperature is high, the soldering temperature must be increased, and there is a concern about thermal damage to electronic components. Comparative Examples 4 and 5 have low solidus temperatures,
There is a risk of cracking during cooling after soldering. Since Comparative Examples 5 and 6 have a small elongation, they tend to peel off when subjected to an impact after being incorporated into an electronic device.

【0032】[0032]

【発明の効果】以上説明した如く、本発明のはんだ合金
は、Sn主成分であるにもかかわらず、液相線温度が2
00℃以下、ピーク温度が170℃以上で液相線温度に
近いという従来のSn−Pb共晶合金に類似の溶融温度
を有しているものであるため、はんだ付け温度も電子部
品に熱損傷を与えるほど高くしなくても済むものであ
り、さらに機械的強度に強いばかりでなく、適当な伸び
率を有しているため、はんだ付け後にヒビ割れを起こし
にくいという従来のSn主成分の鉛フリーはんだ合金に
ない優れた特長を有するものである。
As described above, the solder alloy of the present invention has a liquidus temperature of 2 despite being a main component of Sn.
It has a melting temperature similar to conventional Sn-Pb eutectic alloys, below 00 ° C, peak temperature above 170 ° C and close to the liquidus temperature, so the soldering temperature also thermally damages electronic components The conventional Sn-based lead, which has not only high mechanical strength but also an appropriate elongation, is less likely to crack after soldering. It has excellent features not found in free solder alloys.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田口 稔孫 東京都足立区千住橋戸町23番地 千住金 属工業株式会社内 (72)発明者 堀 隆志 東京都足立区千住橋戸町23番地 千住金 属工業株式会社内 (72)発明者 大石 良 東京都足立区千住橋戸町23番地 千住金 属工業株式会社内 (56)参考文献 特開 平8−164495(JP,A) 特開 平9−85484(JP,A) 特開 平8−164496(JP,A) 特開 平7−51883(JP,A) 特開 昭59−189096(JP,A) 特開 昭54−128459(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23K 35/26 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Minoru Taguchi 23, Senjuhashido-cho, Adachi-ku, Tokyo Inside Senju Kinzoku Kogyo Co., Ltd. (72) Inventor Takashi Hori 23, Senju-Hashido-cho, Adachi-ku, Tokyo Senju Kin Inside Industrial Co., Ltd. (72) Inventor Ryo Oishi 23, Senjubashido-cho, Adachi-ku, Tokyo Inside Senju Metal Industry Co., Ltd. (56) References JP-A-8-164495 (JP, A) JP-A-9-85484 ( JP, A) JP-A-8-164496 (JP, A) JP-A-7-51883 (JP, A) JP-A-59-189096 (JP, A) JP-A-54-128459 (JP, A) (58) ) Surveyed field (Int.Cl. 7 , DB name) B23K 35/26

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Zn6重量%を超え10重量%以下、B
i10〜30重量%、Ag0.05〜2重量%、残部S
nからなり、しかも液相線温度が200℃以下であると
ともにピ−ク温度が170℃以上であることを特徴とす
る鉛フリーはんだ合金。
(1) more than 6% by weight of Zn and 10% by weight or less;
i 10-30% by weight, Ag 0.05-2% by weight, balance S
A lead-free solder alloy comprising n and a liquidus temperature of 200 ° C. or less and a peak temperature of 170 ° C. or more.
【請求項2】 前記合金には、Pが0.001〜1重量
%添加されていることを特徴とする請求項1記載の鉛フ
リーはんだ合金。
2. The lead-free solder alloy according to claim 1, wherein 0.001 to 1% by weight of P is added to said alloy.
JP09181496A 1995-09-29 1996-03-22 Lead-free solder alloy Expired - Lifetime JP3340021B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP09181496A JP3340021B2 (en) 1996-03-22 1996-03-22 Lead-free solder alloy
PCT/JP1996/002774 WO1997012719A1 (en) 1995-09-29 1996-09-26 Lead-free solder
EP96931990A EP0855242B1 (en) 1995-09-29 1996-09-26 Lead-free solder
CN96197287A CN1087994C (en) 1995-09-29 1996-09-26 Lead-free solder
DE69632866T DE69632866T2 (en) 1995-09-29 1996-09-26 LEAD-FREE LOT
MYPI96004016A MY114565A (en) 1995-09-29 1996-09-27 Lead-free solder alloys
US09/050,078 US6241942B1 (en) 1995-09-29 1998-03-30 Lead-free solder alloys
US09/828,164 US6488888B2 (en) 1995-09-29 2001-04-09 Lead-free solder alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09181496A JP3340021B2 (en) 1996-03-22 1996-03-22 Lead-free solder alloy

Publications (2)

Publication Number Publication Date
JPH09253882A JPH09253882A (en) 1997-09-30
JP3340021B2 true JP3340021B2 (en) 2002-10-28

Family

ID=14037113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09181496A Expired - Lifetime JP3340021B2 (en) 1995-09-29 1996-03-22 Lead-free solder alloy

Country Status (1)

Country Link
JP (1) JP3340021B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69933772T2 (en) 1998-07-02 2007-10-04 Matsushita Electric Industrial Co., Ltd., Kadoma SOLDER POWDER AND METHOD FOR THE PRODUCTION THEREOF AND SOLDER PASTE
JP2003234433A (en) * 2001-10-01 2003-08-22 Matsushita Electric Ind Co Ltd Semiconductor device, its mounting method, mounting block and its manufacturing method
US9185812B2 (en) 2005-05-25 2015-11-10 Senju Metal Industry Co., Ltd. Lead-free solder paste

Also Published As

Publication number Publication date
JPH09253882A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
EP0855242B1 (en) Lead-free solder
JP3622788B2 (en) Lead-free solder alloy
JP3753168B2 (en) Solder paste for joining microchip components
JP3363393B2 (en) Lead-free solder alloy
JP2002018589A (en) Lead-free solder alloy
US7172726B2 (en) Lead-free solder
JP4401671B2 (en) High temperature lead-free solder alloys and electronic components
JP3299091B2 (en) Lead-free solder alloy
JP3879582B2 (en) Solder paste, electronic component and step soldering method
JP4392020B2 (en) Lead-free solder balls
JP4337326B2 (en) Lead-free solder and soldered articles
JPH0994687A (en) Lead-free solder alloy
JP3340021B2 (en) Lead-free solder alloy
JP2000343273A (en) Soldering alloy
JPH1052791A (en) Lead free solder alloy
JP3107483B2 (en) No to low lead content solder alloy
JPH09174279A (en) Solder alloy
JP2019155465A (en) Solder paste for chip component joining
JPH1177368A (en) Lead-free solder alloy
KR100333401B1 (en) Lead-Free Alloys for Soldering
KR100337498B1 (en) Lead-Free Alloys for Soldering
KR100327767B1 (en) Lead-Free Alloys for Soldering
KR100509509B1 (en) Lead-free solder alloy
KR100333402B1 (en) Lead-Free Alloys for Soldering
JP2000271781A (en) Solder paste

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130816

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term