JP3330412B2 - Method for removing hydrogen from air or inert gas - Google Patents

Method for removing hydrogen from air or inert gas

Info

Publication number
JP3330412B2
JP3330412B2 JP02263293A JP2263293A JP3330412B2 JP 3330412 B2 JP3330412 B2 JP 3330412B2 JP 02263293 A JP02263293 A JP 02263293A JP 2263293 A JP2263293 A JP 2263293A JP 3330412 B2 JP3330412 B2 JP 3330412B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
air
silver
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02263293A
Other languages
Japanese (ja)
Other versions
JPH06234503A (en
Inventor
純一 福田
一巳 北村
洋 内田
一成 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP02263293A priority Critical patent/JP3330412B2/en
Publication of JPH06234503A publication Critical patent/JPH06234503A/en
Application granted granted Critical
Publication of JP3330412B2 publication Critical patent/JP3330412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空気中または酸素含有
不活性ガス中の水素を、触媒を使用して酸化、除去する
ことにより、不純物成分である水素の極めて少ない高純
度の液化窒素、液化酸素、液化アルゴン等の工業ガスを
製造することができる空気中又は不活性ガス中の水素の
除去方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a highly pure liquefied nitrogen containing very little hydrogen as an impurity component by oxidizing and removing hydrogen in air or an oxygen-containing inert gas using a catalyst. The present invention relates to a method for removing hydrogen from air or an inert gas from which industrial gases such as liquefied oxygen and liquefied argon can be produced.

【0002】[0002]

【従来の技術】空気中には自然の発生源および自動車等
の人工発生源から発生する水素が含まれているので、空
気を原料として、低温精溜によって液化窒素等の工業ガ
スを製造する場合、微量の水素が製品中に不純物として
混入する。
2. Description of the Related Art Since air contains hydrogen generated from natural sources and artificial sources such as automobiles, when air is used as a raw material to produce industrial gas such as liquefied nitrogen by low-temperature rectification. In addition, a small amount of hydrogen is mixed into the product as an impurity.

【0003】液化窒素等の工業ガスは、半導体工業にお
いて多く使われているが、近年、IC製造技術の進歩に
ともなって、水素等の不純物の極めて少ない一層高純度
のガスが必要になっている。
[0003] Industrial gases such as liquefied nitrogen are widely used in the semiconductor industry. In recent years, however, with the progress of IC manufacturing technology, higher purity gases containing extremely few impurities such as hydrogen have been required. .

【0004】そこで従来は、窒素中の微量の水素を除去
するために、製品の液化窒素を再精溜したり、または原
料空気中の一酸化炭素を白金属系の貴金属を含む触媒に
より酸化、除去する際に、一部の水素も合わせて除去す
る方法がとられている。
[0004] Therefore, conventionally, in order to remove a trace amount of hydrogen in nitrogen, liquefied nitrogen of the product is re-rectified, or carbon monoxide in the raw material air is oxidized by a catalyst containing a precious metal-based metal. At the time of removal, a method has been adopted in which some hydrogen is also removed.

【0005】[0005]

【発明が解決しようとする課題】しかし、再精溜は、水
素を除去するには適している方法であるが、製品を再処
理するためコスト高となる。
However, while re-rectification is a suitable method for removing hydrogen, it costs more to reprocess the product.

【0006】また、貴金属触媒により水素を効率よく除
去するには反応温度を百数十度以上に保つ必要がある。
このため空気を加熱することが必要で、高価な貴金属触
媒(パラジウム等)のコストに加えて加熱のためのラン
ニングコストがかかる。
Further, in order to efficiently remove hydrogen by using a noble metal catalyst, it is necessary to keep the reaction temperature at one hundred and several tens of degrees or higher.
For this reason, it is necessary to heat air, and in addition to the cost of an expensive noble metal catalyst (such as palladium), a running cost for heating is required.

【0007】本発明の目的は、前述のように製品の再処
理や貴金属触媒を使用することなく、より低廉な触媒を
使用して、加熱のための費用もかからず低コストで行う
ことができる空気中又は不活性ガス中の水素の除去方法
を提供することである。
An object of the present invention is to use a less expensive catalyst without the need for reprocessing of a product or a noble metal catalyst as described above, and to carry out the process at a low cost with no heating cost. It is an object of the present invention to provide a method for removing hydrogen in air or an inert gas.

【0008】[0008]

【課題を解決するための手段】本発明は上述の課題を解
決するために、水素の除去触媒としてパラジウム等の貴
金属よりも低廉でかつ低温活性のある、銀を含む触媒を
使用することを特徴とする。すなわち、空気中に含まれ
る微量の水素を、銀を含む触媒により、空気中の酸素と
反応させて除去するもので、酸素を含む不活性ガス中の
水素の場合も、銀を含む触媒により、酸素と反応させて
除去することができる。
In order to solve the above-mentioned problems, the present invention is characterized in that a catalyst containing silver, which is less expensive and has lower-temperature activity than a noble metal such as palladium, is used as a catalyst for removing hydrogen. And That is, a trace amount of hydrogen contained in the air is removed by reacting with oxygen in the air with a catalyst containing silver, and even in the case of hydrogen in an inert gas containing oxygen, with a catalyst containing silver, It can be removed by reacting with oxygen.

【0009】触媒中の銀の含有量は、通常、金属として
2〜30%好ましくは5〜15%である。
The content of silver in the catalyst is usually 2 to 30%, preferably 5 to 15% as metal.

【0010】触媒の担体としては、アルミナ、シリカ・
アルミナ、シリカ、ゼオライト等があげられるが好まし
くはアルミナ、特にγ−アルミナが好適である。
As a carrier for the catalyst, alumina, silica,
Alumina, silica, zeolite and the like can be mentioned, but alumina is preferred, and γ-alumina is particularly preferred.

【0011】反応は60〜200℃の範囲で可能である
が、高温で反応させるためには加熱のためのコストが増
大するため好ましくなく、また温度が低すぎる場合は十
分な活性を示さない。
Although the reaction can be carried out at a temperature in the range of 60 to 200 ° C., it is not preferable to carry out the reaction at a high temperature because the cost for heating increases, and when the temperature is too low, sufficient activity is not exhibited.

【0012】従って、コンプレッサーによる昇温の温度
(100℃前後)で反応させることが、反応効率、経済
性の面から最適である。また反応の圧力は常圧でも加圧
下でも可能であるが、加圧下の方が好適である。
Therefore, it is optimal to carry out the reaction at a temperature raised by the compressor (around 100 ° C.) from the viewpoint of reaction efficiency and economy. The reaction pressure can be normal pressure or under pressure, but is preferably under pressure.

【0013】[0013]

【作用】空気または酸素含有の不活性ガスをコンプレッ
サーにより圧縮することにより、ガスの温度を80〜1
20℃に上昇させる。この圧縮ガスを加熱することなく
そのまま触媒反応器に導入する。反応器中では、原料ガ
ス中の酸素と水素が触媒の働きにより反応して水とな
り、後段の水分吸着器で吸着、除去される。これによ
り、原料ガス中に0.5〜2ppm含まれている水素を
0.05ppm以下の濃度に低下させることができる。
By compressing air or an inert gas containing oxygen with a compressor, the temperature of the gas is raised to 80 to 1
Increase to 20 ° C. This compressed gas is directly introduced into the catalytic reactor without heating. In the reactor, oxygen and hydrogen in the raw material gas react with each other by the action of a catalyst to form water, which is adsorbed and removed by a moisture adsorber at a later stage. As a result, the hydrogen contained in the source gas at 0.5 to 2 ppm can be reduced to a concentration of 0.05 ppm or less.

【0014】[0014]

【実施例】【Example】

1)触媒の調製 本発明で使用する触媒は、硝酸銀の水溶液を担体(γ−
アルミナまたはゼオライト)に含浸させ、乾燥、熱処理
して作る通常の製法(含浸法)で調製した。 2)銀触媒による空気中の水素の除去例 空気中には触媒の性能を劣化させる硫黄酸化物(SO
x)があり、これが触媒の寿命に影響する。触媒が実効
性を持つためには触媒の性能が長期間にわたり維持され
なければならない。
1) Preparation of Catalyst The catalyst used in the present invention is an aqueous solution of silver nitrate on a carrier (γ-
(Alumina or zeolite), dried, and heat-treated to prepare an ordinary production method (impregnation method). 2) Example of removing hydrogen from air using silver catalyst In the air, sulfur oxides (SO
x), which affects the life of the catalyst. In order for the catalyst to be effective, the performance of the catalyst must be maintained for a long period of time.

【0015】そこで、触媒の性能と寿命を確認するため
触媒毒である硫黄酸化物の濃度を高めて触媒の加速耐久
試験を行った。 実験−1(加速耐久試験−1) 実験条件 ・触 媒 銀触媒(銀 5%、3mmφ球状γ−アルミナに担持) 200ml ・反応温度 100℃ ・反応圧力 1.1Kg/cm2 G ・空間速度 5,000h-1 ・空気中の不純物成分 SOx 1ppm(大気中の濃度 約0.01ppmの100倍を添加) 水素 0.5〜1.5ppm(大気中の濃度の変動範囲) 一酸化炭素 0.5〜1.5ppm( 〃 ) 実験結果 ・触媒反応後の水素の濃度は0.01〜0.02ppm
となり、水素の除去率は25,000時間(100倍加
速実験における相当時間)以上にわたり98〜99%を
維持した(図1)。
Therefore, in order to confirm the performance and life of the catalyst, the concentration of sulfur oxide, which is a catalyst poison, was increased, and an accelerated durability test of the catalyst was performed. Experiment-1 (Accelerated durability test-1) Experimental conditions ・ Catalyst Silver catalyst (5% silver, supported on 3mmφ spherical γ-alumina) 200ml ・ Reaction temperature 100 ° C ・ Reaction pressure 1.1Kg / cm 2 G ・ Space velocity 5 2,000 h -1 · Impurity component in air SOx 1 ppm (add 100 times of atmospheric concentration of about 0.01 ppm) Hydrogen 0.5 to 1.5 ppm (fluctuation range of atmospheric concentration) Carbon monoxide 0.5 ~ 1.5ppm (〃) Experimental result ・ Hydrogen concentration after catalytic reaction is 0.01 ~ 0.02ppm
And the hydrogen removal rate was maintained at 98 to 99% over 25,000 hours (equivalent time in a 100-fold acceleration experiment) (FIG. 1).

【0016】・水素と同じ還元性ガスである一酸化炭素
についても約20,000時間以上にわたり95〜99
%の除去率を維持した(図2)。 実験−2(加速耐久試験−2) 実験条件 ・触 媒 銀触媒(銀 10%、3mmφ球状γ−アルミナに担持) 200ml ・反応温度 100℃ ・反応圧力 1.1Kg/cm2 G ・空間速度 5,000h-1 ・空気中の不純物成分 SOx 1ppm(大気中の濃度 約0.01ppmの100倍を添加) 水素 0.5〜1.5ppm(大気中の濃度の変動範囲) 一酸化炭素 0.5〜2ppm ( 〃 ) 実験結果 ・触媒中の銀の含有率を高める(5→10%)ことによ
り、水素の除去性能、触媒の耐久性ともに向上した。
[0016] Carbon monoxide, which is the same reducing gas as hydrogen, is used for 95 to 99 hours or more for about 20,000 hours or more.
% Removal was maintained (FIG. 2). Experiment-2 (Accelerated durability test-2) Experimental conditions ・ Catalyst Silver catalyst (10% silver, supported on 3mmφ spherical γ-alumina) 200ml ・ Reaction temperature 100 ° C ・ Reaction pressure 1.1Kg / cm 2 G ・ Space velocity 5 2,000 h -1 · Impurity component in air SOx 1 ppm (add 100 times of atmospheric concentration of about 0.01 ppm) Hydrogen 0.5 to 1.5 ppm (fluctuation range of atmospheric concentration) Carbon monoxide 0.5 22 ppm (〃) Experimental results ・ By increasing the content of silver in the catalyst (5 → 10%), both hydrogen removal performance and catalyst durability were improved.

【0017】触媒反応後の水素の濃度は0〜0.01p
pmとなり除去率は25,000時間(100倍加速の
実験における相当時間)以上にわたり99〜100%を
維持した(図3)。
The concentration of hydrogen after the catalytic reaction is 0 to 0.01 p
pm, and the removal rate was maintained at 99 to 100% for 25,000 hours or more (equivalent time in the experiment at 100-fold acceleration) (FIG. 3).

【0018】・水素と同じ還元性ガスである一酸化炭素
についても、25,000時間以上にわたり99〜10
0%の除去率を示した(図4)。 実験−3(銀の含有率の試験) 触媒中の銀の含有率と触媒活性との関係を試験した。試
験結果によれば銀の含有率を高めると当初、活性も高ま
るが、含有率が高すぎると逆に活性は低下傾向を示し
た。試験結果によれば銀の含有率(γ−アルミナ担持)
として5〜15%、特に10%程度が最適である。2
0,000時間使用後(加速相当時間、以下同じ)にお
ける水素の除去率を示す(表1)
The same reducing gas as carbon, carbon monoxide, is used for 99 to 10 hours or more for 25,000 hours or more.
The removal rate was 0% (FIG. 4). Experiment-3 (Test of Silver Content) The relationship between the silver content in the catalyst and the catalytic activity was tested. According to the test results, the activity initially increased when the silver content was increased, but the activity tended to decrease when the content was too high. According to the test results, the silver content (supporting γ-alumina)
5 to 15%, especially about 10% is optimal. 2
The hydrogen removal rate after use for 000 hours (equivalent to acceleration, the same applies hereinafter) is shown (Table 1).

【0019】[0019]

【表1】 [Table 1]

【0020】実験−4(触媒担体の試験) 触媒の担体の種類により、触媒活性が変わるが試験の結
果γ−アルミナが好適であった。
Experiment-4 (Test of catalyst carrier) Although the catalytic activity varies depending on the type of the catalyst carrier, γ-alumina was suitable as a result of the test.

【0021】20,000時間使用後における水素の除
去率を示す。(表2)(いずれも銀担持量 10%)
The hydrogen removal rate after 20,000 hours of use is shown. (Table 2) (All silver loading 10%)

【0022】[0022]

【表2】 [Table 2]

【0023】実験−5(反応温度の試験) 反応温度が高いほうが、触媒活性が高くなるのが通例で
あるが、一方、反応温度を高くするためには、加熱のエ
ネルギーが必要で経済的負担が大きくなる。
Experiment-5 (Test of reaction temperature) It is customary that the higher the reaction temperature, the higher the catalytic activity becomes. On the other hand, to increase the reaction temperature, heating energy is required and economic burden is required. Becomes larger.

【0024】試験結果によれば、銀触媒は、コンプレッ
サーによる圧縮時の温度のみで、その他に特別の加熱を
行うことなく、100℃で効率よく水素を除去できた。
According to the test results, the silver catalyst was able to efficiently remove hydrogen at 100 ° C. only at the temperature at the time of compression by the compressor and without any other special heating.

【0025】以下に反応温度と水素の除去率の関係を、
貴金属触媒(バラジウム1%、γ−アルミナ担持)と対
比して示す。(表3)なお数値はいずれも20,000
時間使用後の数値である。
The relationship between the reaction temperature and the hydrogen removal rate will be described below.
It is shown in comparison with a noble metal catalyst (1% of palladium, γ-alumina supported). (Table 3) All figures are 20,000
It is a numerical value after using time.

【0026】[0026]

【表3】 [Table 3]

【0027】図5は本発明を実施するための装置の一例
を示すもので、1は原料ガス(空気又は不活性ガス)ラ
インから送られて来た原料ガスを圧縮するためのコンプ
レッサー、2は触媒2aを組み込んだ触媒反応器、3は
冷却器、4は吸着剤4aを組み込んだ吸着器にして、コ
ンプレッサー1により圧縮されて80〜120℃に温度
上昇した圧縮ガスは触媒反応器2内に入り、ここで銀を
含む触媒2aで反応し、水素は水となり、この水は吸着
器4の吸着剤4aに吸着除去される。
FIG. 5 shows an example of an apparatus for carrying out the present invention, in which 1 is a compressor for compressing a source gas sent from a source gas (air or inert gas) line, and 2 is a compressor for compressing the source gas. A catalytic reactor incorporating the catalyst 2a, a cooler 3 and an adsorber 4 incorporating an adsorbent 4a, and the compressed gas compressed by the compressor 1 and heated to 80 to 120 ° C. is introduced into the catalytic reactor 2. Then, it reacts with the catalyst 2a containing silver, and hydrogen becomes water, and this water is adsorbed and removed by the adsorbent 4a of the adsorber 4.

【0028】[0028]

【発明の効果】本発明によれば、空気または酸素含有不
活性ガス中の微量の水素を80〜120℃の温度で効率
良くかつ、低コストで除去できる。
According to the present invention, a trace amount of hydrogen in air or an oxygen-containing inert gas can be efficiently removed at a temperature of 80 to 120 ° C. at low cost.

【0029】また、水素とともに、同じ還元性のガスで
ある一酸化炭素も同時に効率良く除去でき、高純度の工
業ガスを得ることができる。
Further, together with hydrogen, carbon monoxide, which is the same reducing gas, can be efficiently removed at the same time, and a high-purity industrial gas can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】反応後の水素の濃度と除去率(5%の銀触媒)
の説明図。
FIG. 1 Concentration and removal rate of hydrogen after reaction (5% silver catalyst)
FIG.

【図2】反応後の一酸化炭素の濃度と除去率(5%銀触
媒)の説明図。
FIG. 2 is an explanatory diagram of the concentration of carbon monoxide after the reaction and the removal rate (5% silver catalyst).

【図3】反応後の水素の濃度と除去率(10%銀触媒)
の説明図。
FIG. 3 Concentration and removal rate of hydrogen after reaction (10% silver catalyst)
FIG.

【図4】反応後の一酸化炭素の濃度と除去率(10%銀
触媒)の説明図。
FIG. 4 is an explanatory diagram of the concentration of carbon monoxide after the reaction and the removal rate (10% silver catalyst).

【図5】本発明を実施するための装置の説明図。FIG. 5 is an explanatory view of an apparatus for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1 コンプレッサー 2 触媒反応器 2a 触媒 3 冷却器 4 吸着器 4a 吸着剤 DESCRIPTION OF SYMBOLS 1 Compressor 2 Catalytic reactor 2a Catalyst 3 Cooler 4 Adsorber 4a Adsorbent

───────────────────────────────────────────────────── フロントページの続き 審査官 平塚 政宏 (56)参考文献 特開 平2−284649(JP,A) 特開 平4−209710(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 5/00 C01B 21/04 C01B 23/00 B01J 23/50 B01D 53/86 ────────────────────────────────────────────────── ─── Continuation of the front page Examiner Masahiro Hiratsuka (56) References JP-A-2-284649 (JP, A) JP-A-4-209710 (JP, A) (58) Fields investigated (Int. Cl. 7) , DB name) C01B 5/00 C01B 21/04 C01B 23/00 B01J 23/50 B01D 53/86

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 空気または酸素を含む不活性ガスから成
る原料ガスを80 〜120℃に上昇させたのち、硝酸銀
の水溶液をγ−アルミナから成る担体に 含浸させて銀の
含有量を5〜15重量%に調製した触媒で反応させるこ
とによ り、原料ガス中に含まれている水素を水に変化
し、次にこの水を水分吸着器を 用いて除去することを特
徴とする空気中又は不活性ガス中の水素の除去方法。
1. An inert gas containing air or oxygen.
Source gas is raised to 80 to 120 ° C.
The aqueous solution is impregnated on a carrier consisting of γ- alumina silver
Reaction with a catalyst adjusted to a content of 5 to 15% by weight
Ri by the preparative, change the hydrogen contained in the feed gas to the water
And then remove this water using a moisture adsorber.
A method for removing hydrogen from air or an inert gas.
JP02263293A 1993-02-10 1993-02-10 Method for removing hydrogen from air or inert gas Expired - Lifetime JP3330412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02263293A JP3330412B2 (en) 1993-02-10 1993-02-10 Method for removing hydrogen from air or inert gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02263293A JP3330412B2 (en) 1993-02-10 1993-02-10 Method for removing hydrogen from air or inert gas

Publications (2)

Publication Number Publication Date
JPH06234503A JPH06234503A (en) 1994-08-23
JP3330412B2 true JP3330412B2 (en) 2002-09-30

Family

ID=12088210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02263293A Expired - Lifetime JP3330412B2 (en) 1993-02-10 1993-02-10 Method for removing hydrogen from air or inert gas

Country Status (1)

Country Link
JP (1) JP3330412B2 (en)

Also Published As

Publication number Publication date
JPH06234503A (en) 1994-08-23

Similar Documents

Publication Publication Date Title
US5536302A (en) Adsorbent for removal of trace oxygen from inert gases
US4869883A (en) Inert gas purifier for bulk nitrogen without the use of hydrogen or other reducing gases
US4210628A (en) Removal of nitrogen oxides
US2582885A (en) Method of removing free oxygen or free hydrogen from a gaseous medium
EP0240270A1 (en) One-step process for purifying an inert gas
US5384301A (en) Catalyst for elemental sulfur recovery process
JP2011131213A (en) Method and catalyst/adsorbent for treating exhaust gas containing sulfur compound
JPH10507735A (en) Method for removing oxygen from ammonia at room temperature
EP0311084B1 (en) Oxidation of carbon monoxide and catalyst composition therefor
CN112607738A (en) Carbon dioxide purification process
EP0359286A2 (en) Method by reduction of nitrogen oxide
JP3330412B2 (en) Method for removing hydrogen from air or inert gas
US5662873A (en) Process for the elimination of impurities contained in a gaseous compound
US5693302A (en) Process for the removal of an impurity contained in a composite gas
JPS59107910A (en) Method for purifying gaseous argon
JPH119933A (en) Method for removing nitrogen oxide from gas
JP2872631B2 (en) Nitrogen / oxygen production system
JP3029311B2 (en) Method and apparatus for removing nitrogen oxides from mixed gas
JPS61293548A (en) Carbon monoxide separating and adsorbing agent
JPS63162509A (en) Removing of oxygen from innert gas
JPH04265217A (en) Method for purifying gas consisting of mainly carbon monoxide
JP2700412B2 (en) Hydride gas purification method
JPH02144114A (en) Method for purifying gaseous hydride
KR20220159319A (en) Method for removing hydrogen and carbon monoxide impurities from gas
JPH02307506A (en) Purifying method for air

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020613

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11