JP3329143B2 - Temperature detector - Google Patents

Temperature detector

Info

Publication number
JP3329143B2
JP3329143B2 JP15593895A JP15593895A JP3329143B2 JP 3329143 B2 JP3329143 B2 JP 3329143B2 JP 15593895 A JP15593895 A JP 15593895A JP 15593895 A JP15593895 A JP 15593895A JP 3329143 B2 JP3329143 B2 JP 3329143B2
Authority
JP
Japan
Prior art keywords
temperature
optical fiber
tubular body
light
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15593895A
Other languages
Japanese (ja)
Other versions
JPH095174A (en
Inventor
一宏 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP15593895A priority Critical patent/JP3329143B2/en
Publication of JPH095174A publication Critical patent/JPH095174A/en
Application granted granted Critical
Publication of JP3329143B2 publication Critical patent/JP3329143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、被測定物の異常温度
を検出する温度検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature detecting device for detecting an abnormal temperature of an object to be measured.

【0002】[0002]

【従来の技術】被測定物の温度を検知する場合に、特に
ノイズ環境下や爆発のおそれのある場所等において有効
な手段として光ファイバを用いることが従来より考えら
れている。
2. Description of the Related Art It has been conventionally considered to use an optical fiber as an effective means for detecting the temperature of an object to be measured, particularly in a noisy environment or in a place where there is a risk of explosion.

【0003】そのひとつに、光ファイバを用いたいわゆ
る分布定数型温度センサに後方散乱光を用いた手法や、
温度により変色する感温発色テープを発熱のおそれのあ
る場所に貼りつけて温度上昇によるテープの色変化を確
認する手法が提案されている。
One of them is a method using a backscattered light in a so-called distributed constant temperature sensor using an optical fiber,
A method has been proposed in which a temperature-sensitive coloring tape that changes color with temperature is attached to a place where heat generation may occur, and a color change of the tape due to a rise in temperature is confirmed.

【0004】前者のものは簡単に言うと、被測定物の温
度上昇に伴う光ファイバの後方散乱光の変化を検出して
被測定物の異常温度等を検知するというものであるが、
この場合光ファイバの後方散乱光が非常に微弱であるた
め、その変化を検出するためには複雑,高価な検出手段
が必要になるという問題があり、後者の場合には常に人
がテープの色変化を監視しなければならず、非常に手間
がかかるという問題がある。
[0004] In the former case, simply, a change in backscattered light of an optical fiber accompanying a rise in the temperature of an object to be measured is detected to detect an abnormal temperature or the like of the object to be measured.
In this case, since the backscattered light from the optical fiber is very weak, there is a problem that a complicated and expensive detection means is required to detect the change, and in the latter case, the person always has to use the color of the tape. There is a problem that changes must be monitored, which is very troublesome.

【0005】一方、特開平4−355333号公報に記
載のように、自動的に被測定物の温度上昇を検知する装
置も提案されており、これは被監視部に取り付けられた
感温変色素子に光ファイバを介して光源から光を照射す
ると共に、感温変色素子からの反射光を光ファイバを介
して色識別素子で受光することによって被監視部の温度
を監視するというものであるが、このような構成では、
監視或いは測定すべき点が複数になると光ファイバや光
源,色識別素子を複数設けなければならず、全体の構成
の複雑化を招く。
On the other hand, as disclosed in Japanese Patent Application Laid-Open No. 4-355333, a device for automatically detecting a temperature rise of an object to be measured has been proposed. In addition to irradiating light from a light source through an optical fiber, and monitoring the temperature of a monitored part by receiving reflected light from a thermochromic element through an optical fiber with a color identification element, In such a configuration,
If there are a plurality of points to be monitored or measured, a plurality of optical fibers, light sources, and color identification elements must be provided, which complicates the overall configuration.

【0006】さらに、その他に特開昭58−11533
3号公報に記載されているように、単変液晶が加熱過程
と冷却過程とにおいて異なる温度範囲を指示し、或いは
冷却過程のみにおいて一定の温度範囲を指示するという
性質を利用し、所定の温度範囲において単変液晶状態と
なる物質内に光を入射させ、この液晶物質を透過してき
た光を受光素子により受光し、その強度を測定すること
も提案されている。
Further, Japanese Patent Application Laid-Open No. 58-11533 discloses
As described in JP-A No. 3 (1999), the property that the univariate liquid crystal indicates a different temperature range in the heating process and the cooling process, or a fixed temperature range only in the cooling process, is used to obtain a predetermined temperature. It has also been proposed that light be incident on a substance that is in a univariate liquid crystal state in a range, light transmitted through the liquid crystal substance is received by a light receiving element, and the intensity thereof is measured.

【0007】ところで、このような液晶物質が呈色変化
を起こす際の呈色の濃さは、その液晶固有のものであ
り、呈色の濃さを変えるためには、図6(a),(b)に示す
ように液晶物質層Lcの厚みを変える必要があり、液晶
物質層Lcの厚みを変えることにより、光ファイバFb
を経て液晶物質層Lcを透過してくる光源からの光の
量,即ち透過光量が液晶物質層Lcの厚みがt1と薄い
場合(同図(a)参照)とt2(>t1)と厚い場合(同図
(b)参照)とで異なり、従って液晶物質層Lcの透過光
量を変えるために液晶物質層Lcの厚みを調整しなけれ
ばならない。
By the way, the color density when such a liquid crystal material undergoes a color change is unique to the liquid crystal. In order to change the color density, FIG. It is necessary to change the thickness of the liquid crystal material layer Lc as shown in FIG.
The amount of light from the light source transmitted through the liquid crystal material layer Lc through the liquid crystal material layer Lc, that is, when the thickness of the liquid crystal material layer Lc is as thin as t1 (see FIG. 13 (a)) and when it is as thick as t2 (> t1) (The same figure
Therefore, the thickness of the liquid crystal material layer Lc must be adjusted in order to change the amount of transmitted light of the liquid crystal material layer Lc.

【0008】[0008]

【発明が解決しようとする課題】しかし、この場合同じ
光量の光源Sを用いたときの減衰量は光ファイバFbの
長さにより異なり、光ファイバFbの長さが短いほど減
衰量は少なく受光素子Dにより受光した光の強度は強く
なるため、図7(a),(b)に示すように、光源Sと受光素
子Dとが長さL1の光ファイバFbで接続されていると
き(同図(a)参照)と、これよりも短い長さL2(<L
1)の光ファイバFbで接続されているとき(同図(b)
参照)と比べると、光ファイバFbの短い同図(b)の場
合の方が受光強度が大きくなり、温度上昇に伴い液晶物
質層Lcの呈色の濃さが変化しても温度上昇を検知する
受光強度のしきい値以上での変化となり、これを解決す
るには、受光強度の変化量を大きくとるために液晶物質
層Lcの厚みを変える必要があり、そのためには厚みの
異なる液晶物質層Lcを複数準備しておかなければなら
ず、非常に手間がかかる。
However, in this case, when the light source S having the same light amount is used, the amount of attenuation differs depending on the length of the optical fiber Fb. Since the intensity of the light received by D increases, when the light source S and the light receiving element D are connected by an optical fiber Fb having a length L1 as shown in FIGS. (a)) and a shorter length L2 (<L
1) When connected by the optical fiber Fb ((b) in FIG.
(B), the light receiving intensity is higher in the case of FIG. 3 (b) where the optical fiber Fb is short, and the temperature rise is detected even if the color density of the liquid crystal material layer Lc changes with the temperature rise. In order to solve this problem, it is necessary to change the thickness of the liquid crystal material layer Lc in order to increase the amount of change in the received light intensity. A plurality of layers Lc must be prepared, which is very troublesome.

【0009】また、被測定物が線状長尺物である場合
に、図8に示すように、光源Sと受光素子Dとを接続す
る光ファイバFbの途中の複数箇所、例えば3箇所に液
晶物質層Lc1,Lc2,Lc3を配設し、どの位置で異
常温度を検出したかを知ることができるようにするに
は、各液晶物質層Lc1,Lc2,Lc3の呈色変化時の
透過光の減衰量をそれぞれα1(dB),α2(dB),
α3(dB)とすると、α1>α2>α3の条件下で、α1
≠(α2+α3)の関係が成り立てば各位置での温度検出
が可能であるが、この場合各液晶物質層Lc1,Lc2,
Lc3の減衰量α1,α2,α3を上記した条件を満足する
ように設定するために、各液晶物質層Lc1,Lc2,L
c3として厚みの異なるものを準備しておく必要があ
り、やはり手間がかかる。
When the object to be measured is a long linear object, as shown in FIG. 8, the liquid crystal is provided at a plurality of positions, for example, three positions in the optical fiber Fb connecting the light source S and the light receiving element D. In order to dispose the material layers Lc1, Lc2, and Lc3 so that it is possible to know at which position the abnormal temperature has been detected, the transmitted light at the time of color change of each liquid crystal material layer Lc1, Lc2, Lc3 is determined. The attenuation amounts are α1 (dB), α2 (dB),
Assuming that α3 (dB), α1>α2> α3, α1
If the relationship of ≠ (α2 + α3) is established, temperature detection at each position is possible. In this case, each liquid crystal material layer Lc1, Lc2,
In order to set the attenuation amounts α1, α2, α3 of Lc3 so as to satisfy the above conditions, each of the liquid crystal material layers Lc1, Lc2, Lc
It is necessary to prepare different thicknesses for c3, which also takes time.

【0010】そこで、この発明は、上記のような問題点
を解消するためになされたもので、簡単な構成により被
測定物の異常温度を検知でき、しかも光ファイバの長さ
が変更された場合であっても、容易に対処できるように
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and can detect an abnormal temperature of an object to be measured by a simple configuration, and furthermore, when the length of an optical fiber is changed. However, it is an object of the present invention to be able to easily cope with the problem.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明は、
光源と、受光素子と、前記光源と前記受光素子とを接合
した光ファイバと、それぞれ前記光ファイバの途中の
数の分断部に設けられ被測定物の近辺に設置される複数
温度センサとから成り、前記温度センサが、両端が
開口した筒状体と、中央部にそれぞれ透孔を有し前記筒
状体の両開口それぞれより内部に挿入された2個の防水
キャップと、前記筒状体内部の前記両防水キャップ間の
空間内に界面活性剤が充填されて成り温度上昇により特
定波長の光に対して光吸収・散乱が変化し易い濃さに変
色する感温部とにより構成され、前記筒状体の一方の開
口側から前記筒状体内に挿入された前記光ファイバの端
部及び前記筒状体の他方の開口側から前記筒状体内に挿
入された前記光ファイバの端部がそれぞれ前記両防水キ
ャップの透孔を介して前記感温部にまで液密状態で導入
され、前記光ファイバの分断部の端面が前記感温部にお
いて対向して配置され、前記各温度センサの前記感温部
の界面活性剤の濃度がそれぞれ異なるものである。この
とき、各温度センサの感温部の界面活性剤の濃度が異な
っているため効果的である。
According to the first aspect of the present invention,
Light source and a light receiving element, an optical fiber has been joined and said light receiving element and the light source, the middle of the double of each of the optical fiber
A number of multiple parts are provided near the part to be measured
Consists of a temperature sensor of the respective temperature sensor is a tubular body whose both ends are open, two waterproof cap in the central portion is inserted from the inside, respectively two openings of the tubular body has a through hole, respectively And a space between the two waterproof caps inside the tubular body filled with a surfactant, and a temperature sensitivity at which the color changes to a density at which light absorption and scattering easily change with respect to light of a specific wavelength due to a rise in temperature. The end of the optical fiber inserted into the tubular body from one opening side of the tubular body and the other end of the optical fiber inserted into the tubular body from the other opening side of the tubular body. The ends of the optical fibers are respectively introduced in a liquid-tight state to the temperature-sensitive portion through the through holes of the waterproof caps, and the end surfaces of the divided portions of the optical fiber are arranged to face each other in the temperature-sensitive portion , The temperature sensing part of each of the temperature sensors
Have different concentrations of surfactants. this
When the concentration of surfactant in the temperature-sensitive part of each temperature sensor is different
It is effective because it is.

【0012】また、このとき、請求項2記載のように、
前記筒状体が金属から成るものであってもよい。更に、
このとき、請求項3記載のように、前記感温部を形成す
る界面活性剤が、化1により表されるものがよい。
At this time, as described in claim 2,
The tubular body may be made of metal. Furthermore,
At this time, the temperature sensing portion is formed as described in claim 3.
The surfactant is preferably represented by Chemical Formula 1.

【0013】さらに、請求項記載のように、前記温度
センサの前記感温部内に、気泡が設けられているのがよ
い。
Furthermore, as according to claim 4, in the temperature sensitive portion of the temperature sensor, it is preferable bubbles is provided.

【0014】[0014]

【作用】請求項1記載の発明においては、被測定物の温
度が上昇すると、光ファイバの途中の分断部に設けた温
度センサの感温部の色の濃さが変化し、色の濃さの変化
前後で受光素子が受光する特定波長の光の強度が変化す
るため、この変化に基づいて被測定物の温度上昇が検出
される。そして、温度センサが複数設けられているた
め、いずれかの温度センサにより被測定物の温度上昇が
検知されるため信頼性が向上し、更に各温度センサの感
温部の界面活性剤の濃度が異なっているため、各温度セ
ンサの透過光の減衰量がそれぞれ異なり、各温度センサ
での異常温度の検出が可能で、しかもどの温度センサに
より温度検出したかが分かる。 このとき、請求項2記載
のように、筒状体が金属から成るものであってもよい。
According to the first aspect of the present invention, when the temperature of the object to be measured rises, the color density of the temperature sensing portion of the temperature sensor provided at the dividing portion in the middle of the optical fiber changes, and the color density increases. Since the intensity of the light of the specific wavelength received by the light receiving element changes before and after the change, the temperature rise of the DUT is detected based on this change. And, a plurality of temperature sensors are provided.
The temperature rise of the DUT by either of the temperature sensors
The reliability is improved because it is detected.
Because the concentrations of surfactants in the hot parts are different,
The attenuation of the transmitted light of each sensor is different,
Abnormal temperature can be detected by any temperature sensor.
It is clear that the temperature has been detected. At this time, claim 2
As described above, the cylindrical body may be made of metal.

【0015】また、このとき、請求項記載のように、
感温部を形成する界面活性剤が、化1により表されるも
のであることが望ましい。
[0015] In this case, as according to claim 3,
It is desirable that the surfactant forming the temperature-sensitive portion is one represented by Chemical Formula 1.

【0016】[0016]

【0017】さらに、請求項記載のように、感温部内
に気泡を設けると、被測定物の温度上昇による感温部の
体積膨張が緩和される。
Furthermore, as according to claim 4, wherein, when providing the bubble temperature sensitive portion, the volume expansion of the temperature sensing portion due to the temperature rise of the object to be measured is alleviated.

【0018】[0018]

【実施例】(参照例) 図1はこの発明の基礎となる参照例の一部の断面図、図
2は概略図、図3は動作説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS ( Reference Example ) FIG. 1 is a partial sectional view of a reference example on which the present invention is based , FIG. 2 is a schematic diagram, and FIG.

【0019】装置全体の概略構成について説明すると、
図2に示すように、LEDその他の単色光源或いは白色
光源から成る光源1からの光は光ファイバ2の入射端に
入射し、この入射光は光ファイバ2によって出射端に伝
送され、光ファイバ2の出射端側に設けられたフォトト
ランジスタ,フォトダイオード等から成る受光素子3に
より受光される。
The schematic configuration of the entire apparatus will be described.
As shown in FIG. 2, light from a light source 1 composed of an LED or other monochromatic light source or a white light source is incident on an input end of an optical fiber 2, and this incident light is transmitted to an output end by an optical fiber 2, and The light is received by the light receiving element 3 including a phototransistor, a photodiode, and the like provided on the emission end side of the light emitting device.

【0020】さらに、光ファイバ2の途中には分断部5
が形成され、この分断部5に温度センサ6が設けられて
おり、この温度センサ6は図1に示すように、両端が開
口した金属から成る筒状体7と、中央部にそれぞれ透孔
8を有し筒状体7の両開口それぞれより内部に挿入され
たゴムなどから成る2個の防水キャップ9と、筒状体7
内部の両防水キャップ9間の空間内に化1により表され
る界面活性剤が充填されて成り温度上昇により特定波長
の光に対して光吸収・散乱が変化し易い濃さに変色する
感温部10とにより構成されている。
Further, the dividing section 5 is provided in the middle of the optical fiber 2.
A temperature sensor 6 is provided in the dividing portion 5. As shown in FIG. 1, the temperature sensor 6 has a cylindrical body 7 made of metal having both ends opened, and a through hole 8 in the center. Two waterproof caps 9 made of rubber or the like inserted into each of the two openings of the cylindrical body 7 and
The space between the inner waterproof caps 9 is filled with a surfactant represented by Chemical Formula 1, and the temperature is changed to a density at which light absorption / scattering is easily changed for light of a specific wavelength due to a rise in temperature. And a unit 10.

【0021】このとき使用すべき界面活性剤としては、
化1により表されるもの以外に、例えば特開平1−11
3627号公報に記載されたノニオン界面活性剤,特開
昭54−123589号公報に記載のイオン性界面活性
剤等を用いてもよい。
At this time, the surfactant to be used includes:
In addition to those represented by Chemical formula 1, for example,
Nonionic surfactants described in 3627 and ionic surfactants described in JP-A-54-123589 may be used.

【0022】そして、筒状体7の一方の開口側から筒状
体7内に挿入された分断された光ファイバ2の一方側の
端部及び筒状体7の他方の開口側から筒状体7内に挿入
された分断された光ファイバ2の他方側の端部がそれぞ
れ両防水キャップ9の透孔8を介して感温部10にまで
液密状態で導入され、光ファイバ2の分断部の端面が感
温部10において対向して配置されており、このような
温度センサ6が被測定物の近辺に配置され、被測定物の
温度が異常に上昇(例えば85℃以上に上昇)すると、
温度センサ6の界面活性剤の色の濃さが変化し、色の変
化前後で受光素子3が受光する特定波長の光の強度が変
化するため、この光強度の変化に基づいて被測定物の温
度上昇が検出される。
Then, one end of the split optical fiber 2 inserted into the cylindrical body 7 from one opening side of the cylindrical body 7 and the cylindrical body 7 from the other opening side of the cylindrical body 7. The other end of the split optical fiber 2 inserted into the optical fiber 7 is introduced in a liquid-tight manner to the temperature sensing part 10 through the through holes 8 of the waterproof caps 9, respectively. Are arranged opposite to each other in the temperature sensing part 10, and such a temperature sensor 6 is arranged near the object to be measured, and when the temperature of the object to be measured abnormally rises (for example, rises to 85 ° C. or more). ,
The color depth of the surfactant of the temperature sensor 6 changes, and the intensity of light of a specific wavelength received by the light receiving element 3 changes before and after the color change. A temperature rise is detected.

【0023】ところで、化1で表される濃度5%の界面
活性剤水溶液を充填して形成した感温部10に90℃程
度の熱風を当て、受光素子3により受光する光強度を測
定して熱風を当てる前後での光強度の変化は約3dBと
なった。
By the way, hot air of about 90 ° C. is applied to the temperature sensing part 10 formed by filling the surfactant aqueous solution having a concentration of 5% represented by Chemical formula 1, and the light intensity received by the light receiving element 3 is measured. The change in light intensity before and after applying hot air was about 3 dB.

【0024】また、化1で表される界面活性剤の濃度
(=100・x/(x+y);xは界面活性剤,yは
水)と呈色の変化量(減衰量)との関係を調べた結果図
3に示すようになり、界面活性剤の濃度が高くなるほど
変化量は大きくなり、この結果から使用する光ファイバ
2の全長が変更されたときに、変更後の光ファイバ2に
よる減衰量を考慮して、温度上昇時の受光素子3により
受光する受光強度が、温度上昇を検知するしきい値を通
過するように感温部10として充填する界面活性剤の濃
度を調整することにより、温度上昇時の変化量を大きく
することができ、光ファイバ2の長さが変化しても被測
定物の温度上昇を的確に検出することができる。
The relationship between the concentration of the surfactant represented by Chemical Formula 1 (= 100.x / (x + y); x is a surfactant, y is water) and the amount of change in color (attenuation) is shown below. As a result of the investigation, the results are as shown in FIG. 3. The higher the concentration of the surfactant, the larger the change amount. From this result, when the total length of the optical fiber 2 to be used is changed, the attenuation due to the changed optical fiber 2 In consideration of the amount, by adjusting the concentration of the surfactant to be filled as the temperature sensing part 10 so that the light receiving intensity received by the light receiving element 3 at the time of temperature rise passes the threshold for detecting the temperature rise. In addition, the amount of change at the time of temperature rise can be increased, and even if the length of the optical fiber 2 changes, the temperature rise of the object to be measured can be accurately detected.

【0025】従って、参照例によれば、構成の複雑化を
招くことなく被測定物の異常温度を容易に検知すること
ができ、従来の液晶物質層を用いる場合のように厚みの
異なる液晶物質層を複数準備する手間を必要とせず、簡
単な構成により被測定物の異常温度を検知できる。
Therefore, according to the reference example , the abnormal temperature of the object to be measured can be easily detected without complicating the structure, and the liquid crystal materials having different thicknesses as in the case of using the conventional liquid crystal material layer. The trouble of preparing a plurality of layers is not required, and the abnormal temperature of the object can be detected with a simple configuration.

【0026】また、光ファイバ2の全長が変更された場
合であっても、変更後の光ファイバ2による減衰量を考
慮し、感温部10として充填する界面活性剤の濃度を調
整することにより、光ファイバ2の長さの変更の影響を
受けることなく、被測定物の温度上昇を的確に検出する
ことが可能となる。
Further, even when the entire length of the optical fiber 2 is changed, the concentration of the surfactant to be filled as the temperature sensing portion 10 is adjusted in consideration of the amount of attenuation caused by the changed optical fiber 2. Thus, it is possible to accurately detect a temperature rise of the device under test without being affected by a change in the length of the optical fiber 2.

【0027】さらに、筒状体7に金属を用いているた
め、内部の界面活性剤への熱が良く伝導し、被測定物の
温度上昇に対する応答性が良い。
Further, since metal is used for the tubular body 7, heat to the internal surfactant is well conducted, and the response to the temperature rise of the measured object is good.

【0028】(第1実施例) 図4はこの発明の第実施例の概略図であり、この場合
上記した参照例と相違するのは、光ファイバ2に形成さ
れた3箇所の分断部5a,5b,5cに温度センサ6
a,6b,6cをそれぞれ設けたことである。
( First Embodiment ) FIG. 4 is a schematic view of a first embodiment of the present invention. In this case, the difference from the above-mentioned reference example is that three divided portions 5a formed in the optical fiber 2 are provided. , 5b, 5c with temperature sensor 6
a, 6b, 6c.

【0029】このように、3個の温度センサ6a,6
b,6cを設けることによって、いずれかの温度センサ
6a,6b,6cにより長尺の被測定物の温度上昇を検
知できるため、温度検出の信頼性の向上を図ることがで
きる。
As described above, the three temperature sensors 6a, 6
By providing b and 6c, any one of the temperature sensors 6a, 6b and 6c can detect a rise in the temperature of a long object to be measured, so that the reliability of temperature detection can be improved.

【0030】ところで、いま各温度センサ6a,6b,
6cをそれぞれ第1,第2,第3温度センサ6a,6
b,6cと称し、各温度センサ6a,6b,6cの感温
部10の界面活性剤の濃度を、それぞれ例えば15%,
8%,5%とすると、各温度センサ6a,6b,6cそ
れぞれの呈色の変化量(減衰量)は図3より5(d
B),4(dB),3(dB)となり、受光素子3によ
り受光する光強度の変化量(dB)と温度検出した温度
センサとの対応関係は表1に示すようになり、例えば受
光素子3により受光する光強度の変化量が7(dB)で
あるとすると、表1より第2,第3温度センサ6b,6
cにより温度検出されたことが分かる。
Now, each of the temperature sensors 6a, 6b,
6c to the first, second and third temperature sensors 6a and 6 respectively.
b, 6c, the concentration of the surfactant in the temperature sensing part 10 of each of the temperature sensors 6a, 6b, 6c is, for example, 15%,
Assuming that it is 8% and 5%, the color change (attenuation) of each of the temperature sensors 6a, 6b and 6c is 5 (d) from FIG.
B), 4 (dB), and 3 (dB), and the correspondence between the variation (dB) of the light intensity received by the light receiving element 3 and the temperature sensor that detected the temperature is as shown in Table 1. For example, the light receiving element Assuming that the amount of change in the intensity of the light received by 3 is 7 (dB), from Table 1, the second and third temperature sensors 6b and 6
It can be seen that the temperature was detected by c.

【0031】[0031]

【表1】 [Table 1]

【0032】(第実施例) 図5はこの発明の第実施例の一部の断面図であり、こ
の場合上記した第1実施例と相違するのは、界面活性剤
が充填されて形成された感温部10に気泡12を設け、
筒状体7の両端部における光ファイバ2の周囲をエポキ
シ樹脂13によりシールしたことである。
( Second Embodiment) FIG. 5 is a partial sectional view of a second embodiment of the present invention. In this case, the difference from the first embodiment is that a surfactant is filled and formed. A bubble 12 is provided in the temperature sensing part 10
That is, the periphery of the optical fiber 2 at both ends of the cylindrical body 7 is sealed with the epoxy resin 13.

【0033】従って、このように感温部10内に気泡1
2を設けると、被測定物の温度上昇によって感温部10
の体積が膨張しても、気泡12により感温部10の膨張
分を緩和できるため、筒状体7内部の両防水キャップ9
間の空間内に界面活性剤を完全に充填する場合のように
感温部10が膨張により破損するおそれを回避すること
が可能になる。
Therefore, as described above, the bubbles 1
2 is provided, the temperature-sensitive portion 10 increases due to a rise in the temperature of the measured object.
Even if the volume of the water-proof cap 9 expands, the expansion of the temperature-sensitive part 10 can be reduced by the air bubbles 12.
It is possible to avoid the possibility that the temperature sensing part 10 is damaged by expansion as in the case where the surfactant is completely filled in the space between them.

【0034】なお、上記各実施例では、筒状体7を金属
により構成した場合について説明したが、特に金属に限
定されものではなく、ガラスパイプを用いてもよいのは
言うまでもない。
In each of the above embodiments, the case where the cylindrical body 7 is made of metal has been described. However, it is needless to say that the invention is not limited to metal, and a glass pipe may be used.

【0035】[0035]

【0036】[0036]

【発明の効果】以上のように、請求項1記載の発明によ
れば、光ファイバの途中の分断部に、筒状体,防水キャ
ップ及び界面活性剤を充填した感温部から成る温度セン
サを設けたため、構成の複雑化を招くことなく被測定物
の異常温度を容易に検知することができ、従来の液晶物
質層を用いる場合のように厚みの異なる液晶物質層を複
数準備する手間を必要とせず、簡単な構成により被測定
物の異常温度を検知できる。
As described above, according to the first aspect of the present invention, there is provided a temperature sensor comprising a tubular body, a waterproof cap, and a temperature-sensitive portion filled with a surfactant in a split portion in the middle of an optical fiber. Because of this, it is possible to easily detect the abnormal temperature of the DUT without complicating the configuration, and it is necessary to prepare multiple liquid crystal material layers with different thicknesses as in the case of using a conventional liquid crystal material layer. Instead, it is possible to detect the abnormal temperature of the measured object with a simple configuration.

【0037】また、光ファイバの全長が変更された場合
であっても、感温部として充填する界面活性剤の濃度を
調整することにより、光ファイバの長さの変更の影響を
受けることなく、被測定物の温度上昇を的確に検出する
ことが可能となる。
Further, even when the total length of the optical fiber is changed, by adjusting the concentration of the surfactant to be filled as the temperature sensing portion, the change in the length of the optical fiber is not affected. It is possible to accurately detect a temperature rise of the device under test.

【0038】さらに、複数の温度センサを設けられてい
るため、いずれかの温度センサにより長尺の被測定物の
温度上昇を検知でき、温度検出の信頼性の向上を図るこ
とができる。このとき、各温度センサの感温部の界面活
性剤の濃度が異なっているため、各温度センサの透過光
の減衰量がそれぞれ異なるため、各温度センサでの異常
温度の検出が可能で、しかもどの温度センサにより温度
検出したかを知ることができる。また、請求項2記載の
発明によれば、筒状体が金属から成るため、内部の界面
活性剤への熱が良く伝導し、被測定物の温度上昇に対す
る応答性が良い。
[0038] In addition, provided the temperature sensor for multiple
Because, you to detect the temperature rise of one of the object to be measured long by the temperature sensor, it is possible to improve the reliability of temperature detection. This and come, since the concentration of the surfactant temperature-sensitive portion of the temperature sensors is different, since the attenuation of light transmitted through each of the temperature sensors are different, can be detected abnormal temperature at each temperature sensor, In addition, it is possible to know which temperature sensor has detected the temperature. Further, according to claim 2
According to the invention, since the cylindrical body is made of metal, the internal interface
The heat to the activator conducts well, and the
Good responsiveness.

【0039】また、請求項記載の発明によれば、感温
部内に気泡を設けることにより、温度上昇による感温部
の体積膨張を緩和でき、筒状体内部の両防水キャップ間
の空間内に界面活性剤を完全に充填する場合のように、
膨張による感温部の破損を防止することが可能になる。
According to the fourth aspect of the present invention, by providing bubbles in the temperature sensing portion, volume expansion of the temperature sensing portion due to temperature rise can be reduced, and the space between the waterproof caps inside the cylindrical body can be reduced. As in the case where the surfactant is completely filled,
It is possible to prevent damage to the temperature sensing part due to expansion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】参照例の一部の断面図である。FIG. 1 is a partial cross-sectional view of a reference example .

【図2】参照例の概略図である。FIG. 2 is a schematic diagram of a reference example .

【図3】参照例の動作説明図である。FIG. 3 is an operation explanatory diagram of a reference example .

【図4】第実施例の概略図である。FIG. 4 is a schematic view of the first embodiment.

【図5】第実施例の一部の断面図である。FIG. 5 is a partial cross-sectional view of the second embodiment.

【図6】従来例の概略図である。FIG. 6 is a schematic view of a conventional example.

【図7】従来例の動作説明図である。FIG. 7 is an operation explanatory diagram of a conventional example.

【図8】従来例の動作説明図である。FIG. 8 is an operation explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 光源 2 光ファイバ 3 受光素子 5 分断部 6 温度センサ 6a,6b,6c 第1,第2,第3温度センサ 7 筒状体 8 透孔 9 防水キャップ 10 感温部 12 気泡 DESCRIPTION OF SYMBOLS 1 Light source 2 Optical fiber 3 Light receiving element 5 Splitting part 6 Temperature sensor 6a, 6b, 6c First, second, third temperature sensor 7 Cylindrical body 8 Through hole 9 Waterproof cap 10 Temperature sensitive part 12 Bubbles

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光源と、受光素子と、前記光源と前記受
光素子とを接合した光ファイバと、それぞれ前記光ファ
イバの途中の複数の分断部に設けられ被測定物の近辺に
設置される複数の温度センサとから成り、 前記温度センサが、 両端が開口した筒状体と、中央部にそれぞれ透孔を有し
前記筒状体の両開口それぞれより内部に挿入された2個
の防水キャップと、前記筒状体内部の前記両防水キャッ
プ間の空間内に界面活性剤が充填されて成り温度上昇に
より特定波長の光に対して光吸収・散乱が変化し易い濃
さに変色する感温部とにより構成され、 前記筒状体の一方の開口側から前記筒状体内に挿入され
た前記光ファイバの端部及び前記筒状体の他方の開口側
から前記筒状体内に挿入された前記光ファイバの端部が
それぞれ前記両防水キャップの透孔を介して前記感温部
にまで液密状態で導入され、前記光ファイバの分断部の
端面が前記感温部において対向して配置され 前記各温度センサの前記感温部の界面活性剤の濃度がそ
れぞれ異なる ことを特徴する温度検出装置。
And 1. A light source, a light receiving element, and an optical fiber joining the said light source the light receiving element, a plurality which are placed near the object to be measured is provided in a plurality of divided portions of the middle of each of the optical fiber consists of a temperature sensor of the respective temperature sensor is a tubular body whose both ends are open, two waterproof cap in the central portion is inserted from the inside, respectively two openings of the tubular body has a through hole, respectively And a space between the two waterproof caps inside the tubular body filled with a surfactant, and a temperature sensitivity at which the color changes to a density at which light absorption and scattering easily change with respect to light of a specific wavelength due to a rise in temperature. And an end of the optical fiber inserted into the tubular body from one opening side of the tubular body and the optical fiber inserted into the tubular body from the other opening side of the tubular body. The ends of the optical fiber are Tsu is introduced in a liquid-tight manner to the temperature sensing portion via the through hole of the flop, the end face of the divided portion of the optical fiber is arranged opposite in the temperature sensing portion, wherein the temperature sensitive portion of the temperature sensor Surfactant concentration
Temperature detecting devices characterized by different characteristics.
【請求項2】 前記筒状体が金属から成ることを特徴と
する請求項1記載の温度検出装置。
2. The temperature detecting device according to claim 1, wherein said cylindrical body is made of metal .
【請求項3】 前記感温部を形成する界面活性剤が、化
1により表されることを特徴とする請求項1または2記
載の温度検出装置。 【化1】
3. The method according to claim 2, wherein the surfactant forming the temperature-sensitive portion is
The temperature detecting device according to claim 1, wherein the temperature detecting device is represented by the following formula (1). Embedded image
【請求項4】 前記温度センサの前記感温部内に、気泡
が設けられていることを特徴とする請求項1,2または
3記載の温度検出装置。
4. An air bubble in the temperature sensing part of the temperature sensor.
An assembly as claimed in claim 1, 2 or 3 further characterized in that is provided.
JP15593895A 1995-06-22 1995-06-22 Temperature detector Expired - Fee Related JP3329143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15593895A JP3329143B2 (en) 1995-06-22 1995-06-22 Temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15593895A JP3329143B2 (en) 1995-06-22 1995-06-22 Temperature detector

Publications (2)

Publication Number Publication Date
JPH095174A JPH095174A (en) 1997-01-10
JP3329143B2 true JP3329143B2 (en) 2002-09-30

Family

ID=15616807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15593895A Expired - Fee Related JP3329143B2 (en) 1995-06-22 1995-06-22 Temperature detector

Country Status (1)

Country Link
JP (1) JP3329143B2 (en)

Also Published As

Publication number Publication date
JPH095174A (en) 1997-01-10

Similar Documents

Publication Publication Date Title
EP0392897B1 (en) Three-parameter optical fiber sensor and system
US5051595A (en) Fiber optic flame detection and temperature measurement system employing doped optical fiber
RU2401058C2 (en) Oxygen metering probe for biological tissue and catheter with such probe
US4927222A (en) Dual optical fiber device
EP0411054A1 (en) Temperature and pressure monitors utilizing interference filters
JP3329143B2 (en) Temperature detector
KR20050088467A (en) Corrosion detecting device
JPH0228541A (en) Optical concentration detector
JP2991085B2 (en) Temperature detector
JP3079968B2 (en) Temperature detector
JPH0953997A (en) Temperature detector
JP2991086B2 (en) Temperature detector
JP3079964B2 (en) Temperature detector
JP3079958B2 (en) Temperature detector
JP2019505000A (en) Optical sensor device
JPH07324994A (en) Temperature-detecting apparatus
Grattan et al. Frustrated-total-internal-reflection fiber-optic pressure sensor
FI78353C (en) FIBEROPTIC TEMPERATURMAETFOERFARANDE OCH -ANORDNING.
JP3024516B2 (en) Temperature detector
JPH0949774A (en) Temperature detector
US9772292B2 (en) Fiber optic probe and measuring sensor using said probe
HUT59489A (en) Sensor for detecting absorption of the electromagnetic radiation
JPH07190864A (en) Temperature detection device
JPS643863Y2 (en)
JPH0953996A (en) Temperature detector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees