JP3324922B2 - Method for producing silicon trichloride - Google Patents

Method for producing silicon trichloride

Info

Publication number
JP3324922B2
JP3324922B2 JP33475395A JP33475395A JP3324922B2 JP 3324922 B2 JP3324922 B2 JP 3324922B2 JP 33475395 A JP33475395 A JP 33475395A JP 33475395 A JP33475395 A JP 33475395A JP 3324922 B2 JP3324922 B2 JP 3324922B2
Authority
JP
Japan
Prior art keywords
weight
aluminum
tcs
iron
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33475395A
Other languages
Japanese (ja)
Other versions
JPH09169514A (en
Inventor
正美 江野口
忠 相本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP33475395A priority Critical patent/JP3324922B2/en
Publication of JPH09169514A publication Critical patent/JPH09169514A/en
Application granted granted Critical
Publication of JP3324922B2 publication Critical patent/JP3324922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、三塩化ケイ素の製
造方法に関する。さらに詳しくは高い選択率で三塩化ケ
イ素を製造する方法に関する。
[0001] The present invention relates to a method for producing silicon trichloride. More specifically, the present invention relates to a method for producing silicon trichloride with high selectivity.

【0002】[0002]

【従来の技術】三塩化ケイ素(以下、TCSと略す)
は、多結晶シリコン製造原料として有用な化合物であ
る。一般に、TCSは金属ケイ素と塩化水素を反応させ
ることにより製造できるが、この際、かなりの量の四塩
化珪素(以下、STCと略す)が副生することが知られ
ている。例えば特公昭61−4768号公報には、鉄化
合物(主に、FeCl2)を触媒とし、その存在下でT
CSを得ることが記載されている。この方法において
は、反応温度を変えることでTCSとSTCの生成割合
(以下TCSの生成割合をTCS選択率と記す)が決定
されている。
2. Description of the Related Art Silicon trichloride (hereinafter abbreviated as TCS)
Is a compound useful as a raw material for producing polycrystalline silicon. In general, TCS can be produced by reacting metallic silicon with hydrogen chloride. At this time, it is known that a considerable amount of silicon tetrachloride (hereinafter abbreviated as STC) is produced as a by-product. For example, Japanese Patent Publication No. 61-4768 discloses that an iron compound (mainly, FeCl 2 ) is used as a catalyst and T
It is described that CS is obtained. In this method, the production ratio of TCS and STC (hereinafter, the production ratio of TCS is referred to as TCS selectivity) is determined by changing the reaction temperature.

【0003】[0003]

【発明が解決しようとする課題】ところが、本発明者が
追試したところ、上記方法は、反応温度と鉄化合物触媒
によってTCS選択率を制御しているが、この反応はか
なりの発熱反応であるため反応温度の制御が難しく、反
応温度の上昇と共にTCS選択率が激減してTCSの選
択率が十分に満足できないものであった。こうしたこと
から、STCの副生を生じることなく高い選択率でTC
Sを製造する方法を開発することが大きな課題であっ
た。
However, the present inventor has conducted additional tests. According to the above method, the TCS selectivity is controlled by the reaction temperature and the iron compound catalyst. However, this reaction is a considerably exothermic reaction. It was difficult to control the reaction temperature, and the TCS selectivity was drastically reduced with the rise of the reaction temperature, so that the TCS selectivity was not sufficiently satisfied. From these facts, it is possible to obtain TC with high selectivity without producing STC by-product.
Developing a method for producing S has been a major challenge.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を続けた結果、反応系内に、ア
ルミニウム原子を0.05〜5重量%に維持しつつ、連
続的に金属ケイ素と塩化水素を反応さすと共に、鉄原子
を0.1〜5重量%になるように系外に取り出すこと
で、上記の課題が解決されることを見い出し、本発明を
完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, while maintaining aluminum atoms in the reaction system at 0.05 to 5% by weight, continuous It was found that the above problems could be solved by reacting metallic silicon with hydrogen chloride and extracting iron atoms out of the system so as to be 0.1 to 5% by weight. Reached.

【0005】即ち、本発明は、金属ケイ素と塩化水素と
を、鉄およびアルミニウム含有触媒の存在下、アルミニ
ウム原子を0.05〜5重量%および鉄原子を0.1〜5
重量%に維持しつつ連続的に反応せしめる三塩化ケイ素
(TCS)の製造方法である。
That is, according to the present invention, metal silicon and hydrogen chloride are added in the presence of a catalyst containing iron and aluminum in an amount of 0.05 to 5% by weight of aluminum atoms and 0.1 to 5% by weight of iron atoms.
This is a method for producing silicon trichloride (TCS), which is continuously reacted while maintaining its weight percentage.

【0006】以下、本発明について更に詳しく説明す
る。まず、本発明で使用する金属ケイ素としては、公知
のものが何ら制限なく使用されるが、鉄原子が0.1〜
5重量%、アルミニウム原子が0.05〜5重量%含ま
れるものが好ましい。
Hereinafter, the present invention will be described in more detail. First, as the metal silicon used in the present invention, known silicon can be used without any limitation, but the iron atom is 0.1 to 0.1.
Those containing 5% by weight and 0.05 to 5% by weight of aluminum atoms are preferred.

【0007】本発明において、アルミニウム原子は、塩
化水素と反応し塩化アルミニウムに転化した後、昇華し
て系外に取り出されるために、連続的に又は断続的に系
中に供給される必要がある。アルミニウム原子の供給に
は、アルミニウム金属、アルミニウム化合物が何ら制限
なく使用されるが、アルミニウム原子を、使用する金属
ケイ素に含有させて供給するのが好ましい。
In the present invention, the aluminum atoms need to be continuously or intermittently supplied into the system in order to react with hydrogen chloride and convert it to aluminum chloride, and then sublimate and take out the system. . Aluminum metal and aluminum compounds are used without any limitation for the supply of aluminum atoms, but it is preferable to supply the aluminum atoms by including them in the metal silicon used.

【0008】本発明において、鉄原子は、アルミニウム
原子と異なり、系内に蓄積する。従って、鉄原子を5重
量%以下に維持するためには、蓄積した鉄原子を系外に
取り出す操作が必要である。鉄原子の系外への取り出し
方法は、反応ガスと共に取り出す他に、反応系内の金属
ケイ素と共に取り出す方法など、何ら制限ない方法が用
いられ、例えば反応器が流動床であれば、サイクロンの
分級効率を低く設定する方法等を用いることができる。
In the present invention, iron atoms, unlike aluminum atoms, accumulate in the system. Therefore, in order to maintain the iron atoms at 5% by weight or less, it is necessary to take out the accumulated iron atoms out of the system. The method of taking out iron atoms out of the system is not limited to the method of taking out together with the reaction gas, and a method of taking out together with metallic silicon in the reaction system is used. For example, a method of setting the efficiency low can be used.

【0009】本発明において使用される塩化水素として
は、水素などの還元性ガス、窒素、アルゴンなどの不活
性ガス等が混入していても何ら制限なく使用される。そ
の供給速度は、反応器の空塔速度で3〜50cm/秒で
あるのが好ましい。反応温度は、未反応の塩化水素の量
を抑制し、目的物のTCSを高選択率で得るために、一
般に250〜400℃の範囲であることが好ましい。本
発明の反応圧力は、好ましくは1気圧以上、より好まし
くは1〜15気圧である。
The hydrogen chloride used in the present invention can be used without any limitation, even if a reducing gas such as hydrogen or an inert gas such as nitrogen or argon is mixed therein. The feed rate is preferably 3 to 50 cm / sec as the superficial velocity of the reactor. The reaction temperature is generally preferably in the range of 250 to 400 ° C. in order to suppress the amount of unreacted hydrogen chloride and obtain the target TCS at a high selectivity. The reaction pressure of the present invention is preferably 1 atm or more, more preferably 1 to 15 atm.

【0010】また、本発明で使用される反応器として
は、固定層式、流動層式など公知のものが何ら制限なく
使用されるが、反応生成熱の除熱効率を高めるため、流
動層式反応器を用いるのが好ましい。以上の方法でTC
Sを高選択率で得ることができる。
As the reactor used in the present invention, a known reactor such as a fixed-bed reactor or a fluidized-bed reactor is used without any limitation. However, in order to increase the efficiency of removing heat of reaction formation, a fluidized-bed reactor is used. It is preferable to use a vessel. TC by the above method
S can be obtained with a high selectivity.

【0011】[0011]

【発明の効果】本発明の方法では、金属ケイ素と塩化水
素を反応せしめる系内に、アルミニウム原子を0.01
〜5重量%になるように供給することで、反応温度の上
昇によるTCS選択率の低下を抑制すると共に、高選択
率でTCSを生成させる触媒作用を有効に発現させる。
一方、鉄原子はSTCの副生を促進する触媒作用を示す
ため、反応系内に0.1〜5重量%に維持するように抜
き出すことで、反応温度の影響を受けずにTCSを高選
択率で製造することができるようになる。
According to the method of the present invention, 0.01 is added to an aluminum atom in a system for reacting metallic silicon with hydrogen chloride.
By supplying so as to be 55% by weight, a decrease in TCS selectivity due to an increase in reaction temperature is suppressed, and a catalytic action for generating TCS with high selectivity is effectively exhibited.
On the other hand, since iron atoms have a catalytic action to promote by-products of STC, by extracting them in the reaction system so as to maintain 0.1 to 5% by weight, TCS can be selected without being affected by the reaction temperature. It can be manufactured at a rate.

【0012】[0012]

【実施例】以下、実施例をあげて本発明を具体的に説明
するが、本発明は、これらの実施例に何ら限定されるも
のではない。
EXAMPLES The present invention will now be described specifically with reference to examples, but the present invention is not limited to these examples.

【0013】実施例1 内径50mmのステンレス製流動層式反応器でTCSを
製造した。反応器に金属ケイ素(鉄0.15重量%、ア
ルミニウム0.25重量%含有する)を500g仕込
み、次いで塩化水素3.91g(0.107モル)/mi
nと水素0.214g(0.107モル)/minを混合
し、反応器に供給した。反応温度350℃、大気圧下、
金属ケイ素を60g(2.14モル)/hrの速度で供
給した。5時間後にTCS選択率をガスクロマトグラフ
ィーで分析したところ、93モル%であった。反応器内
の鉄およびアルミニウムの濃度は、それぞれ0.21重
量%および0.18重量%であった。
Example 1 TCS was produced in a stainless steel fluidized bed reactor having an inner diameter of 50 mm. The reactor is charged with 500 g of metallic silicon (containing 0.15% by weight of iron and 0.25% by weight of aluminum), and then 3.91 g (0.107 mol) / mi of hydrogen chloride.
n and 0.214 g (0.107 mol) / min of hydrogen were mixed and supplied to the reactor. Reaction temperature 350 ° C, under atmospheric pressure,
Metallic silicon was fed at a rate of 60 g (2.14 mol) / hr. After 5 hours, the TCS selectivity was analyzed by gas chromatography to be 93 mol%. The concentrations of iron and aluminum in the reactor were 0.21% and 0.18% by weight, respectively.

【0014】実施例2〜4 実施例1において、反応温度をそれぞれ表1に示したよ
うに代えた以外は、実施例1と同様にしてTCSを製造
した。結果を表1に示す。
Examples 2 to 4 TCS was prepared in the same manner as in Example 1, except that the reaction temperature was changed as shown in Table 1. Table 1 shows the results.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例5〜10 実施例1において、金属ケイ素のアルミニウムおよび鉄
の含有量を表2に示したように代えた以外は、実施例1
と同様にしてTCSを製造した結果を表2に示す。
Examples 5 to 10 Example 1 was repeated except that the contents of aluminum and iron in metallic silicon were changed as shown in Table 2.
Table 2 shows the results of producing a TCS in the same manner as described above.

【0017】[0017]

【表2】 [Table 2]

【0018】実施例11 実施例1において、金属ケイ素のアルミニウムおよび鉄
の含有量をそれぞれ、痕跡と0.5重量%に代え、供給
する金属ケイ素に金属アルミニウムを0.5重量%含ま
せて供給した以外は実施例1と同様にTCSの製造をし
たところ、TCS選択率は94モル%であった。反応器
内のアルミニウムおよび鉄の濃度は、それぞれ0.15
重量%および0.89重量%であった。
Example 11 In Example 1, the contents of aluminum and iron in metallic silicon were replaced with traces and 0.5% by weight, respectively, and the metallic silicon supplied was supplied with 0.5% by weight of metallic aluminum. A TCS was produced in the same manner as in Example 1 except that the TCS selectivity was 94 mol%. The concentration of aluminum and iron in the reactor was 0.15 each.
% And 0.89% by weight.

【0019】実施例12 内径298mmのステンレス製流動層式反応器でTCS
を製造した。反応器に金属ケイ素(鉄0.51重量%、
アルミニウム0.32重量%含有する)を18000g
仕込み、次いで塩化水素279.8g(7.60モル)/
min、水素15.20g(7.60モル)/minを混
合し、反応器に供給した。反応温度を350℃、大気圧
下、金属ケイ素を4262g(152.0モル)/hr
の速度で供給した。反応開始から50hr毎に反応器内
の金属ケイ素を9,000g抜き出した後、新たに金属
ケイ素を9,000g供給する操作を繰り返した。結果
を表3に示す。
Example 12 TCS was conducted in a fluidized-bed stainless steel reactor having an inner diameter of 298 mm.
Was manufactured. Metal silicon (0.51% by weight of iron,
18000g containing 0.32% by weight of aluminum)
Charge, then 279.8 g (7.60 mol) of hydrogen chloride /
min and 15.20 g (7.60 mol) / min of hydrogen were mixed and supplied to the reactor. At a reaction temperature of 350 ° C. and under atmospheric pressure, 4262 g (152.0 mol) / hr of silicon metal was added.
At a rate of After extracting 9,000 g of metal silicon from the reactor every 50 hours from the start of the reaction, the operation of supplying 9,000 g of new metal silicon was repeated. Table 3 shows the results.

【0020】[0020]

【表3】 [Table 3]

【0021】比較例1〜4 実施例1において、金属ケイ素のアルミニウムおよび鉄
の含有量を、それぞれ0.04重量%と0.15重量%に
代え、反応温度を表1に示したように代えた以外は実施
例1と同様にしてTCSを製造した結果を表1に示す。
Comparative Examples 1 to 4 In Example 1, the contents of aluminum and iron in metallic silicon were changed to 0.04% by weight and 0.15% by weight, respectively, and the reaction temperature was changed as shown in Table 1. Table 1 shows the results of producing a TCS in the same manner as in Example 1 except for the above.

【0022】比較例5 実施例1において、金属ケイ素のアルミニウムおよび鉄
の含有量を、それぞれ痕跡と0.5重量%に代え、塩化
第一鉄を100g添加した以外は実施例1と同様にTC
Sを製造したところ、TCS選択率は60モル%であっ
た。アルミニウムおよび鉄の濃度は、それぞれ痕跡と1
1.2重量%であった。
Comparative Example 5 The procedure of Example 1 was repeated, except that the contents of aluminum and iron in the metallic silicon were changed to trace and 0.5% by weight, respectively, and 100 g of ferrous chloride was added.
When S was manufactured, the TCS selectivity was 60 mol%. The concentrations of aluminum and iron were trace and 1 respectively.
It was 1.2% by weight.

【0023】比較例6 実施例12において、金属ケイ素の抜き出し後、金属ケ
イ素を新たに供給する操作を行わず、実施例12と同様
にTCSを製造した。300hr後のTCS選択率は6
5モル%であった。アルミニウムおよび鉄の濃度は、そ
れぞれ0.65重量%と31.5重量%であった。
Comparative Example 6 In Example 12, a TCS was produced in the same manner as in Example 12, except that after the metal silicon was extracted, the operation of newly supplying metal silicon was not performed. TCS selectivity after 6 hours is 6
It was 5 mol%. The aluminum and iron concentrations were 0.65% and 31.5% by weight, respectively.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01B 33/00 - 33/107 C01B 7/00 C01B 9/00 JICSTファイル(JOIS) WPI(DIALOG) CA(STN)────────────────────────────────────────────────── ─── Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C01B 33/00-33/107 C01B 7/00 C01B 9/00 JICST file (JOIS) WPI (DIALOG) CA ( STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属ケイ素と塩化水素とを、鉄およびア
ルミニウム含有触媒の存在下、反応系内に鉄原子を0.
1〜5重量%およびアルミニウム原子を0.05〜5重
量%に維持しつつ、連続的に反応せしめることを特徴と
する三塩化ケイ素の製造方法。
1. A reaction system comprising a metal silicon and hydrogen chloride in the presence of a catalyst containing iron and aluminum, wherein an iron atom is added to the reaction system in an amount of 0.1 to 1.0.
A method for producing silicon trichloride, wherein the reaction is continuously performed while maintaining 1 to 5% by weight and aluminum atoms at 0.05 to 5% by weight.
JP33475395A 1995-12-22 1995-12-22 Method for producing silicon trichloride Expired - Lifetime JP3324922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33475395A JP3324922B2 (en) 1995-12-22 1995-12-22 Method for producing silicon trichloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33475395A JP3324922B2 (en) 1995-12-22 1995-12-22 Method for producing silicon trichloride

Publications (2)

Publication Number Publication Date
JPH09169514A JPH09169514A (en) 1997-06-30
JP3324922B2 true JP3324922B2 (en) 2002-09-17

Family

ID=18280852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33475395A Expired - Lifetime JP3324922B2 (en) 1995-12-22 1995-12-22 Method for producing silicon trichloride

Country Status (1)

Country Link
JP (1) JP3324922B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102265A1 (en) 2010-02-18 2011-08-25 株式会社トクヤマ Production method for trichlorosilane
WO2015047043A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Method for producing trichlorosilane
KR20150037681A (en) 2013-09-30 2015-04-08 주식회사 엘지화학 Process for producing trichlorosilane
KR20160069380A (en) 2014-12-08 2016-06-16 주식회사 엘지화학 Dispersion of silicon metal powder and process for producing chlorosilane using same
KR20160069371A (en) 2014-12-08 2016-06-16 주식회사 엘지화학 Dispersion of silicon metal powder and process for producing chlorosilane using same
KR20160102807A (en) 2015-02-23 2016-08-31 주식회사 엘지화학 Dispersion of silicon metal powder and process for producing chlorosilane using same
KR20170001465A (en) 2015-06-26 2017-01-04 주식회사 엘지화학 Apparatus and process for producing trichlorosilane
KR20170031878A (en) 2015-09-14 2017-03-22 주식회사 엘지화학 Apparatus and process for producing trichlorosilane
KR20170032553A (en) 2015-09-15 2017-03-23 주식회사 엘지화학 Process for producing trichlorosilane

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5337749B2 (en) 2010-03-10 2013-11-06 信越化学工業株式会社 Method for producing trichlorosilane
JP5909153B2 (en) 2012-06-14 2016-04-26 信越化学工業株式会社 Method for producing high-purity polycrystalline silicon
JP5879283B2 (en) 2013-02-13 2016-03-08 信越化学工業株式会社 Method for producing trichlorosilane
JP5886234B2 (en) 2013-04-11 2016-03-16 信越化学工業株式会社 Silane compound or chlorosilane compound purification method, polycrystalline silicon production method, and weakly basic ion exchange resin regeneration treatment method
JP6069167B2 (en) 2013-10-23 2017-02-01 信越化学工業株式会社 Method for producing polycrystalline silicon
JP6095613B2 (en) 2014-07-10 2017-03-15 信越化学工業株式会社 Purification method of chlorosilane
US11007499B2 (en) 2017-11-20 2021-05-18 Tokuyama Corporation Fluidized-bed-type reactor, and method for manufacturing trichlorosilane
JP7165672B2 (en) 2017-11-20 2022-11-04 株式会社トクヤマ Fluidized bed reactor and method for producing trichlorosilane

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102265A1 (en) 2010-02-18 2011-08-25 株式会社トクヤマ Production method for trichlorosilane
KR20130008529A (en) 2010-02-18 2013-01-22 가부시끼가이샤 도꾸야마 Production method for trichlorosilane
US9321653B2 (en) 2010-02-18 2016-04-26 Tokuyama Corporation Process for producing trichlorosilane
WO2015047043A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Method for producing trichlorosilane
KR20150037681A (en) 2013-09-30 2015-04-08 주식회사 엘지화학 Process for producing trichlorosilane
US9643851B2 (en) 2013-09-30 2017-05-09 Lg Chem, Ltd. Method for producing trichlorosilane
KR20160069380A (en) 2014-12-08 2016-06-16 주식회사 엘지화학 Dispersion of silicon metal powder and process for producing chlorosilane using same
KR20160069371A (en) 2014-12-08 2016-06-16 주식회사 엘지화학 Dispersion of silicon metal powder and process for producing chlorosilane using same
KR20160102807A (en) 2015-02-23 2016-08-31 주식회사 엘지화학 Dispersion of silicon metal powder and process for producing chlorosilane using same
KR20170001465A (en) 2015-06-26 2017-01-04 주식회사 엘지화학 Apparatus and process for producing trichlorosilane
KR20170031878A (en) 2015-09-14 2017-03-22 주식회사 엘지화학 Apparatus and process for producing trichlorosilane
KR20170032553A (en) 2015-09-15 2017-03-23 주식회사 엘지화학 Process for producing trichlorosilane

Also Published As

Publication number Publication date
JPH09169514A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
JP3324922B2 (en) Method for producing silicon trichloride
KR19980024696A (en) Method for producing silicon trichloride
JPS61257949A (en) Manufacture of fluoroxyhalo compound
JP3962872B2 (en) Method for synthesizing ketazine
EP0446869A1 (en) Process for preparing 1,1,1-trifluorochloroethane and 1,1,1,2-tetrafluoroethane
JP2003531007A (en) Manufacturing method of contact body
EP0433611B1 (en) Process for producing alpha-hydroxyisobutyric acid amide
JPS632939B2 (en)
JPS6156164B2 (en)
US5395998A (en) Process for preparing 1,1,1-trifluorochloroethane and 1,1,1,2-tetrafluoroethane
EP0648726A2 (en) Process for preparing 1,1,1,2-tetrafluoroethane
JP3553469B2 (en) A continuous method for the direct synthesis of methylchlorosilane.
US3542520A (en) Modified "deacon" process
JPS6153287A (en) Manufacture of bicyclic amide acetal
JP3707875B2 (en) Method for producing silicon trichloride
JPS5811408B2 (en) Production method of trichlorethylene
US6069266A (en) Process for preparing organochlorosilanes
JPS6131085B2 (en)
JP2662965B2 (en) Preparation of allyl acetate and allyl alcohol
JP3282357B2 (en) Piperonal manufacturing method
JP3146608B2 (en) Method for producing acrylamide
JP3821922B2 (en) Method for producing silicon tetrachloride
JPS6140218B2 (en)
JPH0355472B2 (en)
JP2729219B2 (en) Method for producing 2,2,6,6-tetramethyl-4-oxopiperidine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140705

Year of fee payment: 12

EXPY Cancellation because of completion of term