JP3324526B2 - Method of suppressing local self-ignition in compression ignition internal combustion engine - Google Patents

Method of suppressing local self-ignition in compression ignition internal combustion engine

Info

Publication number
JP3324526B2
JP3324526B2 JP28104798A JP28104798A JP3324526B2 JP 3324526 B2 JP3324526 B2 JP 3324526B2 JP 28104798 A JP28104798 A JP 28104798A JP 28104798 A JP28104798 A JP 28104798A JP 3324526 B2 JP3324526 B2 JP 3324526B2
Authority
JP
Japan
Prior art keywords
stroke
combustion chamber
compression
ignition
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28104798A
Other languages
Japanese (ja)
Other versions
JP2000110565A (en
Inventor
晋爾 小島
則和 勝見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP28104798A priority Critical patent/JP3324526B2/en
Publication of JP2000110565A publication Critical patent/JP2000110565A/en
Application granted granted Critical
Publication of JP3324526B2 publication Critical patent/JP3324526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮着火内燃機関
において、局所的自己着火を抑制する方法に関する。
The present invention relates to a method for suppressing local self-ignition in a compression ignition internal combustion engine.

【0002】[0002]

【従来の技術】圧縮着火内燃機関は、燃焼室において吸
気行程、圧縮行程、膨張行程と排気行程を繰り返し、各
圧縮行程において燃焼室の空気に燃料を霧状に噴射し、
または、予混合式では各吸気行程において空気と燃料の
混合気を吸入し、各圧縮行程の終り頃に空気と燃料の混
合気の自己着火によって燃焼を開始する。自己着火が燃
焼室の全域で発生せずに、局所的に発生すると、ノック
とも言われる異常燃焼ないし異常振動が発生する。
2. Description of the Related Art A compression ignition internal combustion engine repeats an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke in a combustion chamber, and injects fuel into air in the combustion chamber in a mist state in each compression stroke.
Alternatively, in the premixing method, a mixture of air and fuel is sucked in each intake stroke, and combustion is started by self-ignition of the mixture of air and fuel at the end of each compression stroke. If self-ignition does not occur in the entire combustion chamber but occurs locally, abnormal combustion or abnormal vibration called knock occurs.

【0003】そこで、自己着火を燃焼室の全域で発生さ
せて局所的自己着火を抑制するいろいろな方法が考えら
れている。
Therefore, various methods have been considered in which self-ignition is generated in the entire combustion chamber to suppress local self-ignition.

【0004】[0004]

【発明が解決しようとする課題】ところが、従来におけ
る局所的自己着火の抑制方法は、燃焼室の混合気の温度
や当量比を均一にしたり、それらの値を一定の範囲に限
定しようとするものである。局所的自己着火の抑制効果
は、運転条件が相当に限定され、十分ではない。
However, the conventional method of suppressing local self-ignition is to make the temperature and equivalent ratio of the air-fuel mixture in the combustion chamber uniform or to limit the values to a certain range. It is. The effect of suppressing local self-ignition is not sufficient because operating conditions are considerably limited.

【0005】[0005]

【課題を解決するための研究】圧縮着火内燃機関におい
て、燃焼室での混合気の燃焼現象を詳細に観察すると、
燃焼室の圧縮比が増加する、即ち、燃焼室の混合気の温
度が上昇するに従って、先ず、熱の発生が少ない冷炎が
発生し、次に、熱の発生が多い熱炎が発生して燃焼す
る。2段階に着火する。
[Study to solve the problem] In a compression ignition internal combustion engine, a detailed observation of the combustion phenomenon of the air-fuel mixture in the combustion chamber reveals that:
As the compression ratio of the combustion chamber increases, that is, as the temperature of the air-fuel mixture in the combustion chamber increases, first, a cold flame that generates less heat is generated, and then, a hot flame that generates more heat is generated. Burn. Ignite in two stages.

【0006】本発明者は、燃焼室の混合気を、熱炎が発
生する通常時の圧縮比より小さい圧縮比で圧縮すると、
冷炎のみが燃焼室のほぼ全域で発生し、膨張後に、通常
時通りに圧縮すると、熱炎が燃焼室のほぼ全域で発生し
て局所的自己着火が抑制される、ことを発見した。
The inventor of the present invention compresses the air-fuel mixture in the combustion chamber at a compression ratio smaller than a normal compression ratio at which a hot flame is generated.
It has been found that only a cold flame is generated almost in the entire combustion chamber, and when expanded and compressed as usual, a hot flame is generated almost in the entire combustion chamber to suppress local self-ignition.

【0007】[0007]

【課題を解決するための手段】本発明は、燃焼室におい
て吸気行程、圧縮行程、膨張行程と排気行程を繰り返す
圧縮着火内燃機関において、吸気行程と圧縮行程の間
に、燃焼室の混合気を、冷炎が発生するが、熱炎が発生
しない程度に圧縮する行程と、その圧縮された混合気を
膨張させる行程を設けたことを特徴とする局所的自己着
火の抑制方法である。
SUMMARY OF THE INVENTION The present invention relates to a compression ignition internal combustion engine which repeats an intake stroke, a compression stroke, an expansion stroke and an exhaust stroke in a combustion chamber. This is a method for suppressing local self-ignition, characterized by providing a step of compressing to generate a cold flame but not to generate a hot flame and a step of expanding the compressed air-fuel mixture.

【0008】[0008]

【発明の効果】本発明においては、燃焼室の混合気は、
冷炎が発生するが、熱炎が発生しない程度に圧縮されて
膨張し、次に、熱炎が発生する通常通りに圧縮される。
熱炎が燃焼室のほぼ全域で発生して局所的自己着火が抑
制される。
According to the present invention, the air-fuel mixture in the combustion chamber is
A cold flame is generated, but is compressed and expanded to such an extent that a hot flame is not generated, and then compressed as usual to generate a hot flame.
Hot flame is generated in almost the entire area of the combustion chamber, and local self-ignition is suppressed.

【0009】[0009]

【発明の実施の態様】[第1例(図1〜図4参照)]本
例の圧縮着火内燃機関は、予混合式であり、吸気管内の
空気に燃料を霧状に噴射して空気と燃料を混合し、吸気
管内の空気と燃料の混合気を燃焼室に吸入する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment (see FIGS. 1 to 4)] The compression ignition internal combustion engine of this embodiment is of a premixed type, in which fuel is injected into the air in an intake pipe in a mist state to form air and air. The fuel is mixed, and a mixture of air and fuel in the intake pipe is sucked into the combustion chamber.

【0010】そして、図1に示すように、通常の圧縮行
程、膨張行程、排気行程と吸気行程を有する上、通常の
吸気行程と圧縮行程の間に、燃焼室の混合気を、通常時
の圧縮比より小さい圧縮比で圧縮する追加の圧縮行程
と、その圧縮された混合気を膨張させる追加の膨張工程
を有する。
As shown in FIG. 1, the engine has a normal compression stroke, an expansion stroke, an exhaust stroke, and an intake stroke. In addition, during the normal intake stroke and the compression stroke, the air-fuel mixture in the combustion chamber is discharged during normal operation. It has an additional compression stroke for compressing at a compression ratio smaller than the compression ratio, and an additional expansion step for expanding the compressed air-fuel mixture.

【0011】換言すると、6サイクル機関であり、クラ
ンク軸が3回転する間に、追加の圧縮行程と膨張行程、
および、通常の圧縮行程、膨張行程、排気行程と吸気行
程の6行程を行う。
In other words, the engine is a six-stroke engine, and performs three additional compression strokes and expansion strokes during three revolutions of the crankshaft.
In addition, a normal compression stroke, an expansion stroke, an exhaust stroke, and an intake stroke are performed.

【0012】通常の吸気行程において、通常時通り吸気
管内の空気と燃料の混合気が燃焼室に吸入される。燃焼
室の混合気は、次行程の追加の圧縮行程において、通常
時の圧縮比より小さい圧縮比で圧縮される。燃焼室のほ
ぼ全域で冷炎が発生するが、熱炎は発生しない。次行程
の追加の膨張工程において、燃焼室の混合気は、膨張す
る。次行程の通常の圧縮行程において、燃焼室の混合気
は、通常通り圧縮される。燃焼室のほぼ全域で熱炎が発
生する。局所的自己着火が抑制される。次行程の通常の
膨張工程において、燃焼室の混合気は、燃焼する。次行
程の通常の排気行程において、燃焼室の排気は、通常通
り排出される。
In a normal intake stroke, a mixture of air and fuel in the intake pipe is sucked into the combustion chamber as usual. The air-fuel mixture in the combustion chamber is compressed at a compression ratio smaller than the normal compression ratio in an additional compression stroke of the next stroke. Cool flame is generated in almost the entire area of the combustion chamber, but no hot flame is generated. In an additional expansion step of the next stroke, the mixture in the combustion chamber expands. In the normal compression stroke of the next stroke, the air-fuel mixture in the combustion chamber is compressed as usual. A thermal flame is generated in almost the entire area of the combustion chamber. Local self-ignition is suppressed. In the normal expansion process of the next step, the air-fuel mixture in the combustion chamber is combusted. In the normal exhaust stroke of the next stroke, the exhaust gas of the combustion chamber is discharged as usual.

【0013】追加の圧縮行程における圧縮比を通常の圧
縮行程における圧縮比より小さくするには、燃焼室に嵌
合したピストンの頂面を移動して幾何学的圧縮比を変更
する圧縮比変更機構を用いる。
In order to make the compression ratio in the additional compression stroke smaller than the compression ratio in the normal compression stroke, the compression ratio changing mechanism for changing the geometric compression ratio by moving the top surface of the piston fitted to the combustion chamber. Is used.

【0014】この圧縮比変更機構においては、図2に示
すように、燃焼室1に嵌合したピストン2は、円筒形状
のピストンスカート3の上部に、天板のある短い円筒形
状のピストン頂部4を被せて軸心方向に移動可能に設け
ている。ピストンスカート3の上部内には、カム軸5を
径方向に配置して軸受けし、カム軸5に固定したカム6
の周面をピストン頂部4の天板下面に当てている。カム
軸5が回転すると、カム6の外周曲線に従ってピストン
頂部4がピストンスカート3に対して昇降する。
In this compression ratio changing mechanism, as shown in FIG. 2, a piston 2 fitted to a combustion chamber 1 has a short cylindrical piston top 4 having a top plate on a cylindrical piston skirt 3. And can be moved in the axial direction. In the upper part of the piston skirt 3, a cam shaft 5 is arranged in a radial direction and is supported, and a cam 6 fixed to the cam shaft 5 is provided.
Is applied to the lower surface of the top plate of the piston top 4. When the camshaft 5 rotates, the piston top 4 moves up and down with respect to the piston skirt 3 according to the outer peripheral curve of the cam 6.

【0015】ピストンスカート3のカム軸5下側位置に
は、ピストンピン7をカム軸5と平行に配置して軸受け
している。カム軸5とピストンピン7は、タイミングベ
ルト伝動機構8で連結している。ピストンピン7には、
コンロッド9の小端を回転可能に取り付けている。
At a position below the camshaft 5 of the piston skirt 3, a piston pin 7 is arranged in parallel with the camshaft 5 and supported. The cam shaft 5 and the piston pin 7 are connected by a timing belt transmission mechanism 8. The piston pin 7 has
The small end of the connecting rod 9 is rotatably mounted.

【0016】シリンダブロックに軸受けしたクランク軸
10は、図2に示すように、第1ジャーナル11と第2
ジャーナル12の端にそれぞれクランクアーム13、1
4を径方向に固定し、両クランクアーム13、14の先
端間にクランクピン15を掛け渡して軸受けしている。
クランクピン15には、コンロッド9の大端を回転可能
に取り付けている。
As shown in FIG. 2, the crankshaft 10 supported by the cylinder block is
At the end of the journal 12, the crank arms 13, 1
4 is fixed in the radial direction, and a crank pin 15 is hung between the distal ends of the two crank arms 13 and 14 for bearing.
The large end of the connecting rod 9 is rotatably attached to the crank pin 15.

【0017】シリンダブロックには、第1回転軸16と
第2回転軸17をクランク軸10と平行に軸受けし、両
回転軸16、17を一対の歯車18で連結している。ク
ランク軸10の第1ジャーナル11と第1回転軸16
は、タイミングベルト伝動機構19で連結している。
The cylinder block has a first rotating shaft 16 and a second rotating shaft 17 bearing parallel to the crankshaft 10, and both rotating shafts 16, 17 are connected by a pair of gears 18. First journal 11 and first rotary shaft 16 of crankshaft 10
Are connected by a timing belt transmission mechanism 19.

【0018】第1ジャーナル11の端には、中間軸20
を同心状で片持ち状に軸受けしている。第2回転軸17
と中間軸20は、タイミングベルト伝動機構21で連結
している。中間軸20とクランクピン15は、タイミン
グベルト伝動機構22で連結している。クランクピン1
5とピストンピン7は、コンロッド9の中空部に配置し
たタイミングベルト伝動機構23で連結している。
At the end of the first journal 11, an intermediate shaft 20 is provided.
Are concentrically and cantilevered. Second rotating shaft 17
And the intermediate shaft 20 are connected by a timing belt transmission mechanism 21. The intermediate shaft 20 and the crank pin 15 are connected by a timing belt transmission mechanism 22. Crank pin 1
5 and the piston pin 7 are connected by a timing belt transmission mechanism 23 disposed in a hollow portion of the connecting rod 9.

【0019】クランク軸10が回転すると、通常通りに
ピストン2が燃焼室1内で往復動する一方、カム軸5が
回転し、カム6の外周曲線に従ってピストン頂部4がピ
ストンスカート3に対して昇降し、燃焼室1の容積が増
減する。
When the crankshaft 10 rotates, the piston 2 reciprocates in the combustion chamber 1 as usual, while the camshaft 5 rotates, and the piston top 4 moves up and down with respect to the piston skirt 3 according to the outer peripheral curve of the cam 6. Then, the volume of the combustion chamber 1 increases and decreases.

【0020】カム6は、クランク軸10の3回転、即
ち、追加の圧縮行程から通常の吸気行程までの6行程の
間に1回転する。カム6の回転中心とピストン頂部4の
上面との間の距離は、図3に示すように、追加の圧縮行
程と膨張行程の間、低い山状に変化し、通常の圧縮行程
と膨張行程の間、および、通常の排気行程と吸気行程の
間、それぞれ、高い山状に変化する。
The cam 6 makes one revolution during three revolutions of the crankshaft 10, ie, six strokes from an additional compression stroke to a normal intake stroke. The distance between the center of rotation of the cam 6 and the upper surface of the piston top 4 changes to a low mountain between the additional compression stroke and the expansion stroke, as shown in FIG. During a normal exhaust stroke and an intake stroke, respectively.

【0021】ピストン2の通常通りの往復動にカム6の
回転によるピストン頂部4の昇降が加わる結果、ピスト
ン頂部4の上面と燃焼室1の天井面との間の距離は、ピ
ストン頂部4上面の位置を太い実線で示す図4から明ら
かなように、追加の圧縮行程と膨張行程の間にはピスト
ン2の上死点でも大きく縮まらない。幾何学的圧縮比が
小さい。
As a result of the normal reciprocation of the piston 2 and the elevation of the piston top 4 due to the rotation of the cam 6, the distance between the top surface of the piston top 4 and the ceiling surface of the combustion chamber 1 is reduced by the top surface of the piston top 4. As is evident from FIG. 4 where the position is indicated by a thick solid line, the piston 2 does not contract significantly even at the top dead center of the piston 2 between the additional compression stroke and the expansion stroke. Low geometric compression ratio.

【0022】しかし、ピストン頂部4の上面と燃焼室1
の天井面との間の距離は、通常の圧縮行程と膨張行程の
間には、ピストン2の上死点で大きく縮まる。幾何学的
圧縮比が大きい。
However, the upper surface of the piston top 4 and the combustion chamber 1
The distance between the piston 2 and the ceiling surface of the piston 2 greatly decreases at the top dead center of the piston 2 between the normal compression stroke and the expansion stroke. Large geometric compression ratio.

【0023】通常の排気行程と吸気行程の間には、通常
の圧縮行程と膨張行程の間におけるのと同様に、ピスト
ン頂部4の上面と燃焼室1の天井面との間の距離は、ピ
ストン2の上死点で大きく縮まる。なお、図4には、カ
ム6の回転中心の位置を細線で示す。
Between the normal exhaust and intake strokes, the distance between the upper surface of the piston top 4 and the ceiling of the combustion chamber 1 is the same as during the normal compression and expansion strokes. 2 Shrinks greatly at top dead center. In FIG. 4, the position of the rotation center of the cam 6 is indicated by a thin line.

【0024】本例の圧縮着火内燃機関は、吸気管内で混
合した空気と燃料の混合気を燃焼室に吸入する予混合式
であるが、追加の圧縮行程において燃焼室の空気に燃料
を霧状に噴射する方式にしてもよい。
The compression ignition internal combustion engine of this embodiment is of a premixing type in which a mixture of air and fuel mixed in an intake pipe is sucked into a combustion chamber. In an additional compression stroke, fuel is atomized into air in the combustion chamber. May be used.

【0025】[第2例(図5参照)]本例は、追加の圧
縮行程の圧縮比を通常の圧縮行程の圧縮比より小さくす
るのに、第1例において幾何学的圧縮比を変更するのに
代え、実効的圧縮比を変更する。
[Second Example (see FIG. 5)] In this example, the geometric compression ratio is changed in the first example to make the compression ratio of the additional compression stroke smaller than that of the normal compression stroke. Instead, the effective compression ratio is changed.

【0026】通常の吸気行程において、通常時通り、排
気弁を閉じ、吸気弁を開き、吸気管内の混合気を燃焼室
に吸入する。しかし、図5に実線で示すように、吸気弁
の閉鎖時期を遅らせ、次行程の追加の圧縮行程において
吸気弁が開いている期間を長くし、追加の圧縮行程にお
いて、実質的な圧縮が開始する時期を遅らせ、実効的圧
縮比を小さくして、燃焼室の混合気を圧縮する。燃焼室
のほぼ全域で冷炎が発生するが、熱炎は発生しない。
In a normal intake stroke, the exhaust valve is closed, the intake valve is opened, and the air-fuel mixture in the intake pipe is sucked into the combustion chamber as usual. However, as shown by the solid line in FIG. 5, the closing timing of the intake valve is delayed, the period during which the intake valve is opened in the additional compression stroke of the next stroke is extended, and substantial compression starts in the additional compression stroke. The air-fuel mixture in the combustion chamber is compressed by delaying the time to perform the compression and reducing the effective compression ratio. Cool flame is generated in almost the entire area of the combustion chamber, but no hot flame is generated.

【0027】次行程の追加の膨張工程において、燃焼室
の混合気を膨張する。しかし、図5に実線で示すよう
に、追加の膨張工程の終り頃に吸気弁を開き、吸気管内
の混合気を燃焼室に吸入して、新しい混合気を、冷炎が
発生した古い混合気に混合する。次行程の通常の圧縮行
程において、通常時通り、吸気弁を閉じ、燃焼室の混合
気を圧縮する。燃焼室のほぼ全域で熱炎が発生する。局
所的自己着火が抑制される。
In an additional expansion step in the next step, the air-fuel mixture in the combustion chamber is expanded. However, as shown by the solid line in FIG. 5, at the end of the additional expansion step, the intake valve is opened, the air-fuel mixture in the intake pipe is drawn into the combustion chamber, and the new air-fuel mixture is supplied to the old air-fuel mixture in which the cold flame has occurred. Mix. In the normal compression stroke of the next stroke, the intake valve is closed and the air-fuel mixture in the combustion chamber is compressed as usual. A thermal flame is generated in almost the entire area of the combustion chamber. Local self-ignition is suppressed.

【0028】次行程の通常の膨張工程において、燃焼室
の混合気は、燃焼する。次行程の通常の排気行程におい
て、通常通り、排気弁を開き、燃焼室の排気を排出す
る。
In the normal expansion process in the next step, the air-fuel mixture in the combustion chamber is burned. In the normal exhaust stroke of the next stroke, the exhaust valve is opened and the exhaust gas of the combustion chamber is discharged as usual.

【0029】吸気弁開閉機構は、クランク軸の1回転毎
に吸気弁を開放するオバーヘッドカム機構であって、吸
気カムシャフトとクランク軸の位相角をずらす機構で吸
気弁の閉鎖時期を遅らせ、吸気カムシャフトのカムから
吸気弁の弁軸に至る伝動経路を遮断する機構で吸気弁の
閉鎖状態を維持する。
The intake valve opening / closing mechanism is an overhead cam mechanism that opens the intake valve for each rotation of the crankshaft. The mechanism that shifts the phase angle between the intake camshaft and the crankshaft delays the closing timing of the intake valve. The closed state of the intake valve is maintained by a mechanism that cuts off the transmission path from the cam of the intake camshaft to the valve shaft of the intake valve.

【0030】排気弁開閉機構は、クランク軸の3回転毎
に排気弁を開放するオバーヘッドカム機構である。
The exhaust valve opening / closing mechanism is an overhead cam mechanism that opens the exhaust valve every three rotations of the crankshaft.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施態様第1例の局所的自己着火抑制
方法におけるピストン頂面の位置とクランク角度(各工
程)の関係を示す線図。
FIG. 1 is a diagram showing a relationship between a position of a piston top surface and a crank angle (each step) in a local self-ignition suppressing method according to a first embodiment of the present invention.

【図2】同抑制方法における圧縮比変更機構の概略図。FIG. 2 is a schematic diagram of a compression ratio changing mechanism in the suppression method.

【図3】同圧縮比変更機構におけるとピストン頂面との
間の距離とカム回転角度(クランク角度)の関係を示す
線図。
FIG. 3 is a diagram showing a relationship between a distance between a piston top surface and a cam rotation angle (crank angle) in the compression ratio changing mechanism.

【図4】同抑制方法におけるピストン頂面の位置(カム
回転中心の位置)とクランク角度の関係を示す線図。
FIG. 4 is a diagram showing a relationship between a position of a piston top surface (a position of a cam rotation center) and a crank angle in the suppression method.

【図5】実施態様の第2例の局所的自己着火抑制方法に
おけるピストンの位置、吸気弁のリフト量、排気弁のリ
フト量とクランク角度(各工程)の関係を示す線図。
FIG. 5 is a diagram illustrating a relationship between a piston position, a lift amount of an intake valve, a lift amount of an exhaust valve, and a crank angle (each step) in a local self-ignition suppressing method according to a second example of the embodiment.

【符号の説明】[Explanation of symbols]

1 燃焼室 2 ピストン 3 ピストンスカート 4 ピストン頂部 6 カム 10 クランク軸 DESCRIPTION OF SYMBOLS 1 Combustion chamber 2 Piston 3 Piston skirt 4 Piston top 6 Cam 10 Crankshaft

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F02B 1/00 - 23/10 F02B 75/02 F02D 13/00 - 15/04 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) F02B 1/00-23/10 F02B 75/02 F02D 13/00-15/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃焼室において吸気行程、圧縮行程、膨
張行程と排気行程を繰り返す圧縮着火内燃機関におい
て、 吸気行程と圧縮行程の間に、燃焼室の混合気を、冷炎が
発生するが、熱炎が発生しない程度に圧縮する行程と、
その圧縮された混合気を膨張させる行程を設けたことを
特徴とする局所的自己着火の抑制方法。
In a compression ignition internal combustion engine that repeats an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke in a combustion chamber, a mixture of the combustion chamber generates a cold flame between the intake stroke and the compression stroke. The process of compressing to the extent that no hot flame occurs,
A method for suppressing local self-ignition, comprising a step of expanding the compressed air-fuel mixture.
JP28104798A 1998-10-02 1998-10-02 Method of suppressing local self-ignition in compression ignition internal combustion engine Expired - Fee Related JP3324526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28104798A JP3324526B2 (en) 1998-10-02 1998-10-02 Method of suppressing local self-ignition in compression ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28104798A JP3324526B2 (en) 1998-10-02 1998-10-02 Method of suppressing local self-ignition in compression ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000110565A JP2000110565A (en) 2000-04-18
JP3324526B2 true JP3324526B2 (en) 2002-09-17

Family

ID=17633572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28104798A Expired - Fee Related JP3324526B2 (en) 1998-10-02 1998-10-02 Method of suppressing local self-ignition in compression ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP3324526B2 (en)

Also Published As

Publication number Publication date
JP2000110565A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
CA2433433C (en) Eight-stroke internal combustion engine utilizing a slave cylinder
US7584724B2 (en) Variable compression ratio dual crankshaft engine
JP2532013B2 (en) Internal combustion engine
NZ509139A (en) Operating method and device for supplementary compressed air injection engine operating with mono-energy or bi-energy in two or three powering modes
US5156121A (en) Piston-connecting rod assembly
JP2013510261A (en) Two-stroke internal combustion engine with variable compression ratio and exhaust port shutter and method of operating such an engine
JP2001521094A (en) Control of mechanical piston movement, execution of a device, and method of balancing said device
US6830020B1 (en) Diesel engine with intake cam phaser for compression ratio control
WO1996041939A1 (en) Combustion control device for an engine
WO2000014396A1 (en) Adiabatic internal combustion engine
WO2004074645A1 (en) 4 stroke diesel engine force-fed by turbocompressor with phase variation of the cams
CN106337733A (en) Rotary engine and continuous combustion acting method thereof
JP3324526B2 (en) Method of suppressing local self-ignition in compression ignition internal combustion engine
JP2000080901A (en) Reciprocating internal combustion engine and compressor as well as those of pistons therewith
CN206175060U (en) Rotating engine
CN102852577B (en) Four-stroke internal combustion engine including exhaust cam provided with two bulges
JP2002506949A (en) High power density diesel engine
JP4031662B2 (en) Internal combustion engine
WO2001042634A9 (en) Z-engine
JP2002147241A (en) Cylinder injection engine
RU2730195C1 (en) Internal combustion engine (yundin cycle)
RU2300002C1 (en) Internal combustion engine
RU2078960C1 (en) Internal combustion engine and method of its operation
JP2000104560A (en) Two-cycle multi-cylinder internal combustion engine using forcible scavenge
JP2007239490A (en) Double link type variable compression ratio internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees