JP3324304B2 - Method of processing magnetic garnet single crystal film for magnetostatic wave device and apparatus for manufacturing magnetic garnet single crystal film provided with the processing means - Google Patents

Method of processing magnetic garnet single crystal film for magnetostatic wave device and apparatus for manufacturing magnetic garnet single crystal film provided with the processing means

Info

Publication number
JP3324304B2
JP3324304B2 JP28532094A JP28532094A JP3324304B2 JP 3324304 B2 JP3324304 B2 JP 3324304B2 JP 28532094 A JP28532094 A JP 28532094A JP 28532094 A JP28532094 A JP 28532094A JP 3324304 B2 JP3324304 B2 JP 3324304B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal film
magnetic garnet
garnet single
magnetostatic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28532094A
Other languages
Japanese (ja)
Other versions
JPH08148335A (en
Inventor
高志 藤井
優 藤野
誠人 熊取谷
雄徳 関島
洋 鷹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP28532094A priority Critical patent/JP3324304B2/en
Publication of JPH08148335A publication Critical patent/JPH08148335A/en
Application granted granted Critical
Publication of JP3324304B2 publication Critical patent/JP3324304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • H01F10/245Modifications for enhancing interaction with electromagnetic wave energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、静磁波素子用材料とし
て有用な磁性ガーネット単結晶膜の処理方法、およびそ
の処理手段を備えた磁性ガーネット単結晶膜の製造装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a magnetic garnet single crystal film useful as a material for a magnetostatic wave device, and an apparatus for manufacturing a magnetic garnet single crystal film provided with the processing means.

【0002】[0002]

【従来の技術】従来より静磁波素子には、Fe元素を含
む磁性ガーネット単結晶膜{一般式、R13-x R2x
5-y y 12(以下RM・RIGと称す)}が、重要
な材料として使われている。この中でもイットリウム・
鉄ガーネット(Y3 Fe5 12:以下YIGと称す)
は、極端に強磁性半値幅(ΔH)が小さく、静磁波素子
としたときに、入力信号と出力信号との差を小さくでき
るため、広く用いられている。
2. Description of the Related Art Conventionally, a magnetostatic wave element has a magnetic garnet single crystal film containing an Fe element (general formula, R13 -x R2xF ).
e 5-y M y O 12 ( hereinafter referred to as RM · RIG)} have been used as an important material. Yttrium
Iron garnet (Y 3 Fe 5 O 12: hereinafter referred to as YIG)
Is extremely widely used because it has an extremely small ferromagnetic half width (ΔH) and can reduce the difference between an input signal and an output signal when a magnetostatic wave element is used.

【0003】そして一般的に、これらRM・RIG単結
晶膜は、PbOとB2 3 とを混合した溶媒に、例え
ば、YIG単結晶を製造する場合には、Fe2 3 とY
2 3を溶質として溶かし込み、ガドリニウム・ガリウ
ムガーネット(Gd3 Ga5 12、以下GGGと称す)
単結晶基板上に、900℃前後でYIG単結晶薄膜を成
長させる液相エピタキシャル法(以下LPE法と称す)
によって製造されている。
[0003] In general, these RM / RIG single crystal films are mixed with a mixed solvent of PbO and B 2 O 3 , for example, when producing a YIG single crystal, Fe 2 O 3 and Y 2 are mixed.
2 0 3 narrows dissolved as a solute, gadolinium gallium garnet (Gd 3 Ga 5 O 12, hereinafter referred to as GGG)
Liquid phase epitaxial method (hereinafter referred to as LPE method) for growing a YIG single crystal thin film on a single crystal substrate at around 900 ° C.
It is manufactured by.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うにして得られたRM・RIG単結晶膜を用いて静磁波
素子を作製した場合、作製直後からRM・RIG単結晶
膜の周波数特性が経時的に徐々に変化し、数100時間
経過後にほぼ一定値になり安定するという現象が観察さ
れている。
However, when a magnetostatic wave device is manufactured using the RM / RIG single crystal film thus obtained, the frequency characteristic of the RM / RIG single crystal film changes with time immediately after the manufacture. , And a phenomenon is observed in which the value gradually becomes stable after several hundred hours, and stabilizes.

【0005】そのため、静磁波素子として作製した後、
ある時間を経てから再度周波数特性を調整するために、
静磁波素子に周波数調整機能を付加しておく必要があ
り、これが静磁波素子の価格低減の妨げの1つとなって
いる。
[0005] Therefore, after being manufactured as a magnetostatic wave element,
To adjust the frequency response again after a certain time,
It is necessary to add a frequency adjustment function to the magnetostatic wave element, which is one of the obstacles to the reduction in the price of the magnetostatic wave element.

【0006】そこで、本発明の目的は、初期特性が経時
的に変化しない静磁波素子用磁性ガーネット単結晶膜を
得るための、磁性ガーネット単結晶膜の処理方法および
その処理手段を備えた磁性ガーネット単結晶膜の製造装
置を提供することにある。
Accordingly, an object of the present invention is to provide a method for processing a magnetic garnet single crystal film for obtaining a magnetic garnet single crystal film for a magnetostatic wave device whose initial characteristics do not change with time, and a magnetic garnet provided with the processing means. An object of the present invention is to provide a single crystal film manufacturing apparatus.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の静磁波素子用磁性ガーネット単結晶膜の処
理方法は、静磁波素子として用いる前の磁性ガーネット
単結晶膜に、予め直流磁界を加えて磁化処理を行なうこ
とを特徴とする。
In order to achieve the above object, a method for treating a magnetic garnet single crystal film for a magnetostatic wave device according to the present invention comprises the steps of: And performing a magnetization process.

【0008】そして、磁性ガーネット単結晶膜は、一般
式R13-x R2x Fe5-y y 12(但し、R1はYま
たはTbのいずれか、R2はBi,B,Sbおよびラン
タン系遷移元素のうち少なくとも1種類であり、MはG
a,Al,In,Tl,CoおよびNiのうち少なくと
も1種類、または、MはZrおよびSiのうち少なくと
も1種類とMgであり、0≦x<3,0≦y<5)で表
されるものであることを特徴とする。
[0008] Then, the magnetic garnet single crystal film has the general formula R1 3-x R2 x Fe 5 -y M y O 12 ( where, R1 either is Y or Tb, R2 is Bi, B, Sb and lanthanum M is at least one of transition elements;
a, at least one of Al, In, Tl, Co and Ni, or M is at least one of Zr and Si and Mg, represented by 0 ≦ x <3, 0 ≦ y <5) Characterized in that:

【0009】さらに、磁性ガーネット単結晶膜は、Y3
Fe5 12であることを特徴とする。
Further, the magnetic garnet single crystal film is made of Y 3
Characterized in that it is a Fe 5 O 12.

【0010】また、磁性ガーネット単結晶膜の製造装置
は、その製造装置の該磁性ガーネット単結晶膜の冷却部
に、該磁性ガーネット単結晶膜を磁化処理する手段が付
設されていることを特徴とする。
[0010] In the apparatus for manufacturing a magnetic garnet single crystal film, means for magnetizing the magnetic garnet single crystal film is provided in a cooling section of the magnetic garnet single crystal film of the manufacturing apparatus. I do.

【0011】そして、磁性ガーネット単結晶膜の製造装
置は、縦型炉芯管構造の液相エピタキシャル成長装置で
あり、該縦型炉芯管の磁性ガーネット単結晶膜の冷却部
の周囲に磁化処理手段として電磁石が付設されているこ
とを特徴とする。
The apparatus for producing a magnetic garnet single crystal film is a liquid phase epitaxial growth apparatus having a vertical furnace core tube structure, and a magnetizing means is provided around a cooling portion of the magnetic garnet single crystal film of the vertical furnace core tube. And an electromagnet is provided.

【0012】[0012]

【作用】RM・RIG単結晶の属するガーネット結晶系
は、立方晶系に属し、その単位格子は立方体を形成して
いる。ここで、磁性ガーネット結晶の磁化軸は、この立
方体単位格子の4本の対角線上に等価に存在し、この対
角線上での磁化のベクトルの方向は正方向、逆方向とも
同じ割合で存在する。通常、磁性ガーネットはキュリー
点より高温で単結晶膜の作製が行われる。そのため、作
製されたRM・RIG単結晶膜は磁化ベクトルが任意の
方向を向いており、静磁波素子として直流磁界中に配置
された場合、初期の段階では、磁化ベクトルが完全に磁
化の方向にそろっていないと考えられる。そして、時間
とともに磁化ベクトルの方位が外部磁界の方向に整列
し、これが静磁波素子としたときの経時変化の原因とな
っているものと推定される。
The garnet crystal system to which the RM / RIG single crystal belongs belongs to a cubic system, and its unit cell forms a cube. Here, the magnetization axes of the magnetic garnet crystal are equivalently present on the four diagonals of the cubic unit cell, and the directions of the magnetization vectors on the diagonals are the same in both the forward and reverse directions. Normally, magnetic garnet is produced at a temperature higher than the Curie point in a single crystal film. Therefore, in the manufactured RM / RIG single crystal film, the magnetization vector is oriented in an arbitrary direction, and when placed in a DC magnetic field as a magnetostatic wave element, in the initial stage, the magnetization vector is completely in the direction of magnetization. It is thought that it is not complete. Then, the direction of the magnetization vector is aligned with the direction of the external magnetic field with time, which is presumed to be the cause of the change with time when the magnetostatic wave element is used.

【0013】以上のメカニズムを裏付ける如く、磁性ガ
ーネット単結晶膜に、予め直流磁界を加えて磁化処理を
行なって磁化ベクトルを特定方向に揃えておくことによ
って、静磁波素子としたときの初期特性の経時的変化を
抑えることができる。
To support the above mechanism, by applying a direct current magnetic field to the magnetic garnet single crystal film in advance and performing magnetization processing to align the magnetization vectors in a specific direction, the initial characteristics of the magnetostatic wave element can be improved. Changes over time can be suppressed.

【0014】そして、このような磁化処理手段を磁性ガ
ーネット単結晶膜の製造装置の磁性ガーネット単結晶膜
の冷却部に付設しておくことによって、単結晶膜の製造
に引き続いて同一装置内で連続して磁化処理を行なうこ
とができる。
[0014] By providing such a magnetizing means in the cooling unit of the magnetic garnet single crystal film of the apparatus for manufacturing a magnetic garnet single crystal film, it is possible to continuously manufacture the single crystal film in the same apparatus following the manufacture of the single crystal film. Then, the magnetization process can be performed.

【0015】[0015]

【実施例】以下、本発明の静磁波素子用磁性ガーネット
単結晶膜の処理方法およびその処理手段を備えた磁性ガ
ーネット単結晶膜の製造装置について、その実施例を説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for processing a magnetic garnet single crystal film for a magnetostatic wave device of the present invention and an apparatus for manufacturing a magnetic garnet single crystal film provided with the processing means will be described below.

【0016】(実施例1)まず、LPE法により、直径
50mmのGGG基板の(111)面上に膜厚30μm
のYIG単結晶膜を作製した。次に、このYIG単結晶
膜を半月形に切断し、その一方を、膜面に垂直に500
mTの磁界中に置いて磁化処理を行なった。このときの
温度は25℃であり、時間は1時間であった。
(Example 1) First, a film thickness of 30 μm was formed on a (111) plane of a GGG substrate having a diameter of 50 mm by the LPE method.
Was prepared. Next, this YIG single crystal film was cut into a half-moon shape, and one of the cut was made 500 mm perpendicular to the film surface.
The magnetization treatment was performed in a magnetic field of mT. At this time, the temperature was 25 ° C., and the time was 1 hour.

【0017】このようにして得られたYIG単結晶膜を
5mm×25mmに切り出し、図1に示す構成の2GH
z帯フィルタを作製し、中心周波数の経時変化を200
0時間まで測定した。なお、図1は平面断面図であり、
1はYIG単結晶膜、2は入力トランスデューサ、3は
出力トランスデューサ、4は磁気シールド、5は磁石、
6は高周波入力端子、7は高周波出力端子である。比較
のために、同じYIG単結晶膜の残り半分から同様にフ
ィルタを作製し、中心周波数の経時変化を測定した。こ
れらの結果を図2に示す。
The YIG single crystal film thus obtained is cut into a size of 5 mm × 25 mm, and is cut into a 2 GHz structure shown in FIG.
A z-band filter was manufactured, and the temporal change of the center frequency was 200
Measurements were taken up to 0 hours. FIG. 1 is a plan sectional view,
1 is a YIG single crystal film, 2 is an input transducer, 3 is an output transducer, 4 is a magnetic shield, 5 is a magnet,
6 is a high-frequency input terminal and 7 is a high-frequency output terminal. For comparison, a filter was manufactured in the same manner from the other half of the same YIG single crystal film, and the temporal change of the center frequency was measured. These results are shown in FIG.

【0018】図2から明らかなように、YIG単結晶膜
の磁化処理を行なわなかったものは、500時間程度ま
では時間の経過とともに中心周波数が徐々に低下して行
き、その後、1.9GHz弱で安定している。これに対
して、予めYIG単結晶膜の磁化処理を行なったもの
は、初期に設定した中心周波数2GHzが2000時間
経過後まで変化していない。このように、本発明の磁性
ガーネット単結晶膜の処理方法により、経時変化のない
静磁波素子を得ることができる。
As is apparent from FIG. 2, in the case where the YIG single crystal film was not subjected to the magnetization treatment, the center frequency gradually decreased with the passage of time until about 500 hours, and thereafter, was slightly lower than 1.9 GHz. And stable. On the other hand, in the case where the YIG single crystal film is magnetized in advance, the initially set center frequency of 2 GHz does not change until 2000 hours have elapsed. As described above, by the method for processing a magnetic garnet single crystal film of the present invention, it is possible to obtain a magnetostatic wave element that does not change with time.

【0019】(実施例2)まず、LPE法により、直径
50mmのGGG基板の(111)面上に膜厚30μm
のY2.9 Bi0.1 Fe4.6 Ga0.4 12、Y2.5 Bi
0.5 Fe5 12、Y2.96La0.04Fe4.7 Ga
0.3 12、Y2.8 La0.2 Fe4.7 Al0.3 12および
Tb1.8 1.2 Fe5 12膜をそれぞれ作製した。次に
これらRM・RIG単結晶膜を半月形に切断し、その一
方を、実施例1と同様に、膜面に垂直に500mTの磁
界中に置いて磁化処理を行なった。
(Example 2) First, a film thickness of 30 μm was formed on the (111) plane of a GGG substrate having a diameter of 50 mm by the LPE method.
Y 2.9 Bi 0.1 Fe 4.6 Ga 0.4 O 12 , Y 2.5 Bi
0.5 Fe 5 O 12 , Y 2.96 La 0.04 Fe 4.7 Ga
0.3 O 12 , Y 2.8 La 0.2 Fe 4.7 Al 0.3 O 12 and Tb 1.8 B 1.2 Fe 5 O 12 films were produced, respectively. Next, these RM / RIG single crystal films were cut into half-moon shapes, and one of them was placed in a magnetic field of 500 mT perpendicular to the film surface and magnetized as in Example 1.

【0020】その後、実施例1と同様に、2GHz帯の
フィルタを作製して中心周波数の経時変化を測定した。
その結果、RM・RIG単結晶膜の磁化処理を行なわな
かったものは、最初のうちは時間の経過とともに中心周
波数が徐々に低下する傾向を示した。これに対して、予
めRM・RIG単結晶膜の磁化処理を行なったものは、
初期に設定した中心周波数2GHzが2000時間経過
後まで変化しなかった。
Thereafter, as in the first embodiment, a filter in the 2 GHz band was manufactured, and the change over time in the center frequency was measured.
As a result, when the RM / RIG single crystal film was not subjected to the magnetization treatment, the center frequency initially tended to gradually decrease with time. On the other hand, the magnetized RM / RIG single crystal film
The initially set center frequency of 2 GHz did not change until after 2000 hours.

【0021】(実施例3)まず、実施例1と同様に、L
PE法により、直径50mmのGGG基板の(111)
面上に膜厚30μmのYIG単結晶膜を作製した。次
に、このYIG単結晶膜を、膜面に垂直に100mTの
磁界中に置いて磁化処理を行なった。このとき、この単
結晶膜の周囲に加熱装置を配置しておいて、この加熱装
置で室温から500℃まで1時間かけて加熱し、500
℃に達した後直ちに冷却を始めて室温に戻し、その後磁
界からYIG単結晶膜を取り出した。
(Embodiment 3) First, as in Embodiment 1, L
(111) of a GGG substrate having a diameter of 50 mm by PE method
A 30 μm-thick YIG single crystal film was formed on the surface. Next, the YIG single crystal film was subjected to a magnetization process by placing the film in a magnetic field of 100 mT perpendicular to the film surface. At this time, a heating device is placed around the single crystal film, and the heating device is used to heat the room temperature from room temperature to 500 ° C. for 1 hour.
Immediately after the temperature reached ° C, cooling was started and the temperature was returned to room temperature, and then the YIG single crystal film was taken out from the magnetic field.

【0022】その後、実施例1と同様にしてフィルタを
作製し、中心周波数の経時変化を2000時間まで測定
した。その結果、実施例1と同様に、初期特性変化のな
い静磁波素子が得られた。
Thereafter, a filter was manufactured in the same manner as in Example 1, and the change over time of the center frequency was measured up to 2000 hours. As a result, as in Example 1, a magnetostatic wave element having no change in the initial characteristics was obtained.

【0023】(実施例4)図3は、縦型炉芯管構造の液
相エピタキシャル成長装置であって、磁化処理手段を取
り付けたものを示す断面図である。同図において、11
はアルミナ製の縦型筒状の炉芯管、12a,12b,1
2cは炉芯管11の周囲に設けたヒータ、13は炉芯管
11の周囲を包囲する炉体、14は炉芯管11の内部へ
の空気の侵入を抑制するシャッター、15は磁性ガーネ
ット単結晶膜の原料の溶液、16は磁性ガーネット膜の
原料を収容する白金製の坩堝、17は坩堝16を支持す
る支持台、18は下地基板に形成された磁性ガーネット
単結晶膜、19は磁性ガーネット単結晶膜18を水平に
保持する基板保持具、20は回転方向および上下方向に
駆動される支持棒、21は炉体13の上部の冷却部に取
り付けられた垂直方向に50mTの中心磁界をかけるこ
とができる電磁石である。
(Embodiment 4) FIG. 3 is a sectional view showing a liquid phase epitaxial growth apparatus having a vertical furnace core tube structure, to which a magnetizing means is attached. In FIG.
Is a vertical cylindrical furnace core tube made of alumina, 12a, 12b, 1
2c is a heater provided around the furnace core tube 11, 13 is a furnace body surrounding the furnace core tube 11, 14 is a shutter for suppressing intrusion of air into the furnace core tube 11, and 15 is a magnetic garnet unit. A solution of a crystal film raw material, 16 is a platinum crucible for accommodating the magnetic garnet film raw material, 17 is a support for supporting the crucible 16, 18 is a magnetic garnet single crystal film formed on a base substrate, and 19 is a magnetic garnet. A substrate holder that holds the single crystal film 18 horizontally, 20 is a support rod that is driven in a rotating direction and a vertical direction, and 21 is a vertical magnetic field of 50 mT attached to a cooling unit above the furnace body 13. An electromagnet that can.

【0024】以下に、本エピタキシャル成長装置を用い
たYIG単結晶膜の作製方法とその後の磁化処理方法を
示す。まず、従来と同様の方法でYIG単結晶膜を作製
した。即ち、坩堝16内でPbO、B2 3 を溶媒と
し、単結晶膜原料のFe2 3 、Y2 3 を加熱溶融さ
せ均一化した後、液相線と固相線の間の温度、即ち約9
00℃前後の一定温度に保持して過冷却状態にした。そ
の後、基板保持具19で保持したGGG下地基板を浸漬
してYIG単結晶膜18の育成を行なった。そして、原
料の溶液15内よりYIG単結晶膜を引き上げて余分の
付着溶液を振り切った。
Hereinafter, a method for producing a YIG single crystal film using the present epitaxial growth apparatus and a method for subsequent magnetization treatment will be described. First, a YIG single crystal film was produced in the same manner as in the prior art. That is, in the crucible 16, PbO and B 2 O 3 are used as a solvent, and Fe 2 O 3 and Y 2 O 3 as single crystal film raw materials are heated and melted to be uniform, and then the temperature between the liquidus line and the solidus line Ie about 9
It was kept at a constant temperature of about 00 ° C. to bring it into a supercooled state. Thereafter, the GIG base substrate held by the substrate holder 19 was immersed to grow the YIG single crystal film 18. Then, the YIG single crystal film was pulled up from the solution 15 of the raw material, and excess adhesion solution was shaken off.

【0025】次に、このYIG単結晶膜18を電磁石2
1の中心位置に置き、20mTの磁界を印加しながら室
温まで冷却させていった。
Next, the YIG single crystal film 18 is
1 and cooled to room temperature while applying a magnetic field of 20 mT.

【0026】その後、実施例1と同様にしてフィルタを
作製し、中心周波数の経時変化を2000時間まで測定
した。その結果、実施例1と同様に、初期特性変化のな
い静磁波素子が得られた。
Thereafter, a filter was manufactured in the same manner as in Example 1, and the change over time in the center frequency was measured up to 2000 hours. As a result, as in Example 1, a magnetostatic wave element having no change in the initial characteristics was obtained.

【0027】なお、本実施例4においては、縦型炉芯管
構造を有する液相エピタキシャル成長装置によって磁性
ガーネット単結晶膜を作製し、得られた磁性ガーネット
単結晶膜を引き続き磁化処理する例について説明した
が、本発明はこれのみに限定されるものではない。即
ち、その他の磁性ガーネットの作製方法、例えばスパッ
タ法、CVD法、レーザー・アブレーション法等の気相
成長法の場合においても、それら装置の冷却部に磁化処
理手段を取り付けて行なうことができる。
In the fourth embodiment, an example will be described in which a magnetic garnet single crystal film is formed by a liquid phase epitaxial growth apparatus having a vertical furnace core tube structure, and the obtained magnetic garnet single crystal film is continuously magnetized. However, the present invention is not limited to this. That is, even in the case of other methods for producing a magnetic garnet, for example, a vapor phase growth method such as a sputtering method, a CVD method, and a laser ablation method, the magnetization processing means can be attached to a cooling portion of the apparatus.

【0028】なお、上記実施例においては、磁性ガーネ
ット単結晶膜がY3 Fe5 12、Y2.9 Bi0.1 Fe
4.6 Ga0.4 12、Y2.5 Bi0.5 Fe5 12、Y2.96
La0.04Fe4.7 Ga0.3 12、Y2.8 La0.2 Fe
4.7 Al0.3 12およびTb1.81.2 Fe5 12の場
合について説明したが、本発明はこれのみに限定される
ものではない。即ち、あらゆる磁性ガーネット単結晶膜
について、例えば、一般式R13-x R2x Fe5-y y
12(但し、0≦x<3,0≦y<5)で表されるRM
・RIGにおいて、R1がYまたはTbのいずれかであ
り、R2がBi,B,Sbおよびランタン系遷移元素の
うち少なくとも1種類であり、MがGa,Al,In,
Tl,CoおよびNiのうち少なくとも1種類、また
は、MがZrおよびSiのうち少なくとも1種類とMg
であるものについて同様の効果を得ることができる。
In the above embodiment, the magnetic garnet single crystal film is made of Y 3 Fe 5 O 12 , Y 2.9 Bi 0.1 Fe
4.6 Ga 0.4 O 12 , Y 2.5 Bi 0.5 Fe 5 O 12 , Y 2.96
La 0.04 Fe 4.7 Ga 0.3 O 12 , Y 2.8 La 0.2 Fe
The case of 4.7 Al 0.3 O 12 and Tb 1.8 B 1.2 Fe 5 O 12 has been described, but the present invention is not limited to this. That is, for any magnetic garnet single crystal film, for example, the general formula R1 3-x R2 x Fe 5 -y M y
RM represented by O 12 (where 0 ≦ x <3, 0 ≦ y <5)
In RIG, R1 is either Y or Tb, R2 is at least one of Bi, B, Sb and a lanthanum-based transition element, and M is Ga, Al, In,
At least one of Tl, Co and Ni, or M is at least one of Zr and Si and Mg
And the same effect can be obtained.

【0029】また、上記磁化処理条件において、外部磁
界の強さ、磁界の印加時間、磁界印加時の温度、膜面に
対する磁界の方向等は密接に関係しており、また、磁性
ガーネット単結晶膜の材料系によっても異なってくる。
一般的な傾向としては、外部磁界を強くすれば時間を短
くでき、温度を高くすると外部磁界を小さくできる。ま
た、材料の物性値である飽和磁化(4πMs)が小さい
ほど外部磁界を小さくできる。
Further, under the above magnetizing conditions, the strength of the external magnetic field, the time of application of the magnetic field, the temperature at the time of applying the magnetic field, the direction of the magnetic field with respect to the film surface, and the like are closely related. It depends on the material system.
As a general tendency, the time can be shortened by increasing the external magnetic field, and the external magnetic field can be reduced by increasing the temperature. Further, the smaller the saturation magnetization (4πMs), which is the physical property value of the material, the smaller the external magnetic field.

【0030】[0030]

【発明の効果】以上の説明で明らかなように、磁性ガー
ネット単結晶膜に、予め直流磁界を加えて磁化処理を行
なって磁化ベクトルを特定方向に揃えておくことによっ
て、初期特性が経時的に変化しない静磁波素子用磁性ガ
ーネット単結晶膜を得ることができる。したがって、こ
の磁性ガーネット単結晶膜を用いることにより、初期特
性の経時変化がない静磁波素子を得ることができる。
As is apparent from the above description, the initial characteristics can be reduced with time by applying a DC magnetic field to the magnetic garnet single crystal film in advance and performing magnetization processing to align the magnetization vectors in a specific direction. A magnetic garnet single crystal film for a magnetostatic wave element that does not change can be obtained. Therefore, by using this magnetic garnet single crystal film, it is possible to obtain a magnetostatic wave element in which initial characteristics do not change with time.

【0031】また、この磁化処理は、磁性ガーネット単
結晶膜の製造装置の磁性ガーネット単結晶膜の冷却部に
磁化処理手段を付設しておくことにより、単結晶膜の製
造に引き続いて、同一装置内で連続して磁化処理を行な
うことができる。
In addition, the magnetizing process is performed by providing a magnetizing means in the cooling unit of the magnetic garnet single crystal film of the magnetic garnet single crystal film manufacturing apparatus, so that the same apparatus can be used subsequently to the single crystal film manufacturing. The magnetizing process can be performed continuously within.

【図面の簡単な説明】[Brief description of the drawings]

【図1】静磁波フィルタの一例を示す平面断面図であ
る。
FIG. 1 is a plan sectional view showing an example of a magnetostatic wave filter.

【図2】図1に示す静磁波フィルタの中心周波数の経時
変化を示すグラフである。
FIG. 2 is a graph showing a change over time of a center frequency of the magnetostatic wave filter shown in FIG.

【図3】本発明の磁性ガーネット単結晶膜の製造装置の
一例を示す断面図である。
FIG. 3 is a cross-sectional view showing an example of a magnetic garnet single crystal film manufacturing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 YIG単結晶膜 2 入力トランスデューサ 3 出力トランスデューサ 4 磁気シールド 5 磁石 6 高周波入力端子 7 高周波出力端子 11 炉芯管 12a,12b,12c ヒータ 13 炉体 14 シャッター 15 原料の溶液 16 坩堝 17 支持台 18 磁性ガーネット単結晶膜 19 基板保持具 20 支持棒 21 電磁石 DESCRIPTION OF SYMBOLS 1 YIG single crystal film 2 Input transducer 3 Output transducer 4 Magnetic shield 5 Magnet 6 High frequency input terminal 7 High frequency output terminal 11 Furnace core tube 12a, 12b, 12c Heater 13 Furnace 14 Shutter 15 Raw material solution 16 Crucible 17 Supporting table 18 Magnetic Garnet single crystal film 19 Substrate holder 20 Support rod 21 Electromagnet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鷹木 洋 京都府長岡京市天神二丁目26番10号 株 式会社 村田製作所内 審査官 山田 正文 (56)参考文献 特開 平2−94607(JP,A) 特開 平5−95205(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 10/00 - 10/32 H01F 41/14 - 41/34 H01P 1/20 - 1/219 C30B 29/28 C30B 33/04 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Takagi 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto Prefecture Examiner, Murata Manufacturing Co., Ltd. Masafumi Yamada (56) References JP-A-2-94607 (JP, A JP-A-5-95205 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 10/00-10/32 H01F 41/14-41/34 H01P 1/20-1 / 219 C30B 29/28 C30B 33/04

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 静磁波素子として用いる前の磁性ガーネ
ット単結晶膜に、予め直流磁界を加えて磁化処理を行な
うことを特徴とする静磁波素子用磁性ガーネット単結晶
膜の処理方法。
1. A method for processing a magnetic garnet single crystal film for a magnetostatic wave device, comprising: applying a direct current magnetic field to the magnetic garnet single crystal film before using it as a magnetostatic wave device.
【請求項2】 磁性ガーネット単結晶膜は、一般式R1
3-x R2x Fe5-yy 12(但し、R1はYまたはT
bのいずれか、R2はBi,B,Sbおよびランタン系
遷移元素のうち少なくとも1種類であり、MはGa,A
l,In,Tl,CoおよびNiのうち少なくとも1種
類、または、MはZrおよびSiのうち少なくとも1種
類とMgであり、0≦x<3,0≦y<5)で表される
ものであることを特徴とする請求項1記載の静磁波素子
用磁性ガーネット単結晶膜の処理方法。
2. The magnetic garnet single crystal film has a general formula R1
3-x R2 x Fe 5-y MyO 12 (where R1 is Y or T
b, R2 is at least one of Bi, B, Sb and a lanthanum-based transition element, and M is Ga, A
At least one of l, In, Tl, Co and Ni, or M is at least one of Zr and Si and Mg, represented by 0 ≦ x <3, 0 ≦ y <5). 2. The method for treating a magnetic garnet single crystal film for a magnetostatic wave device according to claim 1, wherein:
【請求項3】 磁性ガーネット単結晶膜は、Y3 Fe5
12であることを特徴とする請求項1記載の静磁波素子
用磁性ガーネット単結晶膜の処理方法。
3. The magnetic garnet single crystal film is made of Y 3 Fe 5
2. The method for treating a magnetic garnet single crystal film for a magnetostatic wave device according to claim 1, wherein O 12 is used.
【請求項4】 磁性ガーネット単結晶膜の製造装置の該
磁性ガーネット単結晶膜の冷却部に、該磁性ガーネット
単結晶膜を磁化処理する手段が付設されていることを特
徴とする磁性ガーネット単結晶膜の製造装置。
4. A magnetic garnet single crystal, wherein a means for magnetizing the magnetic garnet single crystal film is provided in a cooling section of the magnetic garnet single crystal film in the magnetic garnet single crystal film manufacturing apparatus. Film production equipment.
【請求項5】 磁性ガーネット単結晶膜の製造装置は、
縦型炉芯管構造の液相エピタキシャル成長装置であり、
該縦型炉芯管の磁性ガーネット単結晶膜の冷却部の周囲
に磁化処理手段として電磁石が付設されていることを特
徴とする請求項4記載の磁性ガーネット単結晶膜の製造
装置。
5. An apparatus for producing a magnetic garnet single crystal film,
It is a liquid phase epitaxial growth device with a vertical furnace core tube structure,
The apparatus for manufacturing a magnetic garnet single crystal film according to claim 4, wherein an electromagnet is provided as a magnetizing means around the cooling portion of the magnetic garnet single crystal film of the vertical furnace core tube.
JP28532094A 1994-11-18 1994-11-18 Method of processing magnetic garnet single crystal film for magnetostatic wave device and apparatus for manufacturing magnetic garnet single crystal film provided with the processing means Expired - Fee Related JP3324304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28532094A JP3324304B2 (en) 1994-11-18 1994-11-18 Method of processing magnetic garnet single crystal film for magnetostatic wave device and apparatus for manufacturing magnetic garnet single crystal film provided with the processing means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28532094A JP3324304B2 (en) 1994-11-18 1994-11-18 Method of processing magnetic garnet single crystal film for magnetostatic wave device and apparatus for manufacturing magnetic garnet single crystal film provided with the processing means

Publications (2)

Publication Number Publication Date
JPH08148335A JPH08148335A (en) 1996-06-07
JP3324304B2 true JP3324304B2 (en) 2002-09-17

Family

ID=17690019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28532094A Expired - Fee Related JP3324304B2 (en) 1994-11-18 1994-11-18 Method of processing magnetic garnet single crystal film for magnetostatic wave device and apparatus for manufacturing magnetic garnet single crystal film provided with the processing means

Country Status (1)

Country Link
JP (1) JP3324304B2 (en)

Also Published As

Publication number Publication date
JPH08148335A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
Glass Ferrite films for microwave and millimeter-wave devices
Shick et al. Liquid phase epitaxial growth of uniaxial garnet films; circuit deposition and bubble propagation
US4293371A (en) Method of making magnetic film-substrate composites
JP3324304B2 (en) Method of processing magnetic garnet single crystal film for magnetostatic wave device and apparatus for manufacturing magnetic garnet single crystal film provided with the processing means
US4200484A (en) Method of fabricating multiple layer composite
JPS6034806B2 (en) Magnetic structure for magnetic bubble
US4400445A (en) Liquid phase epitaxial growth of garnet films
Acharya et al. Sputter deposited strontium ferrite films with c‐axis oriented normal to the film plane
JP2869951B2 (en) Magnetic garnet single crystal and microwave device material
JPH08165197A (en) Single crystal of garnet magnetic oxide and production of static magnetic wave element
US4243697A (en) Self biased ferrite resonators
US4414290A (en) Magnetic structure suitable for the propagation of single-walled magnetic domains
Kranov et al. Barium hexaferrite thick films made by liquid phase epitaxy reflow method
JP3387341B2 (en) Surface magnetostatic wave device
US4468438A (en) Garnet epitaxial films with high Curie temperatures
JP2779058B2 (en) Magnetostatic wave filter
JPH09208393A (en) Production of microwave element material
Tănăsoiu et al. Crystal growth and bubble domain properties of some aluminium substituted hexaferrites
US4273610A (en) Method for controlling the resonance frequency of yttrium iron garnet films
JPS6199318A (en) Fabrication of magnetic garnet film
JP3089742B2 (en) Materials for magnetostatic wave devices
JPH07130539A (en) Surface magnetostatic wave device
JPS60187008A (en) Vertically magnetized magnetic thin-film
JPH101398A (en) Faraday element and its production
JP3059332B2 (en) Microwave device material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees