JP3318304B2 - Gas-liquid mixing device - Google Patents

Gas-liquid mixing device

Info

Publication number
JP3318304B2
JP3318304B2 JP2000030850A JP2000030850A JP3318304B2 JP 3318304 B2 JP3318304 B2 JP 3318304B2 JP 2000030850 A JP2000030850 A JP 2000030850A JP 2000030850 A JP2000030850 A JP 2000030850A JP 3318304 B2 JP3318304 B2 JP 3318304B2
Authority
JP
Japan
Prior art keywords
gas
water
liquid
mixing
mixing cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000030850A
Other languages
Japanese (ja)
Other versions
JP2001104764A (en
Inventor
信之助 野村
洋介 野村
Original Assignee
野村電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 野村電子工業株式会社 filed Critical 野村電子工業株式会社
Priority to JP2000030850A priority Critical patent/JP3318304B2/en
Publication of JP2001104764A publication Critical patent/JP2001104764A/en
Application granted granted Critical
Publication of JP3318304B2 publication Critical patent/JP3318304B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mixers Of The Rotary Stirring Type (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、空気又はオゾン
などの気体を水中に超微粒状の無数の気泡として混合、
溶解し長時間水中に滞留させる気液混合装置に関する。
TECHNICAL FIELD The present invention relates to a method of mixing a gas such as air or ozone as innumerable ultra-fine particles in water.
The present invention relates to a gas-liquid mixing device that dissolves and stays in water for a long time.

【0002】[0002]

【従来の技術】水中に酸素やオゾンのような気体を混合
し、溶解させると、酸素が溶け込んだ水は水の活性化に
よる水質改善、汚水浄化などに役立ち、オゾンが溶け込
んだオゾン水は殺菌、防臭、鮮度保持などに利用できる
という利点があり、これらの気体を高濃度に溶解させよ
うとする試みが種々行われている。このような気体の溶
解は従来主として射出ノズルを用いて微小気体を混合す
る方式が多く用いられている。
2. Description of the Related Art When a gas such as oxygen or ozone is mixed and dissolved in water, the water in which oxygen is dissolved is useful for improving water quality by activating water and purifying sewage, and the ozone water in which ozone is dissolved is sterilized. It has the advantage that it can be used for deodorization and freshness maintenance, and various attempts have been made to dissolve these gases at a high concentration. Conventionally, for dissolving such a gas, a method of mixing a minute gas mainly using an injection nozzle is often used.

【0003】酸素を水に溶解させる装置の一例として特
開平4−126542号公報(以下第1公報という)に
よる気泡発生器が公知である。この気泡発生器は、一端
を閉じ他端を開放状とした円筒体内にその内周接線方向
に液体を導入する開口を設け、閉塞端に円筒体の中心位
置で気体を導入する開口を設けて成るというものであ
る。円筒体内に形成される混合室にはその外周から液体
が旋回状に流入し、その液体流れが他端から流出する際
に液体流れの中心付近に生じる吸引力(負圧)で外気導
入用の開口から気体を吸引し、この気体が液体流れに激
しく衝突して微小気泡となり、液体流れに混合される。
[0003] As an example of an apparatus for dissolving oxygen in water, a bubble generator disclosed in Japanese Patent Application Laid-Open No. 4-126542 (hereinafter referred to as first publication) is known. This bubble generator is provided with an opening for introducing liquid in a tangential direction of its inner circumference in a cylinder having one end closed and the other end open, and an opening for introducing gas at the center position of the cylinder at the closed end. It consists of. The liquid flows into the mixing chamber formed inside the cylinder in a swirling manner from the outer periphery, and the suction force (negative pressure) generated near the center of the liquid flow when the liquid flow flows out from the other end. The gas is sucked from the opening, and the gas violently collides with the liquid flow to form microbubbles, which are mixed with the liquid flow.

【0004】オゾン水を生成するための気体混合装置の
一例として特開平5−123554号公報(以下第2公
報という)により気体接触装置及びオゾン水製造装置が
公知である。この気液接触装置の主要部材であるエゼク
タ式ノズルは、中心に液体ノズルを配置し、その外周に
設けられた吸引ガス室を介して液体の噴流による負圧で
気体を吸引し、噴出流体と共に気体を気泡としてノズル
先端のガスノズル部材(キャップ)に設けたガス噴孔か
ら噴出させるようになっている。
[0004] As an example of a gas mixing device for producing ozone water, a gas contact device and an ozone water production device are known from Japanese Patent Application Laid-Open No. 5-123554 (hereinafter referred to as "second publication"). The ejector nozzle, which is the main member of this gas-liquid contact device, has a liquid nozzle at the center, sucks gas at a negative pressure due to the liquid jet through a suction gas chamber provided on the outer periphery, and ejects the gas together with the ejected fluid. The gas is blown out as gas bubbles from gas injection holes provided in a gas nozzle member (cap) at the nozzle tip.

【0005】[0005]

【発明が解決しようとする課題】ところで、酸素やオゾ
ンガスを水中に溶解させる場合、上記ノズル方式の気液
混合装置などによりできる限り粒径の小さい気泡を作り
出して水中に混合させ、気体を水中に溶解させるように
している。しかし、ノズル方式では粒径の大きさが目に
見える程の気泡を生成させるのが限界であり、このよう
な気泡は浮力が大きいため水中に混合されてもすぐに浮
上して消失し、水中に長時間残留することができない。
When dissolving oxygen or ozone gas in water, bubbles having the smallest possible particle size are produced by the above-mentioned gas-liquid mixing device of the nozzle type and mixed with the water, and the gas is dissolved in the water. So that it can be dissolved. However, in the nozzle method, the limit is to generate bubbles with a particle size that is visible, and such bubbles have a large buoyancy and immediately float and disappear even if mixed in water. For a long time.

【0006】特にオゾン水を気液混合装置で生成する場
合、オゾンの溶解度は温度によって著しく異なり、例え
ば10℃の水に比べて30℃の水では約1/2と大きく
減少し、殺菌、悪臭の除去等にオゾン水を利用したい夏
季に減少するため、水中に溶解しないオゾンは廃オゾン
として大気中に放出される。このような廃オゾンが大気
中に大量に放出されると、作業環境に悪影響を与えるこ
とにもなるため、上記のような従来の気液混合装置でオ
ゾン水を生成する際には廃オゾンを触媒等を用いて処理
する廃オゾン処理装置を併設している。
In particular, when ozone water is produced by a gas-liquid mixing device, the solubility of ozone greatly depends on the temperature. For example, water at 30.degree. C. is greatly reduced to about 1/2 compared to water at 10.degree. Ozone water that is not dissolved in water is released into the atmosphere as waste ozone because it decreases in summer when it is desired to use ozone water for removal of water. If such a large amount of waste ozone is released into the atmosphere, it may adversely affect the working environment.Therefore, when generating ozone water with the above-described conventional gas-liquid mixing apparatus, waste ozone is discharged. A waste ozone treatment device that performs treatment using a catalyst or the like is also provided.

【0007】この発明は、上記従来の気液混合装置によ
る問題に留意して、目に見えない程の超微小粒径の気泡
を生成して短時間に気泡を水中に溶解させ、気体の溶解
度を格段に向上させ得る気液混合装置を提供することを
課題とする。
The present invention takes into account the above-mentioned problems of the conventional gas-liquid mixing apparatus, and generates bubbles having an invisible ultra-fine particle size, dissolves the bubbles in water in a short time, An object of the present invention is to provide a gas-liquid mixing device that can significantly improve solubility.

【0008】[0008]

【課題を解決するための手段】この発明は、上記課題を
解決する手段として、内部に流入する液体を気体と混合
する気液混合筒と、この混合筒内に気体を供給する気体
供給手段とを備え、流入する気体を圧縮する混合圧縮手
段を上記混合筒内に設けてこの圧縮手段に接続した駆動
部により回転駆動し、気体供給手段の供給口を混合筒内
に導いて上記圧縮手段へ気泡を供給し、上記混合圧縮手
段から一定距離を置きかつ一定長さ範囲で混合筒に気泡
拡散領域を設定してこの領域の混合筒に多数の気泡拡散
孔を設け、上記気液混合筒を水中に挿置して気液を混合
圧縮手段により混合圧縮し、その気泡水を気泡拡散孔か
ら水中に拡散させて超微粒状気泡を水中に混合、溶解さ
せるように構成して成る気液混合装置としたのである。
According to the present invention, as a means for solving the above problems, a gas-liquid mixing cylinder for mixing a liquid flowing into the inside with a gas, and a gas supply means for supplying a gas into the mixing cylinder are provided. A mixing / compression means for compressing the inflowing gas is provided in the mixing cylinder, and is rotationally driven by a drive unit connected to the compression means, and a supply port of the gas supply means is guided into the mixing cylinder to the compression means. Supplies bubbles, sets a bubble diffusion region in the mixing cylinder at a certain distance from the mixing and compression means and in a certain length range , and provides a number of bubble diffusion holes in the mixing cylinder in this region, A gas-liquid mixture composed by inserting in water and mixing and compressing gas-liquid by mixing and compression means, diffusing the bubble water into the water from the bubble diffusion holes, and mixing and dissolving the ultrafine particles in the water. It was a device.

【0009】上記構成の気液混合装置によれば、目に見
えない程の超微小粒径の無数の気泡を水中に混合、拡散
させ、高い溶解度に気泡を溶解させる。混合筒内に流入
する液を混合圧縮手段を回転駆動することにより圧縮す
ると同時に流入する気泡をも混合圧縮手段により圧縮
し、その際気泡を超微粒径の無数の気泡として水中に混
合する。これら無数の気泡は混合筒の気泡拡散領域の気
泡拡散孔から混合筒外の水中へ拡散する。このように生
成、拡散された気泡は粒径は目に見えない超微粒子状で
あるが、水中にあっては短時間で白濁状となり、透明水
槽では白濁気泡により透明度が全く失われて長時間にわ
たり残留する。
[0009] According to the gas-liquid mixing apparatus having the above-described structure, innumerable bubbles having an ultra-fine particle size that are invisible are mixed and diffused in water, and the bubbles are dissolved with high solubility. The liquid flowing into the mixing cylinder is compressed by rotating the mixing / compressing means, and at the same time, the flowing air bubbles are also compressed by the mixing / compressing means. At this time, the air bubbles are mixed into water as innumerable air bubbles having an ultrafine particle diameter. These myriad of bubbles diffuse from the bubble diffusion holes in the bubble diffusion region of the mixing cylinder into the water outside the mixing cylinder. The bubbles generated and diffused in this way are in the form of ultrafine particles with an invisible particle size, but become turbid in a short time in water, and become completely opaque in a clear water tank due to the loss of transparency due to the turbid bubbles. Remains over time.

【0010】[0010]

【実施の形態】以下、この発明の実施の形態について図
面を参照して説明する。図1は第1実施形態の気液混合
装置の主要断面図である。この気液混合装置は気液混合
筒1と駆動部2と気体供給手段3とを備え、この例では
水槽A内に垂直に立設されている。気液混合筒1は、中
空円筒を用いた混合筒4(図示の例では直径10〜15
cm)内に混合圧縮手段としての回転羽根6と、気泡を
拡散するために混合筒4の気泡拡散領域8に多数の小さ
な気泡拡散孔8aを備えている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a main cross-sectional view of the gas-liquid mixing device of the first embodiment. This gas-liquid mixing device includes a gas-liquid mixing cylinder 1, a driving unit 2, and gas supply means 3, and is vertically set in a water tank A in this example. The gas-liquid mixing cylinder 1 is a mixing cylinder 4 (having a diameter of 10 to 15 in the illustrated example) using a hollow cylinder.
cm), a plurality of small bubble diffusion holes 8a are provided in the bubble diffusion region 8 of the mixing cylinder 4 for diffusing bubbles.

【0011】回転羽根6は、気液混合筒1の中間位置付
近に取付座5を設け、この座に設けた軸受5xを介して
支持される駆動部2のモータの出力軸2aに連結されて
回転駆動されるように取り付けられている。回転羽根6
のロータの下端面には案内羽根7が設けられており、こ
の案内羽根7により気液の流れを半径方向に向けて移動
させて混合筒4の内壁との間で気液を混合、圧縮する。
案内羽根7は、図示の例では、断面が矩形状で直線状の
ものを十字状に設けて成る。案内羽根7の形状は、図示
の例以外にも、曲線状に設けてもよく気液を混合、圧縮
できればよい。
The rotary blade 6 is provided with a mounting seat 5 near an intermediate position of the gas-liquid mixing cylinder 1, and is connected to an output shaft 2a of a motor of the driving unit 2 supported via a bearing 5x provided on this mounting seat. It is mounted to be driven to rotate. Rotating blade 6
A guide blade 7 is provided on the lower end surface of the rotor, and the guide blade 7 moves the gas-liquid flow in the radial direction to mix and compress the gas-liquid with the inner wall of the mixing cylinder 4. .
In the illustrated example, the guide blade 7 is formed by providing a straight cross-section with a rectangular cross-section. The shape of the guide blade 7 may be a curved shape other than the example shown in the drawings, and may be any shape as long as gas and liquid can be mixed and compressed.

【0012】気液拡散領域8は、回転羽根6の下端より
一定の距離l、この例では5〜10mm程度下方の位置
から一定の距離範囲(この例では4〜5cm)に形成さ
れ、この領域内に無数の気泡拡散孔8aがランダムな配
置で穿設され、混合筒4内から外方へ気泡を放出できる
ようにしている。気泡拡散孔8aの大きさは、図示の例
では1mm前後の径である。
The gas-liquid diffusion region 8 is formed at a fixed distance 1 from the lower end of the rotary blade 6, in this example, about 5 to 10 mm below a fixed distance range (4 to 5 cm in this example). Inside, a number of bubble diffusion holes 8a are perforated in a random arrangement so that bubbles can be released from the inside of the mixing cylinder 4 to the outside. The size of the bubble diffusion hole 8a is about 1 mm in the illustrated example.

【0013】気体供給手段3は、混合筒4の下端の開口
4a寄りの位置に設けた給気管9を備えており、その先
端の開口10を回転羽根6の方へ向けて開放している。
給気管9は、接続端部9aを介して外部の配管に接続さ
れ、この例ではオゾン発生器11からオゾンが送り込ま
れる。12はエアーを送り込むエアーポンプである。な
お、供給される気体はオゾンの他にエアーでもよく、そ
の場合はオゾン発生器11は不要であり、エアーポンプ
12から給気管9へエアーを直接送り込めばよい。
The gas supply means 3 has an air supply pipe 9 provided at a position near the opening 4 a at the lower end of the mixing cylinder 4, and has an opening 10 at the end thereof opened toward the rotary blade 6.
The air supply pipe 9 is connected to an external pipe via a connection end 9 a, and in this example, ozone is sent from an ozone generator 11. Reference numeral 12 denotes an air pump for feeding air. The supplied gas may be air instead of ozone. In that case, the ozone generator 11 is unnecessary, and the air may be directly sent from the air pump 12 to the air supply pipe 9.

【0014】上記構成の気液混合装置は、図示の例のよ
うに、水槽Aのような水中に立設して使用される。駆動
部2のモータを起動させて回転羽根6を回転させると
(回転方向はこの例では正逆いずれでもよい)、案内羽
根7により水流が半径方向に移動し、この水流の移動に
より混合筒4の下端の開口4aからその中心軸線に沿っ
て水と気体(オゾン又はエアー)を軸流方向へ吸引す
る。
The gas-liquid mixing device having the above-described structure is used by standing upright in water such as a water tank A as shown in the illustrated example. When the motor of the drive unit 2 is started to rotate the rotary blade 6 (the rotation direction may be either forward or reverse in this example), the water flow moves in the radial direction by the guide blade 7, and the movement of the water flow causes the mixing cylinder 4 to move. Water and gas (ozone or air) are sucked in the axial flow direction from the opening 4a at the lower end along the central axis.

【0015】吸引された水と気体は、軸線に沿ってうず
巻(螺旋)状に吸引される間に気泡となって水中に混合
されながら回転羽根6に向い、回転羽根6で半径方向に
移動した混合筒4の内壁に激しく衝突して気泡を含む水
流がさらに混合、圧縮され、混合筒4の内壁に沿って下
方へ移動する。この場合、回転羽根6の下端面と気泡拡
散領域8の上端との間には一定距離lだけ気泡拡散孔8
aが設けられていないデッドゾーンがある。
The sucked water and gas become bubbles while being drawn in a spiral shape along the axis, and are mixed with the water and directed to the rotating blade 6, and move in the radial direction by the rotating blade 6. The violently colliding with the inner wall of the mixing cylinder 4, the water flow containing bubbles is further mixed and compressed, and moves downward along the inner wall of the mixing cylinder 4. In this case, a predetermined distance l is provided between the lower end surface of the rotary blade 6 and the upper end of the bubble diffusion region 8 for the bubble diffusion hole 8.
There is a dead zone where a is not provided.

【0016】このため、回転羽根6で半径方向に振られ
た水流は混合筒4の内壁に直接衝突するため、混合、圧
縮の度合いが大きくなる。仮に、このデッドゾーンに気
泡拡散孔8aを設けていれば、その気泡拡散孔8aから
直接外方へ気泡が逃げてしまい、その気泡は混合、圧縮
が不充分なため十分超微粒化されない未成熟の大径の、
あるいは粒径の揃わない気泡粒子となって外方へ出て行
くことになるが、このような不都合は気泡拡散孔8aを
設けていないデッドゾーンによって防止される。又、比
較的大きい気泡はデッドゾーン内側の旋回吸引流に巻き
込まれ、回転羽根の中心部に吸引されて再圧縮される。
For this reason, the water flow oscillated in the radial direction by the rotary blades 6 directly collides with the inner wall of the mixing cylinder 4, so that the degree of mixing and compression is increased. If the bubble diffusion hole 8a is provided in the dead zone, the bubble escapes directly to the outside from the bubble diffusion hole 8a, and the bubble is insufficiently mixed and compressed. Of large diameter,
Alternatively, the air bubbles are formed as air bubbles having an irregular particle size and go out. However, such a disadvantage is prevented by a dead zone in which the air bubble diffusion holes 8a are not provided. Also, relatively large bubbles are entrained in the swirling suction flow inside the dead zone, are sucked into the center of the rotating blade, and are recompressed.

【0017】こうして、回転羽根6の混合、圧縮作用で
超微粒化された気泡を含む水流が下方へ移動すると、未
だ半径方向への圧縮力を受けながら下方へ移動するた
め、水流は気泡拡散領域8に沿って移動する間に周壁の
気泡拡散孔8aを介して水流の一部が大部分の気泡と共
に外方へ出て気泡が混合筒4の外部の水中に拡散する。
即ち、回転羽根と円周側壁(デッドゾーン)で圧縮され
た混合水は急激に大気に面する水中に放出されて微細粒
子を生成する。
As described above, when the water flow containing the air bubbles super-micronized by the mixing and compression of the rotating blades 6 moves downward, the water flow still moves downward while still receiving a compressive force in the radial direction, so that the water flow moves in the bubble diffusion region. While moving along 8, a part of the water flow goes out along with most of the bubbles through the bubble diffusion holes 8 a in the peripheral wall, and the bubbles diffuse into the water outside the mixing cylinder 4.
That is, the mixed water compressed by the rotating blades and the circumferential side wall (dead zone) is rapidly released into water facing the atmosphere to generate fine particles.

【0018】この気泡の拡散が水流の下方への移動速度
との関係で十分気泡拡散領域8の気泡拡散孔8aから行
われる範囲は回転羽根6の回転速度との関係から実験に
よって定めている。気泡拡散領域8を通過する間に十分
気泡が外方へ拡散した後の水流は上記混合、圧縮後のも
のの一部となり、このためやがて流れの勢いを失い前述
した混合筒4の下端開口4aから吸引される水流と一緒
になって循環する。
The range in which the diffusion of the bubbles is sufficiently performed from the bubble diffusion holes 8a of the bubble diffusion region 8 in relation to the downward moving speed of the water flow is determined by experiments from the relationship with the rotation speed of the rotary blade 6. The water flow after the bubbles have sufficiently diffused outward while passing through the bubble diffusion region 8 becomes a part of the mixture after the above-described mixing and compression. Circulates together with the suctioned water stream.

【0019】以上のようにして発生した気泡は混合圧縮
されるため、その超微粒化された微粒気泡の大きさが数
ミクロン乃至数10ミクロン、大きくても100ミクロ
ン以下の粒径の揃ったものとなり、気泡が超微粒子状で
あるため、水中に短時間で容易に溶解する。又、水中に
浮遊しても白濁状となって水中に残り余りに粒径が小さ
いため、浮力によって水中から浮上することなく長時間
にわたって残留する。テストではオゾン5l/min、
オゾン濃度400mgを50l/minの吐出水量の混
合水として混合圧送すると、白濁した微細気泡を生成す
る。
Since the air bubbles generated as described above are mixed and compressed, the size of the ultrafine air bubbles is several microns to several tens microns, and at most 100 microns or less. Since the bubbles are in the form of ultrafine particles, they are easily dissolved in water in a short time. Further, even if it floats in water, it remains cloudy and remains in water, and its particle size is so small that it stays for a long time without rising from the water by buoyancy. In the test, ozone 5 l / min,
When the ozone concentration of 400 mg is mixed and fed as mixed water having a discharge water amount of 50 l / min, cloudy fine bubbles are generated.

【0020】このように、長時間白濁状に気泡が水中に
残留すると、気泡が空気の場合は水に徐々に溶け込んで
水の活性化に寄与すると共に、水中の微生物に直接超微
粒気泡が付着して好気性の微生物を培養し、水の汚れを
浄化するのに寄与する。また、気泡がオゾンの場合は、
オゾンが水に徐々に溶解してさらに高濃度のオゾン水と
なると共に、オゾンの気泡が対象物に直接付着するた
め、高濃度のオゾン水としての効果と共に、オゾン気泡
の直接的な作用で殺菌、防臭効果が著しく増大する。
As described above, when air bubbles remain in the water in a cloudy state for a long time, if the air bubbles are air, they gradually dissolve in the water and contribute to the activation of the water, and the ultrafine air bubbles directly adhere to microorganisms in the water. To cultivate aerobic microorganisms and to purify water stains. If the air bubbles are ozone,
Ozone gradually dissolves in water to become higher-concentration ozone water, and the ozone bubbles directly adhere to the target object. And the deodorizing effect is significantly increased.

【0021】なお、廃オゾンの処理は不要である。微細
気泡はわずかな量が水面上に上昇しても直ぐにO2 とな
ってオゾンが大気中に拡散しないためオゾン臭は非常に
少ない。又、超微細粒子は水面上でアク状に浮遊し、拡
大観察すると水の表面張力と気泡の浮力がつり合って気
泡が円でなく縦楕円状に見える。
The treatment of waste ozone is unnecessary. Fine bubbles small amount of ozone odor because it does not spread to the ozone in the atmosphere becomes immediately O 2 be raised on the water surface is very small. Further, the ultrafine particles float in an ac-like shape on the surface of the water, and when observed under magnification, the surface tension of the water and the buoyancy of the bubbles are balanced, so that the bubbles appear not in a circle but in a vertical ellipse.

【0022】上記実施形態の気液混合装置をオゾン水を
生成する装置として実際にオゾン水にサルモネラ菌を浸
して実験した結果、浸漬前には1.1×103 個のサル
モネラ菌が生存したのに対し、オゾン水に浸漬した場合
5分後に0に死滅し、強力な殺菌効果があることが分か
った。対照として、従来のノズル方式の気液混合装置で
生成したオゾン水により実験の結果は、初期1.3×1
3 個のサルモネラ菌が5分後6.0×102 個、10
分後でも2.5×102 個残存するという殺菌効果しか
得られなかった。
As a result of an experiment in which the gas-liquid mixing device of the above embodiment was actually immersed in Salmonella in ozone water as a device for generating ozone water, it was found that 1.1 × 10 3 Salmonella survived before immersion. On the other hand, when it was immersed in ozone water, it died to 0 after 5 minutes, indicating a strong sterilizing effect. As a control, the results of the experiment using the ozone water generated by the conventional nozzle-type gas-liquid mixing device were initially 1.3 × 1.
0 3 Salmonella bacteria 6.0 × 10 2 , 10 minutes after 5 minutes
Only a bactericidal effect of 2.5 × 10 2 remained even after minutes.

【0023】図3に第2実施形態の気液混合装置の主要
断面図を示す。この実施形態では、気体の供給手段3の
給気管9とその先端開口10が回転羽根6の上方に設け
られ、取付座5の軸受5xの周りに連通孔5aが複数箇
所設けられている点、及び混合筒4の上端寄りに通水孔
4bが複数個設けられている点が第1実施形態と異なっ
ている。その他の構成は基本的に第1実施形態と同じで
あり、同一の構成部材には同一の符号を付して説明を省
略する。
FIG. 3 shows a main cross-sectional view of the gas-liquid mixing device of the second embodiment. In this embodiment, an air supply pipe 9 of the gas supply means 3 and a tip opening 10 thereof are provided above the rotary blade 6, and a plurality of communication holes 5a are provided around a bearing 5x of the mounting seat 5. The second embodiment differs from the first embodiment in that a plurality of water holes 4b are provided near the upper end of the mixing cylinder 4. Other configurations are basically the same as those of the first embodiment, and the same components are denoted by the same reference numerals and description thereof will be omitted.

【0024】この第2実施形態の気液混合装置の作用は
次の通りである。回転羽根6を回転させると、混合筒4
の下端開口4aから中心の軸線に沿って軸流方向に水が
吸引され、その流水が半径方向に移動し、混合筒4の内
壁に当たって圧縮される点は第1実施形態と同じであ
る。しかし、気体は取付座5の上方で給気管9から供給
され、気泡となって水中に混入される。又、混合筒4の
内部には通水孔4bから水が流入しており、その水に流
れが生じると気泡と共に軸受5xの周りの連通孔5aに
流入する。
The operation of the gas-liquid mixing device according to the second embodiment is as follows. When the rotating blade 6 is rotated, the mixing cylinder 4
As in the first embodiment, water is sucked in the axial flow direction from the lower end opening 4a along the central axis, the flowing water moves in the radial direction, and is compressed against the inner wall of the mixing cylinder 4. However, the gas is supplied from the air supply pipe 9 above the mounting seat 5 and becomes gas bubbles and is mixed into the water. Further, water flows into the mixing cylinder 4 from the water passage hole 4b, and when the water flows, the water flows into the communication hole 5a around the bearing 5x together with bubbles.

【0025】取付座5と回転羽根6との間、及び回転羽
根6と混合筒4との間にはそれぞれ所定の隙間が設けら
れており、回転羽根6が回転すると案内羽根7により混
合筒4下方からの水流が圧縮されて混合筒4の内壁に沿
って下方へ流れるため、この水流により回転羽根6の外
周の隙間から上記連通孔5aに流入した気泡を含む水流
が吸引されて同じく下方へと流れる。
Predetermined gaps are provided between the mounting seat 5 and the rotary blade 6 and between the rotary blade 6 and the mixing cylinder 4, respectively. When the rotary blade 6 rotates, the mixing cylinder 4 is guided by the guide blade 7. Since the water flow from below is compressed and flows downward along the inner wall of the mixing cylinder 4, the water flow sucks the water flow including the bubbles flowing into the communication hole 5 a from the gap on the outer periphery of the rotary blade 6, and likewise goes down. And flows.

【0026】このとき、気泡を含む水流は回転羽根6の
回転により圧縮された水流に合流して圧縮作用を受け、
気泡は超微粒状となって下方へ流れる。この水流が気泡
拡散領域8に到ると周壁の多数の気液拡散孔8aから気
泡が混合筒の外方へ流出し、装置周辺の水中に混合され
拡散される。この実施形態の場合も気泡は超微粒状であ
り、白濁して混合、拡散されるため、長時間にわたって
水中に残留する。
At this time, the water flow containing air bubbles merges with the water flow compressed by the rotation of the rotary blade 6 and undergoes a compression action.
Bubbles flow down in the form of ultrafine particles. When this water flow reaches the bubble diffusion region 8, the bubbles flow out of the mixing cylinder through many gas-liquid diffusion holes 8a in the peripheral wall, and are mixed and diffused in the water around the device. Also in the case of this embodiment, the air bubbles are ultrafine, and are mixed and diffused as cloudy, so that they remain in water for a long time.

【0027】図4に第3実施形態の気泡混合装置の主要
断面図を示す。この実施形態では、回転羽根6とその取
付座5の取付方向を第1実施形態と上下逆にし、水と気
体を上方から供給するようにした点が異なる。従って、
混合筒4の上端寄りに水取り入れのための通水孔4bが
複数個第2実施形態と同様に設けられ、給気管9も上方
に配置されている。
FIG. 4 is a main sectional view of the bubble mixing apparatus according to the third embodiment. This embodiment is different from the first embodiment in that the mounting direction of the rotary blade 6 and its mounting seat 5 is reversed upside down from the first embodiment, and water and gas are supplied from above. Therefore,
A plurality of water holes 4b for taking in water are provided near the upper end of the mixing cylinder 4 as in the second embodiment, and the air supply pipe 9 is also arranged above.

【0028】この実施形態の作用も、水流と気体の流れ
が第1実施形態と逆に上方から下方の回転羽根6へ向か
う点が異なるだけで、基本的な作用は同じであるから説
明を省略する。なお、混合筒4の下端はこの例では開口
4aにより開放しているが、開口4aを端板により閉じ
てもよいことは言うまでもない。
The operation of this embodiment is different from that of the first embodiment only in that the water flow and the gas flow are opposite to those of the first embodiment, and the basic operation is the same. I do. Although the lower end of the mixing cylinder 4 is opened by the opening 4a in this example, it goes without saying that the opening 4a may be closed by an end plate.

【0029】図5に第4実施形態の気液混合装置の主要
断面図を示す。この実施形態の気液混合装置も第1実施
形態と同様に気液混合筒1と駆動部2と気体供給手段3
を備えているが、各手段の具体的な形状は若干異なって
いる。又、水中に投入させて使用する点は同じである
が、駆動部2として水中モータを使用することによって
水中に入れて使用できる点が異なる。駆動部2は外筒ケ
ース内にモータ2cを入れたものから成り、下端のフラ
ンジ2bが支持板5上に置かれている。2aはモータの
出力軸である。
FIG. 5 is a main sectional view of a gas-liquid mixing apparatus according to a fourth embodiment. The gas-liquid mixing device of this embodiment also has a gas-liquid mixing cylinder 1, a driving unit 2, and a gas supply unit 3, similarly to the first embodiment.
However, the specific shape of each means is slightly different. Further, although they are the same in that they are put in water and used, they are different in that they can be put in water and used by using a submersible motor as the drive unit 2. The drive unit 2 is configured by putting a motor 2c in an outer cylinder case, and a flange 2b at a lower end is placed on a support plate 5. 2a is an output shaft of the motor.

【0030】上記支持板5の下方には下部の支持板5’
が設けられ、支柱5aを挟んで両支持板5と5’を取付
ボルト5b、5bにより一定距離に締結し、かつモータ
2cのフランジ2bも取付ボルト5bにより固定してい
る。支柱5aは円周方向に適宜間隔で複数箇所取付けら
れている。支持板5は図示のように断面が四角形状で全
体が円形状に形成され、その断面の内周端の下部に縁材
5E が設けられており、この縁材5E と対向して下部の
支持板5’の断面を異径段状に形成した段部の1つとの
間に中空円筒状の混合筒4が設けられている。
Below the support plate 5 is a lower support plate 5 '.
The supporting plates 5 and 5 'are fastened at fixed distances by mounting bolts 5b and 5b, and the flange 2b of the motor 2c is also fixed by the mounting bolts 5b. The columns 5a are attached at a plurality of locations at appropriate intervals in the circumferential direction. The support plate 5 has a rectangular cross section and a circular shape as a whole as shown in the figure, and an edge member 5E is provided below the inner peripheral end of the cross section. A hollow cylindrical mixing cylinder 4 is provided between the plate 5 'and one of the step portions having a cross section of a different diameter.

【0031】上記混合筒4は薄い円筒板に多数の気泡拡
散孔8aを気泡拡散領域8に亘って設けて形成されてい
る。この混合筒4は、いわゆるパンチングメタルと呼ば
れる薄板に多数の孔を穿設したものであり、後で説明す
る下部の支持板5’より下方の部材を安定して保持する
だけの強度はなく、このため強度的には支柱5と取付ボ
トル5b、5bとにより支持する構造としている。
The mixing cylinder 4 is formed by providing a large number of bubble diffusion holes 8a over a bubble diffusion region 8 in a thin cylindrical plate. The mixing cylinder 4 is formed by forming a large number of holes in a thin plate called a so-called punching metal, and has no strength enough to stably hold a member below a lower support plate 5 ′ described later. For this reason, in terms of strength, it is structured to be supported by the column 5 and the mounting bottles 5b, 5b.

【0032】支持板5の縁材5E の内周スペースには回
転羽根6がモータ2cの出力軸2aの端に連結されて回
転駆動されるように取り付けられている。この回転羽根
6は、その中央部に設けたボス部6aに設けた穴に反対
側の凹部からボルト6bを挿入して出力軸2aに取付け
られている。回転羽根6の下端面には案内羽根7が設け
られており、縁材5E の下端がこの案内羽根7の幅にほ
ぼ対応するように設定されている。なお、支持板5には
適宜位置に気泡抜き5pの穴が設けてある。
A rotating blade 6 is attached to the inner peripheral space of the edge member 5E of the support plate 5 so as to be connected to the end of the output shaft 2a of the motor 2c and driven to rotate. The rotary blade 6 is attached to the output shaft 2a by inserting a bolt 6b from a recess on the opposite side to a hole provided in a boss 6a provided at the center thereof. A guide blade 7 is provided on the lower end surface of the rotary blade 6, and the lower end of the edge member 5E is set so as to substantially correspond to the width of the guide blade 7. The support plate 5 is provided with a hole for removing air bubbles 5p at an appropriate position.

【0033】下部の支持板5’は、図示のように、異径
段状に外周を形成したフランジ状の支持板とされ、その
中央に所定径の穴4iが設けられている。又、その外周
の任意の位置から半径方向にエアー又はオゾン含有エア
ーを送り込む給気管9が取付けられ、その先端開口10
が回転羽根6の中心に向かって設定されている。
As shown, the lower support plate 5 'is a flange-like support plate having an outer periphery formed in steps of different diameters, and a hole 4i having a predetermined diameter is provided in the center thereof. An air supply pipe 9 for feeding air or ozone-containing air in a radial direction from an arbitrary position on the outer periphery thereof is attached.
Are set toward the center of the rotary blade 6.

【0034】支持板5’の下端にはフィルタ部材13が
取り付けられており、フィルタ部材13はドーナツ形状
のフィルタケース14に挿入して固定されている。フィ
ルタケース14は、その外周及び内周面に多数のパンチ
穴14aが穿設されており、かつ下底は平板で閉じられ
ている。このため、吸入される水はフィルタケース14
の外周穴から内周穴を2通り、中央の中空部を通って支
持板5’の穴4iから上方へ流れるように形成されてい
る。
A filter member 13 is attached to a lower end of the support plate 5 ', and the filter member 13 is inserted and fixed in a donut-shaped filter case 14. The filter case 14 has a large number of punch holes 14a formed on the outer and inner peripheral surfaces thereof, and the lower bottom is closed by a flat plate. For this reason, the water to be sucked in is filtered by the filter case 14.
The hole is formed so as to flow upward from the hole 4i of the support plate 5 'through the central hollow portion through the outer peripheral hole and the inner peripheral hole two times.

【0035】気体供給手段3の給気管9は、その途中を
保持部材9a’によりフランジ2bの側方に固定されて
いる。上記以外の気体供給手段3は第1実施形態と同様
に設けられている。又、この気液混合装置も水槽A内に
立設して使用されるが、水槽A以外の水中に水没させて
使用してもよいことは勿論である。
The air supply pipe 9 of the gas supply means 3 is fixed to the side of the flange 2b by a holding member 9a 'in the middle. Other gas supply means 3 are provided in the same manner as in the first embodiment. The gas-liquid mixing device is also used standing up in the water tank A, but it is needless to say that the gas-liquid mixing apparatus may be used by being submerged in water other than the water tank A.

【0036】上記の構成としたこの実施形態の気液混合
装置の作用は基本的には第1実施形態と同様であるか
ら、基本作用の説明については重複した説明となるため
省略し、特にこの実施形態に特有な作用を中心に説明す
る。回転羽根6を回転させると案内羽根により水流が半
径方向に移動するため、支持板5’の穴4iを通り水と
気体が下方から上方へと移動する水流となることは第1
実施形態と同じである。
The operation of the gas-liquid mixing apparatus of this embodiment having the above-described configuration is basically the same as that of the first embodiment. Therefore, the description of the basic operation will be omitted because it will be repeated. The following description focuses on the operation unique to the embodiment. When the rotating blade 6 is rotated, the water flow is moved in the radial direction by the guide blade, so that the water flow in which water and gas move upward from below through the hole 4i of the support plate 5 'is the first.
This is the same as the embodiment.

【0037】この水流は、フィルタ部材13により外部
から吸入される水に含まれる大きいごみや異物を除去し
て穴4iを通って上方へ移動し、途中で給気管9から供
給される気泡が混合されて回転羽根6の軸線に沿ってう
ず巻状に回転羽根6へ向かい、案内羽根7の回転による
遠心力により半径方向に飛ばされて支持板5の下部の縁
材5E に激しく衝突して水流に含まれる気泡が引きちぎ
られ超微粒状に微細化する。
This water flow moves upward through the hole 4i after removing large dirt and foreign matter contained in the water sucked from the outside by the filter member 13, and bubbles supplied from the air supply pipe 9 are mixed on the way. The guide blade 7 is rotated in the radial direction by the centrifugal force generated by the rotation of the guide blade 7 to violently collide with the lower edge member 5E of the support plate 5 so that the water flow is generated. Bubbles are torn off and become ultrafine.

【0038】この実施形態では、上記縁材5E は案内羽
根7の幅に対応する幅とされ、この幅がデッドゾーンと
しての役目をする。従って、このデッドゾーンの縁材5
E との衝突により上記超微粒状の気泡が生じ、これらの
気泡は水流と共に下方へ移動して混合筒4の気泡拡散孔
8aから外方へ出て外側の水中に拡散する。
In this embodiment, the edge material 5E has a width corresponding to the width of the guide blade 7, and this width serves as a dead zone. Therefore, the edge material 5 of this dead zone
Due to the collision with E, the ultrafine particles are generated, and these bubbles move downward together with the water flow, exit outward from the bubble diffusion holes 8a of the mixing cylinder 4, and diffuse into the outer water.

【0039】以上のようにして水中に超微粒状の気泡を
拡散させ、含有させる機能は、ほぼ第1実施形態と同じ
であるが、この実施形態では支持板5に設けた気泡抜き
5pを介して大きな気泡が取り出されるようになってい
る。回転羽根6の外周面と縁材5E の内周面との間には
わずかな隙間が設けてあり、この隙間から比較的大きな
気泡は回転羽根6の上部のスペース内に上昇する。この
実施形態の気液混合装置を長時間運転すると気体供給手
段3の給気管9から供給される気泡のうち比較的大きな
ものがあり、これらが上記スペースへ移動するからであ
る。
The function of diffusing and containing ultrafine bubbles in water as described above is almost the same as that of the first embodiment. Large bubbles are taken out. A small gap is provided between the outer peripheral surface of the rotary blade 6 and the inner peripheral surface of the edge member 5E. From this gap, relatively large bubbles rise into the space above the rotary blade 6. This is because if the gas-liquid mixing device of this embodiment is operated for a long time, some of the bubbles supplied from the gas supply pipe 9 of the gas supply means 3 are relatively large and move to the space.

【0040】このような気泡が回転羽根6の上部スペー
スに残留すると回転羽根6や支持板5の内周壁を腐蝕す
るなどの不都合が生じるため、このような気泡は気泡抜
き5pを介して外部へ排出するのである。外部へ排出さ
れた気泡は、浮力が大きいため外部の水中へ出るとその
浮力により上昇し、外気へ排出される。水槽Aを用いる
場合は、天板に穴を開設しておけば自然に外気へ抜ける
こととなる。
If such air bubbles remain in the upper space of the rotary blade 6, disadvantages such as corrosion of the rotary blade 6 and the inner peripheral wall of the support plate 5 occur, and such air bubbles are discharged to the outside through the air bubble remover 5p. It discharges. Since the bubbles discharged to the outside have a large buoyancy, when they enter the outside water, they rise due to the buoyancy and are discharged to the outside air. When the water tank A is used, if a hole is opened in the top plate, the water naturally escapes to the outside air.

【0041】[0041]

【発明の効果】以上詳細に説明したように、この発明の
気液混合装置は、気液混合筒と気体供給手段を備え、混
合筒内の混合圧縮手段で気液を混合、圧縮し、気泡拡散
領域の気泡拡散孔から気泡水を拡散させるようにしたか
ら、目に見えない程の超微粒径の気泡を生成し、短時間
に気泡を水中に溶解させ、気体の溶解度を格段に向上さ
せることができるという利点が得られる。
As described in detail above, the gas-liquid mixing device of the present invention includes a gas-liquid mixing cylinder and gas supply means, and mixes and compresses gas-liquid with the mixing and compression means in the mixing cylinder to form bubbles. Bubble water is diffused from the bubble diffusion holes in the diffusion area, so bubbles with an invisible ultra-fine particle size are generated, and the bubbles are dissolved in water in a short time, significantly improving the solubility of gas. This has the advantage of being able to

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態の気液混合装置の主要断面図FIG. 1 is a main cross-sectional view of a gas-liquid mixing device according to a first embodiment.

【図2】同上の要部分解斜視図FIG. 2 is an exploded perspective view of a main part of the above.

【図3】第2実施形態の気液混合装置の主要断面図FIG. 3 is a main cross-sectional view of a gas-liquid mixing device according to a second embodiment.

【図4】第3実施形態の気液混合装置の主要断面図FIG. 4 is a main cross-sectional view of a gas-liquid mixing device according to a third embodiment.

【図5】第4実施形態の気液混合装置の主要断面図FIG. 5 is a main cross-sectional view of a gas-liquid mixing device according to a fourth embodiment.

【符号の説明】[Explanation of symbols]

1 気液混合筒 2 駆動部 3 気体供給手段 4 混合筒 5 取付座 6 回転羽根 7 羽根 8 気泡拡散領域 8a 気泡拡散孔 9 給気管 10 開口 DESCRIPTION OF SYMBOLS 1 Gas-liquid mixing cylinder 2 Drive part 3 Gas supply means 4 Mixing cylinder 5 Mounting seat 6 Rotating blade 7 Blade 8 Bubble diffusion area 8a Bubble diffusion hole 9 Air supply pipe 10 Opening

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01F 1/00 - 5/26 B01F 7/00 - 7/32 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) B01F 1/00-5/26 B01F 7/ 00-7/32

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内部に流入する液体を気体と混合する気
液混合筒と、この混合筒内に気体を供給する気体供給手
段とを備え、流入する気体を圧縮する混合圧縮手段を上
記混合筒内に設けてこの圧縮手段に接続した駆動部によ
り回転駆動し、気体供給手段の供給口を混合筒内に導い
て上記圧縮手段へ気泡を供給し、上記混合圧縮手段から
一定距離を置きかつ一定長さ範囲で混合筒に気泡拡散領
域を設定してこの領域の混合筒に多数の気泡拡散孔を設
け、上記気液混合筒を水中に挿置して気液を混合圧縮手
段により混合圧縮し、その気泡水を気泡拡散孔から水中
に拡散させて超微粒状気泡を水中に混合、溶解させるよ
うに構成して成る気液混合装置。
1. A gas-liquid mixing cylinder for mixing a liquid flowing into a gas with a gas, and a gas supply means for supplying a gas into the mixing cylinder. And a rotary unit driven by a driving unit connected to the compression means, guides the supply port of the gas supply means into the mixing cylinder to supply bubbles to the compression means, and is disposed at a fixed distance from the mixing and compression means and at a constant A bubble diffusion region is set in the mixing cylinder in the length range , a number of bubble diffusion holes are provided in the mixing cylinder in this region, and the gas-liquid mixing cylinder is inserted in water to mix and compress the gas and liquid by the mixing and compression means. A gas-liquid mixing device configured to diffuse the bubble water into the water from the bubble diffusion holes to mix and dissolve the ultrafine particles in the water.
【請求項2】 前記混合圧縮手段をロータに案内羽根を
有する回転羽根とし、軸流方向に気体を吸入して半径方
向に圧縮する圧縮手段としたことを特徴とする請求項1
に記載の気液混合装置。
2. The compressor according to claim 1, wherein said mixing and compressing means is a rotating blade having a guide blade on a rotor, and a compressing means for sucking gas in an axial flow direction and compressing in a radial direction.
3. The gas-liquid mixing device according to claim 1.
【請求項3】 前記混合圧縮手段をロータに案内羽根を
有する回転羽根とし、軸流方向に液体を吸入して半径方
向に圧縮し、回転羽根の液体が吸入される方向と反対側
背面から気を吸入し上記液体の圧縮流れに混合さ
せるようにしたことを特徴とする請求項1に記載の気液
混合装置。
3. The mixing / compressing means is a rotating blade having a guide blade in a rotor, and a liquid is sucked in an axial flow direction and compressed in a radial direction, and is opposite to a direction in which the liquid of the rotating blade is sucked.
Gas-liquid mixing device of claim 1, from the back of sucks air body is characterized in that so as to mix the compressed flow of the liquid.
【請求項4】 前記気液混合筒を薄い円筒板により形成
し、この混合筒を上部と下部の支持板間に取り付け、
上、下部の支持板を固定手段により固定支持し、上部の
支持板の下部に縁材を設けたことを特徴とする請求項1
に記載の気液混合装置。
4. The gas-liquid mixing cylinder is formed by a thin cylindrical plate, and the mixing cylinder is mounted between upper and lower support plates.
2. An upper and lower support plate is fixedly supported by a fixing means, and a rim is provided below the upper support plate.
3. The gas-liquid mixing device according to claim 1.
JP2000030850A 1999-07-30 2000-02-08 Gas-liquid mixing device Expired - Lifetime JP3318304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030850A JP3318304B2 (en) 1999-07-30 2000-02-08 Gas-liquid mixing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21707899 1999-07-30
JP11-217078 1999-07-30
JP2000030850A JP3318304B2 (en) 1999-07-30 2000-02-08 Gas-liquid mixing device

Publications (2)

Publication Number Publication Date
JP2001104764A JP2001104764A (en) 2001-04-17
JP3318304B2 true JP3318304B2 (en) 2002-08-26

Family

ID=26521800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030850A Expired - Lifetime JP3318304B2 (en) 1999-07-30 2000-02-08 Gas-liquid mixing device

Country Status (1)

Country Link
JP (1) JP3318304B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5311722B2 (en) * 2006-05-19 2013-10-09 株式会社ヤマザキ Gaseous water generator and humidifier
JP3958346B1 (en) * 2006-07-11 2007-08-15 南舘 誠 Microbubble generator
JP2008023460A (en) * 2006-07-21 2008-02-07 Ugajin Denki Kk Water purification method and apparatus using ozone gas
JP4968511B2 (en) * 2006-08-19 2012-07-04 株式会社 ナノプラネット研究所 Method for producing insulin-like growth factor-1 (IGF-1) in vivo
JP2011088024A (en) * 2008-02-08 2011-05-06 Akita Univ Apparatus for producing ozone-containing water, cleaning apparatus employing the same, method for producing ozone-containing water, and cleaning method
KR101213819B1 (en) 2012-06-07 2012-12-18 자일럼워터솔루션코리아 주식회사 Liquefaction pipe with improved effective mixing efficiency of ozone water
JP6077627B1 (en) * 2015-10-30 2017-02-08 昭義 毛利 Ultra fine bubble generation tool
EP3444024B1 (en) 2016-05-24 2021-07-21 Nissin Giken Co., Ltd Apparatus and method for producing fine air bubble mixed liquid
WO2018134887A1 (en) * 2017-01-17 2018-07-26 昭義 毛利 Ultrafine bubble generation tool
KR102125303B1 (en) * 2018-10-26 2020-06-22 정문환 Low power micro bubble generator
CN115636533B (en) * 2022-10-21 2023-11-07 无锡海拓环保装备科技有限公司 High-efficiency treatment process for low-energy-consumption electroplating wastewater
CN116173788B (en) * 2023-04-26 2023-07-25 广东欧莱氏生物科技有限公司 Mixing machine for food processing

Also Published As

Publication number Publication date
JP2001104764A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
US6357725B2 (en) Gas/liquid mixing device
JP3318304B2 (en) Gas-liquid mixing device
CN100360219C (en) Diffuser / emusifier
JP5028637B2 (en) Microbubble generator
US4732682A (en) Aeration apparatus and method
US6974546B2 (en) Diffuser/emulsifier for aquaculture applications
US6787036B2 (en) Method and apparatus for aerating wastewater
JP4525890B2 (en) Swivel type micro bubble generator
KR101015477B1 (en) Micro buble creating device
KR101192809B1 (en) Apparatus for Generating Water Containing Micro-Nano Bubbles
EP1001840A1 (en) Gas-liquid venturi mixer
JP2001276878A (en) Submerged aerating and stirring device
JP2002059186A (en) Water-jet type fine bubble generator
JPH11333491A (en) Microbubble jet water purifying apparatus
JP5079620B2 (en) Water treatment equipment
JP3747261B2 (en) Dispersion method of gas-liquid mixed fluid and dispersion device used in the method
US20090213684A1 (en) Apparatus for distribution of a gas into a body of liquid
JP2018020305A (en) Gas separator and gas dissolution device
JP2005218955A (en) Gas/liquid contactor
JP3354888B2 (en) Gas dissolution equipment
JPH09313908A (en) Fine foam forming device
CA2663861C (en) Apparatus for distribution of a gas into a body of liquid
JPH07155785A (en) High-speed rotary air self-feeding aeration device for water purification
JP2003340202A (en) Bubble flow accelerating device and form separation apparatus having the same
JP6345546B2 (en) Power-saving aeration stirrer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3318304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term