JP3317013B2 - Discharge pumped CO gas laser - Google Patents

Discharge pumped CO gas laser

Info

Publication number
JP3317013B2
JP3317013B2 JP7767594A JP7767594A JP3317013B2 JP 3317013 B2 JP3317013 B2 JP 3317013B2 JP 7767594 A JP7767594 A JP 7767594A JP 7767594 A JP7767594 A JP 7767594A JP 3317013 B2 JP3317013 B2 JP 3317013B2
Authority
JP
Japan
Prior art keywords
gas
laser
discharge
temperature
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7767594A
Other languages
Japanese (ja)
Other versions
JPH07283464A (en
Inventor
実 上原
祐孝 金沢
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP7767594A priority Critical patent/JP3317013B2/en
Publication of JPH07283464A publication Critical patent/JPH07283464A/en
Application granted granted Critical
Publication of JP3317013B2 publication Critical patent/JP3317013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、放電励起型COガスレ
ーザに係わり、特に、室温で高効率、高出力のCOガス
レーザを作動させる技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge excitation type CO gas laser.
More particularly, the present invention relates to a technology for operating a high-efficiency, high-output CO gas laser at room temperature.

【0002】[0002]

【従来の技術及びその課題】COガスレーザは、励起機
構上、高効率を得るため、低温で作動させることが必要
である。このため、特公平1−33956号公報の開
示技術のように、液体窒素やフレオン等の冷媒でレーザ
ガスの冷却を行なう方法や、文献:S.Kraus
and F.Maisenhaelder,Appl.
Physics,vol.22 421(1980)の
開示技術のように、レーザガスを超音速膨張させて冷却
する方法が考えられているが、これらの冷却装置は、い
ずれも大掛かりな冷凍機や圧縮機で構成されるために、
システムとしても変換効率が低くなる。
2. Description of the Related Art A CO gas laser needs to be operated at a low temperature in order to obtain high efficiency in terms of an excitation mechanism. For this reason, as disclosed in Japanese Patent Publication No. 1-33956, a method of cooling a laser gas with a coolant such as liquid nitrogen or freon, or the method described in S.K. Kraus
and F. Maisenhalder, Appl.
Physics, vol. 22 421 (1980), a method of cooling a laser gas by supersonic expansion is considered. However, since each of these cooling devices is composed of a large-scale refrigerator or compressor, ,
The conversion efficiency is low as a system.

【0003】一方、大掛かりな冷却装置を用いずに、C
Oガスレーザを発生させる方法として、特公平4−5
8717号公報の開示技術のように、同軸型の装置にX
eを添加したレーザガスを高速で放電部を通過させる方
法が提案されているが、Xeが希ガスであるために高価
となり、運転コストの面から実用性が損われる。また、
Xe以外に例えばHgを添加する方法も提案されている
が、この場合には、取り扱い性が損われ易い。
On the other hand, without using a large-scale cooling device, C
As a method for generating an O gas laser, Japanese Patent Publication No. 4-5
As disclosed in Japanese Patent No. 8717, a coaxial device is
A method has been proposed in which the laser gas to which e is added passes through the discharge portion at high speed. However, since Xe is a rare gas, it becomes expensive and the practicality is impaired in terms of operating costs. Also,
A method of adding, for example, Hg in addition to Xe has also been proposed, but in this case, handleability is likely to be impaired.

【0004】本発明は、これらの事情に鑑がみてなされ
たもので、レーザガスにXeやHgを添加することな
く、レーザガスを低温化する労力及び設備を省略し、高
効率、高出力のCOガスレーザを室温程度の温度雰囲気
で確実に発生させることを目的としている。
The present invention has been made in view of these circumstances, and eliminates the labor and equipment for lowering the temperature of a laser gas without adding Xe or Hg to the laser gas, thereby providing a high-efficiency, high-output CO gas laser. Is intended to be surely generated in a temperature atmosphere around room temperature.

【0005】[0005]

【課題を解決するための手段】これらの課題を解決する
ために以下の提案をしている。COガスを含有するレー
ザガスを挿通させるレーザガス流路と、該レーザガス流
路中のレーザガスの放電によりレーザ光を発生させる高
周波給電手段及び放電用電極とを有する放電励起型CO
ガスレーザにおいて、放電部の出口ガス温度を検出する
ガス温度検出手段と、該ガス温度検出手段の検出温度と
高周波給電手段の出力とに基づきレーザガス流路の風速
を設定する送風機とを具備する構成を採用する。レーザ
ガスは、成分中にXeやHgが添加されないもの、例え
ばN2 :16%,CO:5%,O2 :0.2〜0.4
%,He残部(モル分率)の成分を有するものが採用さ
れる。放電励起型COガスレーザを制御する方法とし
て、放電部の出口ガス温度を450K以下とする高周波
給電手段の出力とレーザガス流路の風速とが選択され
る。
To solve these problems, the following proposals have been made. A discharge excitation type CO having a laser gas passage through which a laser gas containing a CO gas is inserted, a high-frequency power supply means for generating laser light by discharging the laser gas in the laser gas passage, and a discharge electrode.
In the gas laser, a gas temperature detecting means for detecting an outlet gas temperature of the discharge unit, and a blower for setting the wind speed of the laser gas flow path based on the detected temperature of the gas temperature detecting means and the output of the high-frequency power supply means. adopt. Laser gas, which Xe or Hg is not added in the component, for example, N 2: 16%, CO: 5%, O 2: 0.2~0.4
%, And a component having He balance (molar fraction) are employed. As a method of controlling the discharge excitation type CO gas laser, the output of the high frequency power supply means for setting the outlet gas temperature of the discharge unit to 450 K or less and the wind speed of the laser gas flow path are selected.

【0006】[0006]

【作用】放電励起型COガスレーザでは、N2 ,CO,
2 ,He残部(モル分率)の混合成分のレーザガスを
封入して亜音速で循環させ、放電部における自己持続放
電によってレーザガスを励起することにより、レーザの
連続発振が行なわれる。励起エネルギ密度を大きくする
と、レーザ出力が増加するが、この際にはレーザ媒質で
あるレーザガスの温度上昇が起こり、温度上昇が大きく
なることによりレーザ利得が減少して、レーザ出力の飽
和あるいは減少を招く。レーザガスの流速増大によって
熱交換性を高めることができるため、ガス流速を大きく
して温度上昇を抑制することが重要である。レーザガス
の温度上昇(ΔT)は、次式で与えられる。 ΔT=(Pe −Pl )/(Cp ・ρ・u・W・H)……(式1) ただし、Pe :放電入力,Pl :レーザ出力,Cp :比
熱,ρ:ガス密度,u:ガス流速,W・H:ガス流れの
断面積である。これらのうち、Cp はガス成分に依存
し、ρはガス組成比に依存してガス圧力に比例する。W
・Hを不変とすれば、ΔTを抑えるためには、uを大き
く、つまり、ガス流速を大きくすることが有効である。
したがって、放電部の出口ガス温度の許容温度が、45
0K以下である場合には、その条件の下で、放電入力
(高周波給電手段の出力)と、レーザガス流路の風速と
を選択して、レーザ出力を所望の大きさとする制御がな
される。
In a discharge-pumped CO gas laser, N 2 , CO,
The continuous oscillation of the laser is performed by enclosing a laser gas of a mixed component of O 2 and He balance (molar fraction) and circulating the laser gas at a subsonic speed, and exciting the laser gas by self-sustained discharge in the discharge unit. When the excitation energy density is increased, the laser output increases. At this time, the temperature of the laser gas, which is the laser medium, rises, and the laser gain is reduced due to the increase in the temperature. Invite. Since the heat exchange property can be increased by increasing the flow rate of the laser gas, it is important to increase the gas flow rate to suppress the temperature rise. The temperature rise (ΔT) of the laser gas is given by the following equation. [Delta] T = however (P e -P l) / ( C p · ρ · u · W · H) ...... ( Equation 1), P e: discharge input, P l: laser output, C p: specific heat, [rho: Gas Density, u: gas flow velocity, W · H: cross-sectional area of gas flow. Of these, C p depends on the gas component, and ρ depends on the gas composition ratio and is proportional to the gas pressure. W
If H is unchanged, it is effective to increase u, that is, to increase the gas flow velocity, in order to suppress ΔT.
Therefore, the allowable temperature of the outlet gas temperature of the discharge unit is 45
If it is 0K or less, control is performed under such conditions to select the discharge input (output of the high-frequency power supply means) and the wind speed of the laser gas flow path to make the laser output a desired magnitude.

【0007】[0007]

【実施例】以下、本発明に係る放電励起型COガスレー
の一実施例について、図1ないし図5に基づき説明す
る。図1において、符号1はレーザガス流路(ガスダク
ト)、2は放電部、3A,3Bは放電用電極、4は高周
波給電手段(高周波電源部)、5はガス供給源、6はガ
ス排気系、7は送風機、8A,8Bは熱交換器、9はガ
ス温度検出手段(出口ガス温度測定部)、10は入口ガ
ス温度測定部、11は流量測定部である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a discharge excitation type CO gas laser according to the present invention will be described.
An example of The will be described with reference to FIGS. 1 to 5. In FIG. 1, reference numeral 1 denotes a laser gas flow path (gas duct), 2 denotes a discharge unit, 3A and 3B denote electrodes for discharge, 4 denotes a high-frequency power supply unit (high-frequency power supply unit), 5 denotes a gas supply source, 6 denotes a gas exhaust system, 7 is a blower, 8A and 8B are heat exchangers, 9 is a gas temperature detecting means (outlet gas temperature measuring section), 10 is an inlet gas temperature measuring section, and 11 is a flow rate measuring section.

【0008】前記レーザガス流路1には、放電部2と、
レーザガスを供給するためのガス供給源5と、不要ガス
を排出するためのガス排気系6と、レーザガスを駆動し
て循環させるための送風機7と、循環するレーザガスの
冷却を行なうための熱交換器8A,8Bと、ガス温度検
出手段9の測温部と、入口ガス温度測定部10の測温部
とが配される。
In the laser gas flow path 1, a discharge unit 2 is provided.
Gas supply source 5 for supplying laser gas, gas exhaust system 6 for discharging unnecessary gas, blower 7 for driving and circulating laser gas, and heat exchanger for cooling circulating laser gas 8A and 8B, a temperature measuring section of the gas temperature detecting means 9 and a temperature measuring section of the inlet gas temperature measuring section 10 are arranged.

【0009】前記放電部2には、レーザガス流路1の隔
壁等に対して電気絶縁状態に、対をなす放電用電極3
A,3Bが配され、放電用電極3A,3Bの対向方向
が、レーザガス流路1に対して直交状態となるように設
定される。
The discharge portion 2 is provided with a pair of discharge electrodes 3 in an electrically insulated state with respect to the partition walls and the like of the laser gas flow path 1.
A, 3B are arranged, and the facing direction of the discharge electrodes 3A, 3B is set so as to be orthogonal to the laser gas flow path 1.

【0010】なお、レーザ光軸は、レーザガス流路1の
方向と放電用電極3A,3Bの対向方向とに対して相互
に直交状態となるように、つまり、三軸直交型に設定さ
れる。
The laser optical axis is set so as to be orthogonal to the direction of the laser gas flow path 1 and the direction in which the discharge electrodes 3A and 3B face each other, that is, is set to be a three-axis orthogonal type.

【0011】前記高周波給電手段4にあっては、1メガ
ヘルツないし250メガヘルツの高周波を放電用電極3
A,3Bに供給(給電)して、放電を生じさせるもので
ある。該高周波給電手段4は、いわゆるRF発振器(r
adio frequency発振器)等が適用され
る。
In the high-frequency power supply means 4, a high frequency of 1 MHz to 250 MHz is applied to the discharge electrode 3.
A and 3B are supplied (supplied) to cause discharge. The high-frequency power supply means 4 includes a so-called RF oscillator (r
For example, an audio frequency oscillator is applied.

【0012】前記ガス供給源5は、XeやHgを添加し
ていない所要成分のレーザガス、例えばN2 :16%,
CO:5%,O2 :0.2〜0.4%,He残部(モル
分率)の成分を有するものを供給する。
The gas supply source 5 is a laser gas of a required component to which Xe or Hg is not added, for example, N 2 : 16%,
CO: 5%, O 2: 0.2~0.4%, and supplies those having components of He balance (mole fraction).

【0013】前記送風機7は、高周波給電手段4及びガ
ス温度検出手段9に関連づけて配され、レーザガス流路
1を挿通するレーザガスの風速(風量)を調整し得るも
のが適用される。
The blower 7 is arranged in association with the high-frequency power supply means 4 and the gas temperature detecting means 9 and can adjust the wind speed (air volume) of the laser gas passing through the laser gas flow path 1.

【0014】前記ガス温度検出手段9は、その感温部が
放電部2の出口ガス温度を計測し得るものとされ、後述
するように高周波給電手段4の出力と関わって送風機7
の運転制御を行なうものが適用される。
The gas temperature detecting means 9 has a temperature sensing part capable of measuring the outlet gas temperature of the discharge part 2, and is connected to the output of the high frequency power supply means 4 as will be described later.
The one that performs the operation control of is applied.

【0015】このように構成されている放電励起型CO
ガスレーザにあっては、ガス排気系6の作動によって、
レーザガス流路1の排気をした後に、ガス供給源5によ
り前述の所要成分のレーザガスを供給して充満状態と
し、送風機7によるレーザガスの循環、熱交換器8A,
8Bによる室温近傍までの冷却をしておいて、高周波給
電手段4の作動により放電用電極3A,3Bの間に電位
差を付与し、対をなす放電用電極3A,3Bに、例えば
13.56メガヘルツの高周波電流を流す放電を行な
い、前述のレーザガスの励起を行なう。
[0015] The discharge-excited CO thus constructed
In the case of a gas laser, the operation of the gas exhaust system 6
After exhausting the laser gas flow path 1, the laser gas of the above-described required component is supplied from the gas supply source 5 to a full state, the laser gas is circulated by the blower 7, the heat exchanger 8A,
8B, the electric power is supplied to the discharge electrodes 3A and 3B by the operation of the high-frequency power supply means 4 so that a potential difference between the discharge electrodes 3A and 3B is 13.56 MHz, for example. Is performed to flow the high-frequency current to excite the laser gas.

【0016】〔COガスレーザの室温発振実験例〕ガス
温度:293Kの室温雰囲気でCOガスレーザを発振さ
せ、(式1)に基づいて、放電入力(以下、高周波入力
電力に代える)、レーザ出力、ガス流速を変数とした場
合の相互関係について検討した。その結果を図2ないし
図5に示す。ただし、レーザ発振条件を下記のように設
定した。 ガス組成(He/N2 /CO/O2 ):78.8/16/5/
0.2(モル分率) 動作ガス圧力:80hPa 高周波電流:13.56メガヘルツ Tg:放電部入口におけるガス温度:293K
[Experimental Example of CO Gas Laser Room Temperature Oscillation] A CO gas laser was oscillated in a room temperature atmosphere of gas temperature: 293 K, and based on (Equation 1), a discharge input (hereinafter referred to as high frequency input power), a laser output and a gas The relationship between flow velocity and the variables was discussed. The results are shown in FIGS. However, the laser oscillation conditions were set as follows. Gas composition (He / N 2 / CO / O 2 ): 78.8 / 16/5 /
0.2 (mole fraction) Operating gas pressure: 80 hPa High frequency current: 13.56 MHz Tg: gas temperature at the discharge section inlet: 293K

【0017】図2は高周波入力電力とレーザ出力との関
係、図3は高周波入力電力と放電部の出口ガス温度との
関係、図4は放電部のガス流速と高周波入力電力との関
係、図5は放電部のガス流量と高周波入力電力との関係
をそれぞれ示している。図2ないし図5より、以下のよ
うな結果が得られた。 a) 図2例のように、高周波入力電力を大きくするこ
とによりレーザー出力が増大するものの、レーザー出力
が次第に飽和及び減少する傾向がある。 b) ガス流速を大きくすると、高周波入力電力に対応
してレーザー出力が増大し、ガス流速37m/秒では高
周波入力電力6.3kWでレーザー出力650Wが得ら
れた。 c) 図3例のように、高周波入力電力を大きくすると
出口ガス温度が高くなるものの、ガス流速を大きくする
ことにより出口ガス温度を抑制することができ、高周波
入力電力6.3kWでは440Kとなった。 d) 図4例のように、ガス流速を大きくすることによ
って、高周波入力電力を大きくすることができ、概略比
例関係が成立する。 e) 図5例のように、ガス流量を多くすることによっ
ても、高周波入力電力を大きくすることができ、この場
合も、概略比例関係が成立する。 f) 送風機7の能力が十分である場合には、ガス流速
及びガス流量を大きくして、高周波入力電力を増やすこ
とにより、比較的容易にレーザー出力を大きくすること
ができる。その場合、図2及び図3の比較より、出口ガ
ス温度が、400〜450K以下であれば、高周波入力
電力の増加によりレーザー出力を大きくすることができ
るが、出口ガス温度がその限度を超えると、レーザー出
力が不安定になる。 g) 比較的温度の高い296Kにおいても、高周波入
力電力6.3kWでレーザー出力650Wの高出力を得
ることができる。 h) この結果は、前述した特公平4−58717号
公報の開示技術におけるレーザ出力が略32.5Wであ
るのと比較して、20倍の大出力である。 i) 送風機7の能力を高め得る場合や、低温冷媒が得
られる環境にあっては、さらに高出力化を図ることがで
きる。
FIG. 2 shows the relationship between the high-frequency input power and the laser output, FIG. 3 shows the relationship between the high-frequency input power and the outlet gas temperature of the discharge section, and FIG. 4 shows the relationship between the gas flow rate of the discharge section and the high-frequency input power. Reference numeral 5 indicates the relationship between the gas flow rate of the discharge unit and the high-frequency input power. 2 to 5, the following results were obtained. a) As shown in the example of FIG. 2, although the laser output is increased by increasing the high-frequency input power, the laser output tends to gradually saturate and decrease. b) When the gas flow rate was increased, the laser output was increased corresponding to the high-frequency input power. At a gas flow rate of 37 m / sec, a laser output of 650 W was obtained at a high-frequency input power of 6.3 kW. c) As shown in the example of FIG. 3, although the outlet gas temperature increases when the high-frequency input power is increased, the outlet gas temperature can be suppressed by increasing the gas flow velocity. Was. d) As shown in the example of FIG. 4, by increasing the gas flow velocity, the high-frequency input power can be increased, and a roughly proportional relationship is established. e) The high-frequency input power can be increased by increasing the gas flow rate as in the example in FIG. 5, and also in this case, a roughly proportional relationship is established. f) When the capacity of the blower 7 is sufficient, it is possible to relatively easily increase the laser output by increasing the gas flow rate and the gas flow rate and increasing the high-frequency input power. In this case, from the comparison between FIG. 2 and FIG. 3, if the outlet gas temperature is 400 to 450 K or lower, the laser output can be increased by increasing the high-frequency input power. , The laser output becomes unstable. g) Even at a relatively high temperature of 296 K, a high output of 650 W of laser output can be obtained with a high frequency input power of 6.3 kW. h) This result is 20 times as large as the laser output in the above-mentioned Japanese Patent Publication No. 4-58717, which is about 32.5 W. i) In the case where the capacity of the blower 7 can be increased or in an environment where a low-temperature refrigerant can be obtained, it is possible to further increase the output.

【0018】[0018]

【発明の効果】本発明に係る放電励起型COガスレーザ
によれば、以下のような効果を奏する。 (1) 放電部の出口ガス温度を検出して、検出温度と
高周波給電手段の出力とに基づきレーザガス流路の風速
を設定することにより、室温程度の温度雰囲気でCOガ
スレーザを確実に発生させることができる。 (2) ガス流速を高めることにより、レーザガスにX
eやHgを添加することなく、高効率、高出力のCOガ
スレーザを比較的容易に発生させることができる。 (3) 上記により、レーザガスを低温化するための労
力及び設備を省略して、実用性を向上させることができ
る。
According to the discharge excitation type CO gas laser according to the present invention, the following effects can be obtained. (1) By reliably detecting the outlet gas temperature of the discharge unit and setting the wind speed of the laser gas flow path based on the detected temperature and the output of the high-frequency power supply means, a CO gas laser can be reliably generated in a temperature atmosphere around room temperature. Can be. (2) By increasing the gas flow velocity, X
A CO gas laser with high efficiency and high output can be generated relatively easily without adding e or Hg. (3) As described above, labor and equipment for lowering the temperature of the laser gas can be omitted, and the practicality can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る放電励起型COガスレーザの一実
施例を示すブロック図を併記した正断面図である。
FIG. 1 is a front sectional view, together with a block diagram, showing an embodiment of a discharge excitation type CO gas laser according to the present invention.

【図2】図1例のCOガスレーザの室温発振実験例にお
ける高周波入力電力とレーザ出力との関係曲線図であ
る。
FIG. 2 is a relationship curve diagram between a high-frequency input power and a laser output in a room temperature oscillation experiment example of the CO gas laser of FIG. 1;

【図3】図1例のCOガスレーザの室温発振実験例にお
ける高周波入力電力と出口ガス温度との関係曲線図であ
る。
3 is a graph showing the relationship between high-frequency input power and outlet gas temperature in a room temperature oscillation test example of the CO gas laser shown in FIG. 1;

【図4】図1例のCOガスレーザの室温発振実験例にお
けるガス流速と高周波入力電力との関係曲線図である。
4 is a graph showing a relationship between a gas flow rate and a high-frequency input power in a room temperature oscillation experiment example of the CO gas laser shown in FIG. 1;

【図5】図1例のCOガスレーザの室温発振実験例にお
けるガス流量と高周波入力電力との関係曲線図である。
5 is a graph showing the relationship between the gas flow rate and the high-frequency input power in the experimental example of room temperature oscillation of the CO gas laser shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1 レーザガス流路(ガスダクト) 2 放電部 3A,3B 放電用電極 4 高周波給電手段(高周波電源部) 5 ガス供給源 6 ガス排気系 7 送風機 8A,8B 熱交換器 9 ガス温度検出手段(出口ガス温度測定部) 10 入口ガス温度測定部 11 流量測定部 DESCRIPTION OF SYMBOLS 1 Laser gas flow path (gas duct) 2 Discharge part 3A, 3B Discharge electrode 4 High frequency power supply means (high frequency power supply part) 5 Gas supply source 6 Gas exhaust system 7 Blower 8A, 8B heat exchanger 9 Gas temperature detection means (Outlet gas temperature Measuring section) 10 Inlet gas temperature measuring section 11 Flow rate measuring section

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01S 3/03 - 3/038 H01S 3/097 - 3/0977 H01S 3/104 H01S 3/134 H01S 3/22 H01S 3/041 Continued on the front page (58) Fields investigated (Int.Cl. 7 , DB name) H01S 3/03-3/038 H01S 3/097-3/0977 H01S 3/104 H01S 3/134 H01S 3/22 H01S 3 / 041

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 COガスを含有するレーザガスを挿通さ
せる環状のレーザガス流路(1)と、該レーザガス流路
の一部に挟むように設けられた1対の放電用電極(3
A,3B)と、該放電用電極(3A,3B)に高周波電
力を供給する高周波給電手段(4)とを備え、前記放電
用電極(3A,3B)においてレーザガスを放電させて
レーザ光を発生させる放電励起型COガスレーザであっ
て、 放電部(2)の出口ガス温度を検出するガス温度検出手
段(9)と、前記高周波電力に応じてガス温度検出手段の検出温度が
400K〜450Kとなるようにレーザガス流路中にお
けるレーザガスの流速を設定する送風機(7)と、 放電部(2)の入口ガス温度が室温となるようにレーザ
ガスを冷却する冷却装置(8A,8B)と を具備するこ
とを特徴とする放電励起型COガスレーザ。
An annular laser gas flow path (1) through which a laser gas containing a CO gas is inserted, and the laser gas flow path
A pair of discharge electrodes (3
A, 3B) and the discharge electrodes (3A, 3B).
A high-frequency power supply means (4) for supplying power;
Discharge the laser gas at the electrodes (3A, 3B)
A discharge-excited CO gas laser for generating a laser beam , wherein a gas temperature detecting means (9) for detecting an outlet gas temperature of a discharge unit (2) and a detected temperature of the gas temperature detecting means in accordance with the high-frequency power.
400 K to 450 K in the laser gas flow path.
Blower (7) for setting the flow rate of the laser gas to be applied, and the laser so that the inlet gas temperature of the discharge part (2) becomes room temperature.
A discharge-excited CO gas laser comprising: a cooling device (8A, 8B) for cooling a gas.
JP7767594A 1994-04-15 1994-04-15 Discharge pumped CO gas laser Expired - Fee Related JP3317013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7767594A JP3317013B2 (en) 1994-04-15 1994-04-15 Discharge pumped CO gas laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7767594A JP3317013B2 (en) 1994-04-15 1994-04-15 Discharge pumped CO gas laser

Publications (2)

Publication Number Publication Date
JPH07283464A JPH07283464A (en) 1995-10-27
JP3317013B2 true JP3317013B2 (en) 2002-08-19

Family

ID=13640465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7767594A Expired - Fee Related JP3317013B2 (en) 1994-04-15 1994-04-15 Discharge pumped CO gas laser

Country Status (1)

Country Link
JP (1) JP3317013B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7518787B2 (en) * 2006-06-14 2009-04-14 Cymer, Inc. Drive laser for EUV light source
CN105745796B (en) 2013-12-17 2018-11-06 三菱电机株式会社 Quadrature excitation type gas laser oscillation device

Also Published As

Publication number Publication date
JPH07283464A (en) 1995-10-27

Similar Documents

Publication Publication Date Title
JP3246877B2 (en) laser
US6636545B2 (en) Supersonic and subsonic laser with radio frequency excitation
JP3317013B2 (en) Discharge pumped CO gas laser
US4550409A (en) Induced flow gas transport laser
JPH0738186A (en) Discharge excitation co gas laser and its excitation method
Sato et al. High‐power closed‐cycle subsonic cw CO laser excited by a transverse self‐sustained discharge
JP3846247B2 (en) Gas laser oscillator
EP0565262A1 (en) Gas laser device
JPH0722714A (en) Laser gas and discharge excitation type co gas laser
Kasamatsu et al. Characteristics of two cathode systems for CW transversely excited CO 2 lasers
JPH07227688A (en) Gas laser beam machine
Averin et al. Continuous-wave industrial electron-beam-controlled CO laser of 10 kW output power
Reilly High-power electric discharge lasers
JPS6420682A (en) Gas laser apparatus excited by high frequency discharge
Lancashire et al. The Nasa High-Power Carbon Dioxide Laser-A Versatile Tool For Laser Applications
JP3090796B2 (en) Excimer laser oscillation device
JP2980381B2 (en) Laser equipment
Shimizu et al. Improved Performance of Fast-Axial-Flow, RF-Discharge-Excited, Room-Temperature CO Laser with Kr-Added Mixtures
JPS61229383A (en) Gas fluid laser oscillator
RU2153744C2 (en) Gaseous-discharge co laser
JPH0426175A (en) Operating method of gas laser oscillation apparatus
JP3259161B2 (en) Gas laser oscillation device
JPH05299730A (en) Laser apparatus
Shimizu et al. Optimization of operating conditions for a fast-axial-flow, radio frequency discharge-excited, room-temperature CO laser
JPS6235589A (en) Laser oscillator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020514

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees