JP3315893B2 - Electromagnetic drive for optical deflection device - Google Patents

Electromagnetic drive for optical deflection device

Info

Publication number
JP3315893B2
JP3315893B2 JP13689397A JP13689397A JP3315893B2 JP 3315893 B2 JP3315893 B2 JP 3315893B2 JP 13689397 A JP13689397 A JP 13689397A JP 13689397 A JP13689397 A JP 13689397A JP 3315893 B2 JP3315893 B2 JP 3315893B2
Authority
JP
Japan
Prior art keywords
pair
axis
coils
permanent magnet
leaf spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13689397A
Other languages
Japanese (ja)
Other versions
JPH10333071A (en
Inventor
聡弘 田中
政孝 西山
Original Assignee
旭光学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭光学工業株式会社 filed Critical 旭光学工業株式会社
Priority to JP13689397A priority Critical patent/JP3315893B2/en
Priority to DE19823725A priority patent/DE19823725B4/en
Priority to US09/085,232 priority patent/US6266300B1/en
Priority to GB9811392A priority patent/GB2327131B/en
Priority to GB0129281A priority patent/GB2367112B/en
Publication of JPH10333071A publication Critical patent/JPH10333071A/en
Application granted granted Critical
Publication of JP3315893B2 publication Critical patent/JP3315893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は、ミラー、プリズム等の光偏向手
段を電磁作用により駆動して偏向させる光学偏向装置の
電磁駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic driving device of an optical deflecting device for deflecting a light deflecting means such as a mirror and a prism by driving it by electromagnetic action.

【0002】[0002]

【従来の技術及びその問題点】この種の光学偏向装置の
電磁駆動装置として、例えばガルバノミラーが広く知ら
れている。このガルバノミラーは、ヨーク部材に弾性手
段を介して回動可能にミラーを支持し、このミラー(可
動部)側にコイルを、ヨーク部材側に一対の半割永久磁
石セグメントをそれぞれ固定してなっている。コイルに
正逆に電流を流すと、永久磁石との電磁作用により、ミ
ラーが回動し、該ミラーに入射する光ビームが偏向され
る。
2. Description of the Related Art Galvano mirrors, for example, are widely known as electromagnetic driving devices for this type of optical deflection device. In this galvanometer mirror, a mirror is rotatably supported on a yoke member via elastic means, a coil is fixed on the mirror (movable portion) side, and a pair of half permanent magnet segments are fixed on the yoke member side. ing. When a current is applied to the coil in the opposite direction, the mirror rotates due to the electromagnetic action with the permanent magnet, and the light beam incident on the mirror is deflected.

【0003】このような電磁駆動光学偏向装置は、小型
化と一層の高速駆動とが要求されている。駆動速度は、
基本的に、永久磁石の磁束密度Bとコイルの長さLとの
積B・Lに依存する。永久磁石の磁束密度(大きさ)
は、装置全体の小型化の要求によって限界があるから、
コイル推力を大きくして駆動速度を上げるには、コイル
の有効長を長くすることが好ましい。ところが、細い線
を用いてコイル有効長を長くすると、抵抗、コイルイン
ダクタンスが増加し、電流が流れにくくなる。その結
果、高速駆動が得られない。また、コイルを分割するこ
とで抵抗を小さくすると、コイルの相互インダクタンス
が大きくなり同様に高速駆動が得られない。また、飽和
磁束を大きくするために、ヨーク部材も大型化せざるを
得ない。
[0003] Such an electromagnetically driven optical deflector is required to be downsized and driven at a higher speed. The driving speed is
Basically, it depends on the product B · L of the magnetic flux density B of the permanent magnet and the length L of the coil. Magnetic flux density (size) of permanent magnet
Is limited by the demand for miniaturization of the entire device,
In order to increase the driving speed by increasing the coil thrust, it is preferable to increase the effective length of the coil. However, if the effective length of the coil is increased by using a thin wire, the resistance and the coil inductance increase, making it difficult for the current to flow. As a result, high-speed driving cannot be obtained. Further, if the resistance is reduced by dividing the coil, the mutual inductance of the coil increases, and similarly high-speed driving cannot be obtained. Further, in order to increase the saturation magnetic flux, the size of the yoke member must be increased.

【0004】[0004]

【発明の目的】本発明は、従来装置についての以上の問
題意識に基づき、小型化と高速駆動との両者の要求に応
えることができる光学偏向装置の電磁駆動装置を得るこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an electromagnetic driving device for an optical deflection device which can meet the requirements of both miniaturization and high-speed driving, based on the above awareness of the problems with the conventional device.

【0005】[0005]

【発明の概要】本発明は、可動部に固定するコイルを一
対に分割した上で、流す電流の方向を逆にすれば、コイ
ルインダクタンスを小さくできること、及び一対のコイ
ルに流す電流の方向を逆にしたとき、可動部に同じ方向
の回動推力を与えるためには、一対のコイルに対応させ
て永久磁石も分割してその極性を逆にすればよいこと、
に着眼してなされたものである。
SUMMARY OF THE INVENTION According to the present invention, by dividing a coil fixed to a movable portion into a pair and reversing the direction of a current flowing therethrough, the coil inductance can be reduced, and the direction of a current flowing through a pair of coils is reversed. In order to apply a rotational thrust in the same direction to the movable part, the permanent magnets may be divided corresponding to the pair of coils and their polarities may be reversed.
It was made with an eye on.

【0006】本発明は、ヨーク部材に対し、弾性手段を
介して、弾性主軸線を中心に回動可能に可動部を軸支さ
せ、この可動部に光ビームを偏向させるための光偏向手
段を搭載し、可動部とヨーク部材にそれぞれ、電磁作用
により該可動部に弾性主軸線を中心とする正逆の回動運
動を生じさせるコイルと一対の半割永久磁石セグメント
とを固定してなる光学偏向装置の電磁駆動装置におい
て、可動部に、弾性主軸線を含みコイルの中心軸と直交
する平面の前後に位置させて、一対の互いに独立したコ
イルを固定し、ヨーク部材に、この一対のコイルに対応
させて、かつ弾性主軸線を含みコイルの中心軸と直交す
る平面の前後に位置させてそれぞれ、一対ずつの半割永
久磁石セグメントを固定するとともに、この前後の一対
ずつの半割永久磁石セグメントの極性をそれぞれ互いに
異ならせ(反対にし)、一対のコイルに、可動部の駆動
時に、互いに反対方向の電流を流すことを特徴としてい
る。光偏向手段は、例えば、反射型のミラー、あるいは
透過型のプリズムから構成することができる。
According to the present invention, there is provided an optical deflecting means for pivotally supporting a movable portion about an elastic main axis with respect to a yoke member via an elastic means, and deflecting a light beam to the movable portion. An optical element comprising a coil and a pair of half-permanent permanent magnet segments which are mounted and fixed to a movable portion and a yoke member, respectively, to cause the movable portion to perform forward and reverse rotational movement about an elastic main axis by electromagnetic action. In the electromagnetic drive device of the deflecting device, a pair of mutually independent coils is fixed to a movable portion, before and after a plane including an elastic main axis and orthogonal to a central axis of the coil, and the pair of coils is fixed to a yoke member. , And a pair of half permanent magnet segments are fixed at the front and back of a plane including the elastic main axis and orthogonal to the center axis of the coil, respectively, and a pair of half permanent magnets before and after the pair are fixed. Segment, respectively made different from each other polarity (the opposite), the pair of coils, at the time of driving the movable portion, and wherein the flowing currents in opposite directions to each other. The light deflecting means can be composed of, for example, a reflection type mirror or a transmission type prism.

【0007】[0007]

【発明の実施の形態】図1ないし図3は、本発明による
電磁駆動光学偏向装置の基本構成を示す図である。磁性
材料からなるヨーク部材(ベース部材)10は、筒状部
10Cを有している。この筒状部10C内に位置する筒
状の可動部12は、光偏向手段として、鎖線で示す反射
ミラー12Rまたはプリズム12Bを有している。反射
ミラー12Rは、反射型の光偏向部材の例であり、プリ
ズム12Bは透過型の光偏向部材の例である。反射ミラ
ー12Rで反射する光ビームの例をL1で、プリズム1
2Bを透過する光ビームの例をL2で示した。
1 to 3 show the basic structure of an electromagnetically driven optical deflection device according to the present invention. The yoke member (base member) 10 made of a magnetic material has a cylindrical portion 10C. The cylindrical movable portion 12 located inside the cylindrical portion 10C has a reflecting mirror 12R or a prism 12B indicated by a chain line as a light deflecting means. The reflection mirror 12R is an example of a reflection type light deflection member, and the prism 12B is an example of a transmission type light deflection member. An example of the light beam reflected by the reflection mirror 12R is L1, and the prism 1
An example of the light beam transmitted through 2B is indicated by L2.

【0008】可動部12は、筒状部10Cと可動部12
とを接続する弾性手段22を介して、弾性主軸線Z(Z
軸)回りに弾性的に回動自在に支持されている。図で
は、弾性手段22を最も簡単に太線で描いたが、可動部
12をZ軸回りに弾性的に回動自在に支持できるもので
あれば、その形態は問わない。
[0008] The movable portion 12 includes a cylindrical portion 10C and the movable portion 12.
And an elastic main axis Z (Z
It is supported so as to be resiliently rotatable around an axis. In the figure, the elastic means 22 is drawn with a bold line in the simplest manner, but the form is not limited as long as the movable part 12 can be elastically supported to be rotatable around the Z axis.

【0009】可動部12の外周面には、一対の互いに独
立したコイル12C、12Dが固定されている。このコ
イル12Cと12Dは、該コイル12C、12Dの中心
軸と直交し、Z軸を含む平面の前後に対称に配置したも
ので、同一のコイルからなっている。
A pair of independent coils 12C and 12D are fixed to the outer peripheral surface of the movable portion 12. The coils 12C and 12D are orthogonal to the central axes of the coils 12C and 12D, are symmetrically arranged before and after a plane including the Z axis, and are made of the same coil.

【0010】一方、ヨーク部材10の筒状部10Cの内
面には、このコイル12Cと12Dに対応(対向)させ
て、かつコイル12C、12Dの中心軸と直交し、Z軸
を含む平面の前後に位置させてそれぞれ、一対ずつの半
環状の半割永久磁石セグメント18と20が固定されて
いる。一対の半割永久磁石セグメント18は、それぞれ
互いに極性が逆であり、一対の半割永久磁石セグメント
20も互いに極性が逆である。すなわち永久磁石セグメ
ント18と20はそれぞれ、その一方が内周側がN極で
外周側がS極、他方は内周側が極で外周側が極であ
る。そして、この半割永久磁石セグメントの極性は、コ
イル12C、12Dの中心軸と直交しZ軸を含む平面の
前後に位置する半割永久磁石セグメント18と20間で
も互いに逆になるように分極処理されている。
On the other hand, on the inner surface of the cylindrical portion 10C of the yoke member 10, the coils 12C and 12D correspond to (oppose) and are perpendicular to the center axes of the coils 12C and 12D, and are located in front of and behind a plane including the Z axis. , A pair of semi-circular half permanent magnet segments 18 and 20 are fixed respectively. The pair of half permanent magnet segments 18 have polarities opposite to each other, and the pair of half permanent magnet segments 20 also have polarities opposite to each other. That is, one of the permanent magnet segments 18 and 20 has an N pole on the inner circumference side and an S pole on the outer circumference side, and the other has an S pole on the inner circumference side and an N pole on the outer circumference side. The polarities of the half permanent magnet segments are reversed so that the polarities of the half permanent magnet segments 18 and 20 that are orthogonal to the central axes of the coils 12C and 12D and located before and after a plane including the Z axis are opposite to each other. Have been.

【0011】上記構成の本装置は、可動部12をZ軸を
中心に正逆に回転駆動するとき、コイル12Cと12D
に、互いに反対方向に電流を流す。図3は、半割永久磁
石セグメント18と20の極性が図2の場合に、コイル
12Cと12Dに流す電流の方向と、可動部12に生じ
る回動推力Fの一例を示している。勿論、コイル12C
と12Dに流す電流の方向を互いに逆にすれば、図3と
は逆の方向の回動推力Fが生じる。
When the movable unit 12 is driven to rotate forward and backward around the Z axis, the coils 12C and 12D
Currents flow in opposite directions. FIG. 3 shows an example of the direction of the current flowing through the coils 12C and 12D and the rotational thrust F generated in the movable portion 12 when the polarities of the half permanent magnet segments 18 and 20 are as shown in FIG. Of course, coil 12C
If the directions of the currents flowing through the first and second directions are reversed, a rotational thrust F in the direction opposite to that in FIG. 3 is generated.

【0012】このように一対のコイル12Cと12Dに
互いに反対方向の電流を流すと、コイルの相互インダク
タンスが小さくなる。また半割永久磁石セグメント18
と20の極性が互いに逆であると、半割永久磁石セグメ
ント18、20及びヨーク部材10によって構成される
磁気回路が飽和しにくくなり、ヨーク部材10(筒状部
10C)の薄型化が可能である。
When currents in opposite directions flow through the pair of coils 12C and 12D, the mutual inductance of the coils decreases. Also, the half permanent magnet segment 18
If the polarities of the yoke member 10 and the yoke member 20 are opposite to each other, the magnetic circuit formed by the half permanent magnet segments 18 and 20 and the yoke member 10 is less likely to be saturated, and the yoke member 10 (cylindrical portion 10C) can be made thinner. is there.

【0013】次に、本発明をより具体化した好適な実施
形態を図4ないし図9について説明する。ベース部材1
0は、基台部10Aと、この基台部10Aから一体的に
直立したフレーム部10Bとから成る。ベース部材10
は本光学偏向装置が光学系の一構成要素として組み込ま
れる際に取付部として機能する。フレーム部10Bは円
形開口部10Cを郭成するような環状形態とされる。短
円筒形の可動部12は、フレーム部10Bの円形開口部
(筒状部)10C内に配置され、弾性手段22を介して
ベース部材10のフレーム部10Bによって支持され
る。
Next, a preferred embodiment of the present invention will be described with reference to FIGS. Base member 1
Reference numeral 0 denotes a base portion 10A and a frame portion 10B that stands upright from the base portion 10A. Base member 10
Functions as a mounting part when the optical deflecting device is incorporated as a component of the optical system. The frame portion 10B has an annular shape defining the circular opening 10C. The short cylindrical movable part 12 is arranged in a circular opening (cylindrical part) 10C of the frame part 10B, and is supported by the frame part 10B of the base member 10 via the elastic means 22.

【0014】ベース部材10の前方側には略矩形状カバ
ー部材14が適宜装着され、このカバー部材14の中央
には円形開口部14Aが形成される。一方、ベース部材
10の後方側には永久磁石用ホルダ部材16が適宜装着
され、この永久磁石用ホルダ部材16は短円筒形の形態
を持つホルダ部16Aと、このホルダ部16Aから一体
的に直径方向に張り出た一対の取付板16Bとから成
る。ホルダ部16A内には、コイル12C、12Dの中
心軸と直交しZ軸を含む平面の前後に位置させて設けた
一対ずつの半割永久磁石セグメント18及び20が収容
されている。これらの半割永久磁石セグメント18及び
20に対する分極処理は、図2で説明したのと同様であ
る。なお、図4では、一対のセグメント形永久磁石20
の一方だけが描かれている。
A substantially rectangular cover member 14 is appropriately mounted on the front side of the base member 10, and a circular opening 14A is formed in the center of the cover member 14. On the other hand, on the rear side of the base member 10, a permanent magnet holder member 16 is appropriately mounted. The permanent magnet holder member 16 has a holder portion 16A having a short cylindrical shape and a diameter integrally formed from the holder portion 16A. And a pair of mounting plates 16B projecting in the direction. A pair of half permanent magnet segments 18 and 20 are provided in the holder portion 16A, and each of the permanent magnet segments 18 and 20 is provided at a position perpendicular to the center axis of the coils 12C and 12D and before and after a plane including the Z axis. The polarization process for these half permanent magnet segments 18 and 20 is the same as that described with reference to FIG. In FIG. 4, a pair of segment-shaped permanent magnets 20 is shown.
Only one of them is drawn.

【0015】一対の取付板16Bは永久磁石用ホルダ部
材16をベース部材10のフレーム部10Bに装着する
ために使用され、その装着時ホルダ部材16Aはフレー
ム部10の円形開口部10C内に収容されると共に二対
の半割永久磁石セグメント18及び20の周囲を覆うよ
うに配置される。なお、カバー部材14及びホルダ部材
16については好ましくはベース部材10と同じ材料で
形成される。
A pair of mounting plates 16B are used to mount the permanent magnet holder member 16 to the frame portion 10B of the base member 10. At the time of mounting, the holder member 16A is housed in the circular opening 10C of the frame portion 10. And is arranged so as to cover the periphery of the two pairs of half permanent magnet segments 18 and 20. Note that the cover member 14 and the holder member 16 are preferably formed of the same material as the base member 10.

【0016】図5を参照すると、可動部12が分解斜視
図として拡大されて図示され、この可動部12は短円筒
形の形態を持つ光学偏向素子用ホルダ部材12Aと、こ
の光学偏向素子用ホルダ部材12A内に装着されたプリ
ズム12Bとから成る。なお、本実施形態では、光学偏
向素子としてプリズム12Bが使用されているが、その
他の光学偏向素子としては、例えば光反射用ミラーや光
ビーム偏向用ホログラム等が挙げられる。
Referring to FIG. 5, the movable portion 12 is shown in an enlarged exploded perspective view. The movable portion 12 has an optical deflecting element holder member 12A having a short cylindrical shape, and the optical deflecting element holder. And a prism 12B mounted in the member 12A. In this embodiment, the prism 12B is used as an optical deflecting element, but other optical deflecting elements include, for example, a light reflecting mirror and a light beam deflecting hologram.

【0017】図5に示すように、光学偏向素子用ホルダ
部材12Aは多角形の形態を持つ中央フランジ部12A
1 と、この中央フランジ部12A1 の両側から突出する
カラー部12A2 及び12A3 を包含する。可動部12
は更に光学ホルダ部材12Aのカラー部12A2 及び1
2A3 のそれぞれに装着されたコイル12C及び12D
を具備している。これらコイル12C及び12Dは、互
いに独立していて別個に電流を流すことができ、前述の
ように、半割永久磁石セグメント18及び20と協働し
て可動部12を駆動させるための駆動機構として機能す
る。なお、図5では、コイル12C及び12Dは環状リ
ング形として図示されているが、各コイル12C、12
Dは導線を環状リング形に巻回することにより得られる
ものであり、これらのコイル12C、12Dへの給電線
の図示は省かれている。
As shown in FIG. 5, the optical deflection element holder member 12A has a polygonal central flange portion 12A.
Include 1, the collar portion 12A 2 and 12A 3 projecting from both sides of the central flange portion 12A 1. Movable part 12
Are the collar portions 12A 2 and 1 of the optical holder member 12A.
Coil 12C and 12D mounted on each of 2A 3
Is provided. These coils 12C and 12D are independent of each other and can supply current separately, and as described above, act as a driving mechanism for driving the movable portion 12 in cooperation with the half permanent magnet segments 18 and 20. Function. In FIG. 5, the coils 12C and 12D are shown as annular rings, but the coils 12C and 12D
D is obtained by winding a conductive wire in an annular ring shape, and illustration of power supply lines to these coils 12C and 12D is omitted.

【0018】また、可動部12は更に光学偏向素子用ホ
ルダ部材12Aの中央フランジ部12A1 の直径方向の
両側に取り付けられた板ばね用カップリング12Eを具
備する。なお、図5には片側の板ばね用カップリング1
2Eだけが図示されているが、同様な板ばね用カップリ
ングは中央フランジ部12A1 の直径方向の反対側にも
設けられる。板ばね用カップリング12Eは中央フラン
ジ部12A1 に固定されるようになった固定カップリン
グ部12E1 と、この固定カップリング部12E1 に対
して着脱自在となった可動カップリング部12E2 とか
ら成る。
Further, the movable unit 12 further comprises a leaf spring coupling 12E mounted on either side of the central flange portion 12A 1 in the diameter direction of the optical deflection element holder member 12A. FIG. 5 shows a coupling 1 for a leaf spring on one side.
2E but it is shown coupling a similar leaf spring is also provided on the opposite side of the diametrical direction of the central flange portion 12A 1. Coupling 12E for the leaf spring and the stationary coupling part 12E1 adapted to be fixed to the central flange portion 12A 1, consisting of freely and since the movable coupling portion 12E2 Metropolitan detachable from the fixed coupling part 12E1.

【0019】各板ばね用カップリング12Eには複合板
ばね体(弾性手段)22が連結され、この複合板ばね体
22は本実施形態では4枚の板ばね要素22Aから構成
される。図6に詳しく示すように、本実施形態では、H
字状板ばね素材にそれを半分割するような態様でスリッ
ト24が入れられ、これにより該H字状板ばね素材に一
対の板ばね要素22Aが形成される。このような2枚の
H字状板ばね素材をそれらのスリット24に沿って組み
合わせることにより、図5に示すような複合板ばね体
(弾性手段)22が得られ、このとき複合板ばね体22
にはかかるスリット24の長手方向中心軸線の回りに4
枚の板ばね要素22Aが90度の角度で等間隔に配置され
る。
A composite leaf spring body (elastic means) 22 is connected to each leaf spring coupling 12E. In this embodiment, the composite leaf spring body 22 is composed of four leaf spring elements 22A. As shown in detail in FIG. 6, in the present embodiment, H
A slit 24 is formed in the L-shaped leaf spring material in such a manner as to divide it in half, thereby forming a pair of leaf spring elements 22A in the H-shaped leaf spring material. By combining such two H-shaped leaf spring materials along their slits 24, a composite leaf spring body (elastic means) 22 as shown in FIG. 5 is obtained.
Around the longitudinal central axis of the slit 24.
The leaf spring elements 22A are arranged at regular intervals at an angle of 90 degrees.

【0020】図5に示すように、板ばね用カップリング
12Eの反対側には別の板ばね用カップリング26が設
けられ、この板ばね用カップリング26は、ベース部材
10のフレーム部10Bに固定される固定カップリング
部261 と、この固定カップリング部261 に対して着
脱自在な可動カップリング部262 とから成る。板ばね
用カップリング26は、固定カップリング部261 が貫
通孔を備えた取付ブロック片28と一体化されている点
を除けば、上述した板ばね用カップリング12Eの構成
と同じである。
As shown in FIG. 5, another leaf spring coupling 26 is provided on the opposite side of the leaf spring coupling 12E, and this leaf spring coupling 26 is attached to the frame portion 10B of the base member 10. and fixing the coupling portion 26 1 which is fixed, consisting of freely movable coupling portion 26 2 which detachable from the fixed coupling part 26 1. Cup plate spring ring 26, except that the fixing coupling portion 26 1 is integrated with the mounting block piece 28 having a through-hole is the same as the configuration of the coupling 12E for leaf springs described above.

【0021】図7に更に詳しく図示するように、固定カ
ップリング部261 は取付ブロック片28から一体的に
突出する管状短軸部材26Aとして形成され、この管状
短軸部材26Aの自由端面からは4本の爪要素26Bが
突出しる。4本の爪要素26Bは管状短軸部材26Aの
円周方向に沿って90度の角度で等間隔に配置され、各爪
要素26Aの横断面は図示するようにセグメント形状と
なっている。管状短軸部材26Aの側方部には直径方向
に互いに向かい合った一対の平坦面26Cが形成され
る。なお、図7にあっては、一対の平坦面26Cの一方
だけが描かれている。
As shown in more detail in FIG. 7, the fixed coupling part 26 1 is formed as a tubular short shaft member 26A integrally projecting from the mounting block piece 28, and from the free end face of the tubular short shaft member 26A. Four claw elements 26B protrude. The four claw elements 26B are arranged at regular intervals at an angle of 90 degrees along the circumferential direction of the tubular short axis member 26A, and the cross section of each claw element 26A is segment-shaped as shown. A pair of flat surfaces 26C diametrically opposed to each other are formed on the side of the tubular short shaft member 26A. In addition, in FIG. 7, only one of the pair of flat surfaces 26C is illustrated.

【0022】一方、可動カップリング部262 も管状短
軸部材26Dとして形成されるが、その直径は管状短軸
部材26Aよりも大きく、管状短軸部材26Aは管状短
軸部材26D内に緩く嵌合し得るようになっている。管
状短軸部材26Aの場合と同様に、管状短軸部材26D
の一方の自由端面からは4本の爪要素26Eが突出し、
これら4本の爪要素26Eは管状短軸部材26Dの円周
方向に沿って90度の角度で等間隔に配置され、各爪要素
26Eの横断面は図示するようにセグメント形状となっ
ている。図8から明らかなように、管状短軸部材26D
の側方部には直径方向に互いに向かい合った二対の平坦
面26F及び26Gが形成される。なお、図7では、二
対の平坦面26F及び26Gのそれぞれの一方だけが描
かれている。
On the other hand, is also movable coupling portion 26 2 is formed as a tubular minor axis member 26D, the diameter of which is larger than the tubular minor axis member 26A, the tubular short axis member 26A is fitted loosely in a tubular minor axis member 26D It is possible to match. As in the case of the tubular short shaft member 26A, the tubular short shaft member 26D
Four claw elements 26E protrude from one free end face of
These four claw elements 26E are arranged at equal intervals at an angle of 90 degrees along the circumferential direction of the tubular short axis member 26D, and the cross section of each claw element 26E has a segment shape as shown. As is clear from FIG. 8, the tubular short shaft member 26D
Are formed with two pairs of flat surfaces 26F and 26G diametrically opposed to each other. Note that FIG. 7 illustrates only one of each of the two pairs of flat surfaces 26F and 26G.

【0023】図8に示すように、管状短軸部材26Dに
形成された二対の平坦面26F及び26Gにはそれぞれ
ねじ孔26H及び26Iが形成され、各一対のねじ孔2
6H、26Iは管状短軸部材26Dの長手方向中心軸線
に対して反対方向にずらされて偏心させられる。即ち、
図7及び図8に示す例では、図7で見ることのできる平
坦面26Fに形成されたねじ孔26Hは管状短軸部材2
6Dの4つの爪要素26E側から見たとき反時計方向側
にずらされて位置させられ、また該平坦面26Fに対し
て直径方向の反対側の平坦面26F(図8)に形成され
たねじ孔26Hも反時計方向にずらされて位置させられ
る。なお、図8から明らかなように、他方の一対の平坦
面26Gに形成された一対のねじ孔26Iについても上
述した一対のねじ孔26Hと同じことが言える。
As shown in FIG. 8, two pairs of flat surfaces 26F and 26G formed in the tubular short shaft member 26D are formed with screw holes 26H and 26I, respectively.
6H and 26I are eccentrically shifted in opposite directions with respect to the longitudinal center axis of the tubular short shaft member 26D. That is,
In the example shown in FIGS. 7 and 8, the screw hole 26H formed in the flat surface 26F which can be seen in FIG.
When viewed from the four claw elements 26E side of 6D, the screw is shifted counterclockwise and formed on a flat surface 26F (FIG. 8) diametrically opposite to the flat surface 26F. The hole 26H is also displaced counterclockwise. As is clear from FIG. 8, the same can be said for the pair of screw holes 26I formed in the other pair of flat surfaces 26G as in the above-described pair of screw holes 26H.

【0024】従って、可動カップリング部262 を固定
カップリング部261 を装着させて双方の爪要素26B
及び26Eを図8に示すような態様で互いにそれぞれ係
合させた後に一対の止めねじ要素30(図7)を例えば
一対のねじ孔26Hにねじ込むと、該止めねじ要素30
の先端が先ず固定カップリング部261 の平坦面26C
に当接し、更に止めねじ要素30をねじ込むことによ
り、可動カップリング部262 及び固定カップリング部
261 は共に互いに反対方向の回動力を受け、これによ
り爪要素26B及び26Eは互いにその係合面を互いに
押圧し合うように作用させられる。爪要素26B及び2
6E間のそれぞれに複合板ばね体22の各板ばね要素2
2Aの該当端部を挟み込んだ状態で上述したような一対
の止めねじ要素30のねじ込み操作を行うことにより、
複合板ばね体22は板ばね用カップリング26に固定連
結される。
Therefore, the movable coupling part 26 2 is attached to the fixed coupling part 26 1 , and the two claw elements 26 B
8 and 26E are engaged with each other in a manner as shown in FIG. 8, and then a pair of setscrew elements 30 (FIG. 7) are screwed into, for example, a pair of screw holes 26H.
Is the flat surface 26C of the fixed coupling part 26 1 first.
Contact, by further screwing the set screw element 30, the movable coupling part 26 2 and the fixed coupling part 26 1 are both subjected to the opposite direction of the turning force to one another, the engagement thereby pawl elements 26B and 26E each other in The surfaces are urged against each other. Claw elements 26B and 2
6E each leaf spring element 2 of the composite leaf spring body 22
By performing the screwing operation of the pair of setscrew elements 30 as described above while sandwiching the corresponding end of 2A,
The composite leaf spring body 22 is fixedly connected to a leaf spring coupling 26.

【0025】なお、上述したように、板ばね用カップリ
ング26の構成自体は板ばね用カップリング12Eと同
じであり、複合板ばね体22は同様な態様で板ばね用カ
ップリング12Eに対して固定連結される。
As described above, the configuration of the leaf spring coupling 26 is the same as that of the leaf spring coupling 12E, and the composite leaf spring body 22 is similar to the leaf spring coupling 12E in the same manner. Fixedly connected.

【0026】図4には可動部12が組み立てられた状態
で示され、このとき一対の板ばね用カップリング12E
の各々には複合板ばね体22の一端側が固定連結される
と共に該複合板ばね体22の他端側には板ばね用カップ
リング26が固定連結されている。各板ばね用カップリ
ング26の固定カップリング部262 の取付ブロック片
28にはその貫通孔にボルト要素32が挿通させられ、
各ボルト要素32は更にベース部材10のフレーム10
Bの直径方向に形成されたねじ孔10Dに螺着される。
図4から明らかなように、各ねじ孔10Dはフレーム部
10Bに形成された窪み部に配置され、各ボルト要素3
2による取付ブロック片28の螺着時、その取付ブロッ
ク片28はかかる窪み部に収容される。
FIG. 4 shows the movable part 12 in an assembled state. At this time, a pair of leaf spring couplings 12E is provided.
Is fixedly connected to one end of the composite leaf spring body 22, and a leaf spring coupling 26 is fixedly connected to the other end of the composite leaf spring body 22. The fixed coupling part 26 2 of the mounting block piece 28 of each plate spring coupling 26 is a bolt element 32 is inserted into the through hole,
Each bolt element 32 is further connected to the frame 10 of the base member 10.
B is screwed into a screw hole 10D formed in the diameter direction.
As is clear from FIG. 4, each screw hole 10D is arranged in a recess formed in the frame portion 10B, and each bolt element 3D is formed.
When the mounting block piece 28 is screwed into the mounting block piece 2, the mounting block piece 28 is accommodated in the recess.

【0027】かくして、可動部12は一対の複合板ばね
体22を介してベース部材10のフレーム部10Bに支
持されることになり、このとき可動部12は板ばね用カ
ップリング12E及び26の長手方向中心軸線即ち複合
板ばね22の長手方向中心軸線の回りで最も動き易く
なる。詳述すると、図9に示すように、複合板ばね体2
2の中心を原点とする三次元座標系を設定し、このとき
一方の一対の板ばね要素22AがX−Z平面内に位置
し、他方の一対の板ばね要素22AがY−Z平面内に位
置するとした場合、X軸回り(α)のコンプライアンス
とY軸回り(β)のコンプライアンスとは互いに実質的
に同じであり、しかもZ軸回り(γ)のコンプライアン
スと比べると大巾に小さなものとなる。要するに、図示
するような複合板ばね体22の構成にあっては、コン
プライアンス性はZ軸回り(γ)だけに得られる。
Thus, the movable portion 12 is supported by the frame portion 10B of the base member 10 via the pair of composite leaf spring bodies 22, and at this time, the movable portion 12 is provided on the longitudinal sides of the leaf spring couplings 12E and 26. It is most easy to move around the directional center axis, that is, the longitudinal center axis of the composite leaf spring body 22. More specifically, as shown in FIG.
A three-dimensional coordinate system having the origin at the center of 2 is set. At this time, one pair of leaf spring elements 22A is located in the XZ plane, and the other pair of leaf spring elements 22A is located in the YZ plane. If the position, the compliance of the compliance and Y-axis of the X-axis (α) (β) are substantially identical to one another, yet greatly to small ones compared with the compliance of the Z-axis (gamma) Becomes In short, in the configuration of the composite leaf spring body 22 as shown, high compliance is obtained only around the Z axis (γ).

【0028】一方、可動部12のコイル12C及び12
Dが二対の半割永久磁石セグメント18及び20によっ
て得られる磁界内で通電されると、可動部12はフレミ
ングの左手の法則によりZ軸まわりでの回動力を受け、
その回動方向はコイル12C及び12Dに対する通電方
向に依存する。要するに、Z軸が可動部12の回動軸線
即ち弾性主軸線とされる。
On the other hand, the coils 12C and 12C of the movable portion 12
When D is energized in the magnetic field provided by the two pairs of half-permanent permanent magnet segments 18 and 20, the movable part 12 receives a rotating force about the Z-axis according to Fleming's left-hand rule,
The direction of rotation depends on the direction of energization of the coils 12C and 12D. In short, the Z axis is the rotation axis of the movable section 12, that is, the elastic main axis.

【0029】以上のような複合板ばね体22の配置構成
によれば、可動部12の弾性主軸線(Z軸)回りだけに
コンプライアンス性を与えることができるので、可動
部12の駆動時に外部振動のような外力が光学偏向装置
に加えられたとしても、可動部12は弾性主軸線(Z
軸)回りだけで安定して回動することができる。
According to the arrangement configuration of the composite leaf spring body 22 described above, only around the elastic main axis (Z-axis) of the movable portion 12.
Since high compliance can be provided, even when an external force such as external vibration is applied to the optical deflecting device when the movable unit 12 is driven, the movable unit 12 can be moved along the elastic main axis (Z
It can rotate stably only around the axis).

【0030】好ましくは、可動部12の重心がその弾性
主軸線(Z軸)上に実質的に位置するように該可動部1
2の全体の質量バランスが配慮される。即ち、可動部1
2の弾性主軸線(Z軸)を該可動部12の慣性主軸線に
実質的に一致させることが好ましく、この場合には可動
部12での構造連成振動の発生を効果的に排除すること
が可能である。
Preferably, the movable unit 1 is arranged such that the center of gravity of the movable unit 12 is substantially located on its elastic main axis (Z axis).
2, the overall mass balance is taken into account. That is, the movable unit 1
Preferably, the elastic main axis (Z axis) of the second section 2 substantially coincides with the inertia main axis of the movable section 12, and in this case, occurrence of structurally coupled vibration in the movable section 12 is effectively eliminated. Is possible.

【0031】また、好ましくは、コイル12C及び12
Dの通電時に可動部12が回動力を受ける際の回動中心
がその弾性主軸線(Z軸)上に実質的に位置するように
該可動部12の全体の質量バランスが配慮される。即
ち、可動部12の弾性主軸線(Z軸)を該可動部12の
推力主軸線に実質的に一致させることが好ましく、この
場合には可動部12での推力連成振動の発生を効果的に
排除することが可能である。
Preferably, the coils 12C and 12C
Consideration is given to the overall mass balance of the movable part 12 so that the center of rotation when the movable part 12 receives rotational power during the energization of D is substantially located on its elastic main axis (Z axis). That is, it is preferable that the elastic main axis (Z axis) of the movable part 12 substantially coincides with the thrust main axis of the movable part 12. In this case, the generation of the thrust coupled vibration in the movable part 12 is effective. Can be eliminated.

【0032】さらに、可動部12の弾性主軸線(Z
軸)、慣性主軸線及び推力主軸線の三者は実質的に一致
させることが好ましい。この場合には可動部12での構
造連成振動及び推力連成振動の双方の発生を効果的に排
除することが可能となる。
Further, the elastic main axis (Z
It is preferable that the three axes (axis), the principal axis of inertia and the principal axis of thrust substantially coincide. In this case, it is possible to effectively eliminate both the structural coupled vibration and the thrust coupled vibration in the movable portion 12.

【0033】[0033]

【発明の効果】本発明による光学偏向装置の電磁駆動装
置によれば、可動部側のコイルを独立した一対のコイル
に分割し、ヨーク部材側に固定する半割永久磁石セグメ
ントも、この一対のコイルに対応させて一対ずつを設け
てその極性を互いに逆にし、駆動時には一対のコイルに
逆方向の電流を流すようにしたから、一対のコイルの相
互インダクタンスを小さくして駆動速度を高めることが
できる。また、飽和磁束を大きくするためにヨーク部材
を大型化する必要がなく、よって小型化ができる。
According to the electromagnetic deflector of the optical deflecting device according to the present invention, the coil on the movable portion side is divided into a pair of independent coils, and the half permanent magnet segment fixed to the yoke member side is also a pair of permanent magnet segments. A pair of coils is provided for each pair, the polarities are reversed, and a current in the opposite direction is applied to the pair of coils during driving, so that the mutual inductance of the pair of coils can be reduced to increase the driving speed. it can. Further, it is not necessary to increase the size of the yoke member in order to increase the saturation magnetic flux, so that the size can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による光学偏向装置の電磁駆動装置の一
実施形態を示す正面図である。
FIG. 1 is a front view showing an embodiment of an electromagnetic driving device of an optical deflection device according to the present invention.

【図2】図2のII−II線に沿う断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】図2から一対のコイルを有する可動体を取り出
した断面図である。
FIG. 3 is a sectional view of a movable body having a pair of coils taken out of FIG. 2;

【図4】本発明による光学偏向装置の電磁駆動装置をよ
り具体的にした実施形態の分解斜視図である。
FIG. 4 is an exploded perspective view of a more specific embodiment of the electromagnetic driving device of the optical deflection device according to the present invention.

【図5】図4に示した装置の可動部の分解斜視図であ
る。
FIG. 5 is an exploded perspective view of a movable portion of the device shown in FIG.

【図6】図5に示した可動部を支持する複合板ばね体
(弾性部材)の分解斜視図である。
FIG. 6 is an exploded perspective view of a composite leaf spring body (elastic member) supporting the movable portion shown in FIG.

【図7】図6に示した複合板ばね体連結するための板ば
ね用カップリングの分解斜視図である。
FIG. 7 is an exploded perspective view of a leaf spring coupling for connecting the composite leaf spring body shown in FIG. 6;

【図8】図7に示した板ばね用カップリングの端面図で
ある。
FIG. 8 is an end view of the leaf spring coupling shown in FIG. 7;

【図9】図6に示した複合板ばね体の組立斜視図であっ
て、その特性を説明するための説明図である。
FIG. 9 is an assembled perspective view of the composite leaf spring body shown in FIG. 6, and is an explanatory diagram for explaining its characteristics.

【符号の説明】[Explanation of symbols]

10 ベース部材(ヨーク部材) 10A 基台部 10B フレーム部 10C 円形開口部(筒状部) 12 可動部 12R 反射ミラー(光偏向部材) 12B プリズム(光偏向部材) 12A 光学偏向素子用ホルダ部材 12A1 中央フランジ部 12A2 、12A3 カラー部 12C、12D コイル 18、20 永久磁石 22 弾性手段 Z 弾性主軸線DESCRIPTION OF SYMBOLS 10 Base member (yoke member) 10A Base part 10B Frame part 10C Circular opening (cylindrical part) 12 Movable part 12R Reflection mirror (light deflecting member) 12B Prism (light deflecting member) 12A Optical deflecting element holder member 12A 1 Central flange portion 12A 2 , 12A 3 Collar portion 12C, 12D Coil 18, 20 Permanent magnet 22 Elastic means Z Elastic main axis

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ヨーク部材に対し、弾性手段を介して、
弾性主軸線を中心に回動可能に可動部を軸支させ、 この可動部に光ビームを偏向させるための光偏向手段を
搭載し、 上記可動部とヨーク部材にそれぞれ、電磁作用により該
可動部に上記弾性主軸線を中心とする正逆の回動運動を
生じさせるコイルと一対の半割永久磁石セグメントとを
固定してなる光学偏向装置の電磁駆動装置において、 上記可動部に、上記弾性主軸線を含みコイルの中心軸と
直交する平面の前後に位置させて、一対の互いに独立し
たコイルを固定し、 上記ヨーク部材に、この一対のコイルに対応させて、か
つ上記弾性主軸線を含みコイルの中心軸と直交する平面
の前後に位置させてそれぞれ、一対ずつの半割永久磁石
セグメントを固定するとともに、この前後の一対ずつの
半割永久磁石セグメントの極性をそれぞれ互いに異なら
せ、 上記一対のコイルに、上記可動部の駆動時に、互いに反
対方向の電流を流すことを特徴とする光学偏向装置の電
磁駆動装置。
1. The method according to claim 1, further comprising:
The movable portion is rotatably supported about an elastic main axis, and a light deflecting means for deflecting a light beam is mounted on the movable portion. The movable portion and the yoke member are each electromagnetically actuated by the movable portion. An electromagnetic drive device for an optical deflecting device, comprising: a coil generating a forward / reverse rotational movement about the elastic main axis and a pair of half-permanent permanent magnet segments. A pair of coils independent of each other are fixed before and after a plane including the wire and orthogonal to the center axis of the coil, and the yoke member includes a coil corresponding to the pair of coils and including the elastic main axis. A pair of half permanent magnet segments are fixed to each other before and after a plane orthogonal to the central axis of the pair, and the polarities of the pair of half permanent magnet segments before and after An electromagnetic driving device for an optical deflecting device, characterized in that currents in opposite directions flow through the pair of coils when the movable portion is driven.
【請求項2】 上記光偏向手段は、ミラーである請求項
1記載の電磁駆動装置。
2. The electromagnetic driving device according to claim 1, wherein said light deflecting means is a mirror.
【請求項3】 上記光偏向手段は、プリズムである請求
項1記載の電磁駆動装置。
3. The electromagnetic driving device according to claim 1, wherein said light deflecting means is a prism.
JP13689397A 1997-05-27 1997-05-27 Electromagnetic drive for optical deflection device Expired - Fee Related JP3315893B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13689397A JP3315893B2 (en) 1997-05-27 1997-05-27 Electromagnetic drive for optical deflection device
DE19823725A DE19823725B4 (en) 1997-05-27 1998-05-27 Optical deflection device
US09/085,232 US6266300B1 (en) 1997-05-27 1998-05-27 Optical deflection device having electromagnetic driver assembled therein for rotationally driving optical deflection element
GB9811392A GB2327131B (en) 1997-05-27 1998-05-27 Optical deflection device having electromagnetic driver assembled therein for rotationally driving optical deflection element
GB0129281A GB2367112B (en) 1997-05-27 1998-05-27 Optical deflection device having electromagnetic driver assembled therein for rrotationally driving optical deflection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13689397A JP3315893B2 (en) 1997-05-27 1997-05-27 Electromagnetic drive for optical deflection device

Publications (2)

Publication Number Publication Date
JPH10333071A JPH10333071A (en) 1998-12-18
JP3315893B2 true JP3315893B2 (en) 2002-08-19

Family

ID=15186026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13689397A Expired - Fee Related JP3315893B2 (en) 1997-05-27 1997-05-27 Electromagnetic drive for optical deflection device

Country Status (4)

Country Link
US (1) US6266300B1 (en)
JP (1) JP3315893B2 (en)
DE (1) DE19823725B4 (en)
GB (1) GB2327131B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3315893B2 (en) * 1997-05-27 2002-08-19 旭光学工業株式会社 Electromagnetic drive for optical deflection device
JP2002287046A (en) * 2001-03-23 2002-10-03 Miyota Kk Planar type galvano-mirror
EP1491678B8 (en) * 2002-03-29 2009-04-22 Kazari-Ichi Co., Ltd. Composite comprising heat-resistant fiber and siloxane polymer
CN110792048B (en) * 2019-11-11 2021-06-29 潘倩韵 Prevent far-reaching light formula new forms of energy road reflector
CN116893489A (en) * 2022-04-06 2023-10-17 奥普托图尼瑞士股份公司 Carrier arrangement for an optical device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3624574A (en) * 1969-11-24 1971-11-30 Gen Scannings Inc Actuator
NL8001617A (en) * 1980-03-19 1981-10-16 Philips Nv DEVICE FOR ELECTRODYNAMICALLY CONTROLLED SWIVING OF AN OPTICAL ELEMENT.
JPS5848033U (en) * 1981-09-22 1983-03-31 萬世工業株式会社 lens drive device
JPS5888836A (en) * 1981-11-20 1983-05-27 Akai Electric Co Ltd Optical pickup device
JPS5890174A (en) * 1981-11-25 1983-05-28 Tokyo Keiki Co Ltd Accelerometer
JPS6332755A (en) * 1986-07-28 1988-02-12 Toshiba Corp Magneto-optical head
US4855982A (en) * 1987-05-18 1989-08-08 Eastman Kodak Company Lens position-sensing apparatus for optical recording system
US5455706A (en) * 1988-04-18 1995-10-03 Brotz; Gregory R. Mirror-moving system
US5009473A (en) * 1988-05-31 1991-04-23 Reflection Technology, Inc. Low vibration resonant scanning unit for miniature optical display apparatus
US4998802A (en) * 1988-06-03 1991-03-12 Kabushiki Kaisha Sankyo Seiki Seisakusho Objective lens driving device in an optical pickup
US5486944A (en) * 1989-10-30 1996-01-23 Symbol Technologies, Inc. Scanner module for symbol scanning system
US5099352A (en) * 1989-10-13 1992-03-24 Mitsubishi Denki Kabushiki Kaisha Reflector oscillating apparatus
US5870219A (en) * 1997-01-20 1999-02-09 Geo. Labs, Inc. Ultra compact scanning system for a wide range of speeds, angles and field depth
JPH0728585Y2 (en) 1990-12-17 1995-06-28 旭光学工業株式会社 Galvano mirror device
JP2542148Y2 (en) 1990-12-17 1997-07-23 旭光学工業株式会社 Galvano mirror device
DE4100358A1 (en) * 1991-01-05 1992-07-09 Robotron Bueromasch Ag Vibrating mirror arrangement for deflection of optical beam - is set into oscillation by alternating current excitation of coil arrangement on back of semiconductor reflector
US5463612A (en) * 1991-12-05 1995-10-31 Canon Kabushiki Kaisha Objective lens drive apparatus used in optical information recording/reproducing apparatus
JP3389270B2 (en) * 1992-05-15 2003-03-24 シンボル テクノロジイズ インコーポレイテッド Small barcode scanner
US5414563A (en) 1992-07-28 1995-05-09 Asahi Kogaku Kogyo Kabushiki Kaisha Electromagnetic objective lens driving apparatus of optical data recording and reproducing apparatus
JP2722314B2 (en) * 1993-12-20 1998-03-04 日本信号株式会社 Planar type galvanometer mirror and method of manufacturing the same
US5926307A (en) * 1996-12-19 1999-07-20 Asahi Kogaku Kogyo Kabushiki Kaisha Optical deflection device
JP3684016B2 (en) * 1997-01-28 2005-08-17 ペンタックス株式会社 Two-dimensional light deflector
JP3315893B2 (en) * 1997-05-27 2002-08-19 旭光学工業株式会社 Electromagnetic drive for optical deflection device
JP3193668B2 (en) * 1997-06-17 2001-07-30 旭光学工業株式会社 Transmission type optical deflection device
US6014205A (en) * 1997-07-18 2000-01-11 Asahi Kogaku Kogyo Kabushiki Kaisha Position sensor for transmission type optical deflector and apparatus for correcting scanning position of scanning optical system
JP4112060B2 (en) * 1998-01-27 2008-07-02 オリンパス株式会社 Support device for movable part of optical system

Also Published As

Publication number Publication date
JPH10333071A (en) 1998-12-18
GB9811392D0 (en) 1998-07-22
DE19823725A1 (en) 1998-12-03
GB2327131B (en) 2002-02-20
DE19823725B4 (en) 2004-12-09
US6266300B1 (en) 2001-07-24
GB2327131A (en) 1999-01-13

Similar Documents

Publication Publication Date Title
JP4681874B2 (en) Drive device
JP5099020B2 (en) Optical scanning apparatus and image forming apparatus
US10374483B1 (en) Three-axis gimbal assembly with a spherical motor
JPS634182B2 (en)
JP3193668B2 (en) Transmission type optical deflection device
JP3315893B2 (en) Electromagnetic drive for optical deflection device
US6317562B1 (en) Lens driving apparatus
JP2003262802A (en) Actuator device
US3492515A (en) Stepping motor with nutating gear
JP3462684B2 (en) Optical deflection device
JPS5822938B2 (en) Reversible rotary motor
JP3360790B2 (en) Optical deflection device
JPH04229065A (en) Miniature motor
JP7096932B2 (en) Optical member drive device, camera device, and electronic device
KR101633988B1 (en) Scanning micromirror
JP2550109B2 (en) Aperture device
JP6877991B2 (en) Stepping motor
JP2002354771A (en) Dual shaft actuator
CN117311005A (en) Reflective dynamic speckle projector and binocular speckle stereo camera
JP2937726B2 (en) Light control device
JP5099021B2 (en) Optical scanning device, non-contact optical scanning control mechanism, and image forming apparatus
JP2003216241A (en) Drive unit and lens driving mechanism using the same
JPH0719259A (en) Ring type clutch
JP2002013468A (en) Static magnetic field type inertia prime mover
JP2001086698A (en) Linear actuator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees