JP3315882B2 - Electron beam drawing equipment - Google Patents

Electron beam drawing equipment

Info

Publication number
JP3315882B2
JP3315882B2 JP31893196A JP31893196A JP3315882B2 JP 3315882 B2 JP3315882 B2 JP 3315882B2 JP 31893196 A JP31893196 A JP 31893196A JP 31893196 A JP31893196 A JP 31893196A JP 3315882 B2 JP3315882 B2 JP 3315882B2
Authority
JP
Japan
Prior art keywords
electron beam
image
shaping
aperture
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31893196A
Other languages
Japanese (ja)
Other versions
JPH10163089A (en
Inventor
博之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31893196A priority Critical patent/JP3315882B2/en
Publication of JPH10163089A publication Critical patent/JPH10163089A/en
Application granted granted Critical
Publication of JP3315882B2 publication Critical patent/JP3315882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子線描画装置、特
にシリコンウエハ等の半導体基板上に回路パターンを形
成するのに適した電子線描画装置関する。
The present invention relates to relates to electron beam lithography apparatus suitable for forming a circuit pattern on an electron beam drawing apparatus, in particular on a semiconductor substrate such as a silicon wafer.

【0002】[0002]

【従来の技術】近年、電子線描画装置は可変成形電子光
学系、特に部分一括露光光学系等の発展により高速化が
達成され、次世代のリソグラフィー装置として期待され
ている。一般に可変成形電子光学系では高精度に加工さ
れた複数の成形絞りでビーム断面形状を成形し、描画パ
ターンに応じてビーム形状を制御して従来にない高速露
光を可能としている。
2. Description of the Related Art In recent years, the speed of an electron beam lithography apparatus has been increased by the development of a variable-shaped electron optical system, particularly a partial batch exposure optical system, and is expected to be a next-generation lithography apparatus. Generally, in a variable shaping electron optical system, a beam cross-sectional shape is shaped by a plurality of shaping apertures machined with high precision, and a beam shape is controlled in accordance with a drawing pattern to enable high-speed exposure which has not been achieved conventionally.

【0003】図1を参照するに、電子源1から発した電
子線4は第一成形絞り3を照射し、その像は第及び第
二成形レンズ6、10により第二成形絞り11上に形成
される。成形偏向器8は第一及び第二成形レンズ6、1
0間に配置され、第二成形絞り11の電子線透過位置を
制御している。
Referring to FIG. 1, an electron beam 4 emitted from an electron source 1 irradiates a first shaping diaphragm 3, and an image thereof is formed on a second shaping diaphragm 11 by first and second shaping lenses 6 and 10. It is formed. The shaping deflector 8 includes first and second shaping lenses 6, 1
0, and controls the electron beam transmission position of the second forming aperture 11.

【0004】[0004]

【発明が解決使用とする課題】この光学系では以下に示
すように成形偏向以前の成形レンズ群、図では第一成形
レンズ6は成形偏向器8の中心位置に電子源1の像を形
成する必要がある。成形偏向器8の中心位置に電子源1
の像がない場合は、成形偏向動作時に下段レンズ群の結
像で電子源の像が軸ずれをきたし、可変成形ビ−ム照射
条件に悪影響を及ぼす。具体的には下部制限絞り、たと
えば対物絞り上で軸ずれした場合は、けられによる照射
電子線の電流密度の変化を引き起こす。更に、対物レン
ズ16内での軸ずれに伴う収差増大や試料照射位置ずれ
が問題となる。
In this optical system, a molding lens group before molding deflection, as shown below, the first molding lens 6 forms an image of the electron source 1 at the center position of the molding deflector 8 as shown below. There is a need. The electron source 1 is located at the center of the shaping deflector 8.
When there is no image, the image of the electron source is misaligned due to the image formation of the lower lens group during the shaping / deflecting operation, which adversely affects the irradiation condition of the variable shaping beam. Specifically, when the axis is misaligned on the lower limiting aperture, for example, on the objective aperture, the current density of the irradiated electron beam changes due to the shaking. In addition, an increase in aberration and a shift in the irradiation position of the sample due to the axis shift in the objective lens 16 pose problems.

【0005】前者は対物絞り径等をけられがない程度に
大口径化することにより対処可能である。後者は異寸法
間の超微細パターンの接続や広範囲の任意開口を選択露
光する一括露光では、下地との重ね合わせ精度で問題と
なる。すなわち、成形絞り像の縮小レンズ群は電子源に
対しては通常拡大系となるため、上段での電子源の軸ず
れは下段で拡大され、結像条件に悪影響を与え、結果と
して寸法の異なるビ−ムの接続や、解像性、下地への合
わせ精度に悪影響を与える。
The former can be dealt with by increasing the diameter of the objective aperture or the like to such an extent that the diameter cannot be changed. In the latter case, in the case of connection of ultra-fine patterns of different dimensions and collective exposure for selectively exposing a wide range of arbitrary apertures, there is a problem in overlay accuracy with a base. That is, since the reduction lens group of the formed aperture image is usually a magnification system with respect to the electron source, the axial deviation of the electron source in the upper stage is enlarged in the lower stage, adversely affecting the image forming condition, and as a result, the dimensions differ. This has an adverse effect on beam connection, resolution, and alignment accuracy with the base.

【0006】更に、可変成形ビームは高電流で使用され
るため、空間電荷効果すなわちクーロン効果による反発
力のため最適焦点位置が電子光学的焦点位置に対し後方
(下方)にずれる。加えて、電子源像の軸ずれにより可
変成形動作時ショット位置ずれが増大する可能性があ
る。
Further, since the variable shaped beam is used at a high current, the optimal focal position is shifted backward (downward) from the electron optical focal position due to the repulsive force due to the space charge effect, that is, the Coulomb effect. In addition, there is a possibility that the shot position shift during the variable shaping operation increases due to the axial shift of the electron source image.

【0007】本発明の目的は電子線の成形偏向動作時に
おける望ましからぬ電子線位置ずれを防止して高精度露
光を可能にする電子線描画装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an electron beam lithography apparatus capable of preventing an undesired displacement of an electron beam during an electron beam shaping / deflecting operation and enabling high-precision exposure.

【0008】[0008]

【課題を解決するための手段】本発明の電子線描画装置
は、電子線を発生させる電子源と、その発生された電子
線が透過する第一及び第二成形絞りと、前記電子源の像
を前記第一及び第二成形絞り間の所定位置に形成する第
一成形レンズと、該第一成形レンズと協同して前記第一
成形絞りの像を前記第二成形絞り上に形成する第二成形
レンズと、前記第二成形絞り上の前記第一成形絞りの像
を移動させて前記第二成形絞りを透過した電子線の寸法
を制御するように前記電子線を前記所望の位置において
偏向する成形偏向器と、前記第二成形絞りの像を試料面
上に形成する手段と、前記成形偏向器を用いて前記電子
線を偏向することにより前記第二成形絞りを透過した電
子線の寸法を変化させたときの、前記試料面上での前記
第二成形絞りの像の移動を最小化する像移動最小化手段
とを備えていることを特徴とする。
An electron beam writing apparatus according to the present invention comprises an electron source for generating an electron beam, first and second apertures through which the generated electron beam passes, and an image of the electron source. A first forming lens formed at a predetermined position between the first and second forming stops, and a second forming an image of the first forming stop on the second forming stop in cooperation with the first forming lens. A molded lens, and the electron beam is deflected at the desired position so as to move the image of the first molded aperture on the second molded aperture and control the size of the electron beam transmitted through the second molded aperture. A shaping deflector, means for forming an image of the second shaping aperture on the sample surface, and deflecting the electron beam using the shaping deflector to reduce the size of the electron beam transmitted through the second shaping aperture. The image of the second forming aperture on the sample surface when changed Movement, characterized in that it includes a image movement minimizing means for minimizing.

【0009】[0009]

【発明の実施の形態】図1は本発明の一実施例の電子線
描画装置の概要を示す。同図では、レイトレースは有限
径の電子源1の両端から発した電子が成形絞り端を照明
した場合の結像関係を直線で表現している。
FIG. 1 shows an outline of an electron beam drawing apparatus according to one embodiment of the present invention. In the figure, the ray trace expresses the image formation relationship when electrons emitted from both ends of the electron source 1 having a finite diameter illuminate the end of the formed aperture by a straight line.

【0010】電子源1より発生した電子線4は第一成形
絞り3により成形され、その成形像は第一成形レンズ6
と第二成形レンズ10により第二成形絞り11上に形成
される。第二成形絞り11上の成形ビーム像は成形偏向
器8により移動され、第二成形絞り11を透過する成形
ビームの形状及び寸法が制御される。たとえば第一成形
絞り3及び第二成形絞り11により形成される開口がX
Y平面(電子線軸に直角な平面)に平行な矩形開口の場
合は、ビーム形状は長方形となり、成形偏向器8により
X及びY方向(電子線軸に直交する、互いに直角な2方
向)の寸法W及びHが制御される。また、第二成形絞り
11が任意形状開口を複数有する場合は、成形偏向器8
で電子線を偏向することで任意の開口が選択され、所望
の一括露光制御が実現される。当然可変矩形ビームと一
括露光ビームの混在も可能である。その場合は、成形偏
向器を2段に分離して電子源像に対して対称に配置して
使用する。
The electron beam 4 generated from the electron source 1 is shaped by the first shaping diaphragm 3 and the shaped image is formed by the first shaping lens 6.
And the second molded lens 10 on the second molded aperture 11. The shaping beam image on the second shaping aperture 11 is moved by the shaping deflector 8, and the shape and size of the shaping beam passing through the second shaping aperture 11 are controlled. For example, the opening formed by the first forming aperture 3 and the second forming aperture 11 is X
In the case of a rectangular aperture parallel to the Y plane (a plane perpendicular to the electron beam axis), the beam shape is rectangular, and the shaping deflector 8 measures the dimension W in the X and Y directions (two directions perpendicular to the electron beam axis and perpendicular to each other). And H are controlled. When the second shaping aperture 11 has a plurality of openings of an arbitrary shape, the shaping deflector 8
An arbitrary aperture is selected by deflecting the electron beam by the above, and desired batch exposure control is realized. Of course, a variable rectangular beam and a collective exposure beam can be mixed. In such a case, the shaping deflector is divided into two stages and used symmetrically with respect to the electron source image.

【0011】第二成形絞り11を透過した電子線5は縮
小レンズ13によって縮小され、更に対物レンズ16に
より試料18面に結像される。すなわち、第二成形絞り
11の縮小像は試料18面に形成される。対物偏向器1
5は試料面上の照射位置へビーム移動させ、露光する。
偏向範囲外の場合は機械的に試料を移動する。これらの
移動時間のビームカットや露光時間はブランカ2により
制御される。なお、17は試料18から反射される反射
電子を検出する反射電子検出器である。
The electron beam 5 transmitted through the second shaping aperture 11 is reduced by the reduction lens 13 and further imaged on the surface of the sample 18 by the objective lens 16. That is, a reduced image of the second forming aperture 11 is formed on the surface of the sample 18. Objective deflector 1
The beam 5 is moved to the irradiation position on the sample surface and exposed.
If it is out of the deflection range, the sample is moved mechanically. The beam cut and the exposure time for these movement times are controlled by the blanker 2. Reference numeral 17 denotes a backscattered electron detector that detects backscattered electrons reflected from the sample 18.

【0012】図2は試料18面上で可変矩形ビーム24
の形状を測定する方法を例示している。図2は、試料で
ある、反射係数の異なる校正用マークエッヂ21上をX
方向にビーム(電子線)走査した例である。反射電子検
出器17によって検出される反射電子による校正用マ−
クエッヂ21上での走査波形22は高反射率マーク方向
に一定の傾斜波形となり、その微分波形23を求める
と、矩形ビーム24の電流密度のX方向分布が得られ
る。この微分波形で第一成形絞り像19と第二成形絞り
像20の相対位置関係を測定することにより、ビーム寸
法を決定する。すなわち、X方向の微分波形の半値位置
(X1、X2)からビーム寸法幅=X2X1が得ら
れる。同様に、Y方向の微分波形の半値幅からビーム寸
法幅H=Y2Y1が得られる。各成形偏向設定値と実
寸法(W、H)の関係を測定し、所望の寸法に対する成
形偏向設定値を内挿法等で決定する。本測定では正確な
X及びY校正マークと微分処理を用いたが、試料18面
上の微小ドットを電子線で直接走査すれば、微分処理を
しなくとも同様のビーム形状評価が可能である。
FIG. 2 shows a variable rectangular beam 24 on the sample 18 surface.
2 illustrates a method for measuring the shape of the object. FIG. 2 shows the X mark on the calibration mark edge 21 having a different reflection coefficient as a sample.
This is an example of beam (electron beam) scanning in the direction. Calibration mark based on backscattered electrons detected by backscattered electron detector 17
The scanning waveform 22 on the ridge 21 becomes a constant inclined waveform in the direction of the high reflectance mark, and when the differential waveform 23 is obtained, the distribution of the current density of the rectangular beam 24 in the X direction can be obtained. The beam size is determined by measuring the relative positional relationship between the first shaping diaphragm image 19 and the second shaping diaphragm image 20 using this differential waveform. That is, the beam size width W = X2 - X1 is obtained from the half-value position (X1, X2) of the differential waveform in the X direction. Similarly, the beam size width H = Y2 - Y1 is obtained from the half value width of the differential waveform in the Y direction. The relationship between each molding deflection setting value and the actual dimension (W, H) is measured, and the molding deflection setting value for the desired dimension is determined by interpolation or the like. In this measurement, accurate X and Y calibration marks and differential processing were used. However, if a minute dot on the surface of the sample 18 is directly scanned with an electron beam, similar beam shape evaluation can be performed without performing differential processing.

【0013】図3は上記のような可変成形型の電子線描
画装置において成形偏向動作と電子源像の軸ずれの影響
を摸式的に示したものである。図中の第一成形絞り3上
の矢印の電子源像が成形偏向器8の成形偏向中心に結像
する場合と中心外に像1個分ずれた場合の比較を示して
いる。ちなみに、電子源の大きさは熱電子源で10μm
程度である。可変成形型電子光学系の特徴は縮小レンズ
系13により電子源に対しては一般に数10倍程度の拡
大系となる点である。電子源像12すなわちクロスオー
バ像が縮小レンズ13上段で大きく軸ずれし、特に対物
偏向系での軸ずれ、照射位置ずれ等結像条件に悪影響を
与えてしまう。そのため成形偏向器8の中心に電子源1
の像を精度良く形成し、下段のレンズ群から観測しても
成形偏向動作時の仮想電子源12が軸中心に固定され
要がある。このように可変成形型の電子光学系では、
成形偏向中心に精密に電子源を結像する機構と高精度な
成形レンズ等の調整法が重要となる。
FIG. 3 schematically shows the influence of the shaping deflection operation and the axial displacement of the electron source image in the above-mentioned variable shaping type electron beam writing apparatus. A comparison is made between a case where the electron source image indicated by the arrow on the first shaping diaphragm 3 in the figure is formed at the shaping deflection center of the shaping deflector 8 and a case where the image is shifted by one image outside the center. By the way, the size of the electron source is 10 μm for thermionic electron source.
It is about. The feature of the variable-shaped electron optical system is that the reduction lens system 13 makes the electron source generally an enlargement system of about several tens of times. The axis of the electron source image 12, that is, the crossover image, is largely shifted in the upper stage of the reduction lens 13, which adversely affects the imaging conditions such as the axis shift and the irradiation position shift in the objective deflection system. Therefore, the electron source 1 is located at the center of the shaping deflector 8.
Image accurately form of lower lens virtual electron source during shaping deflection operation be observed from group 12 Ru is fixed to the axial center
There is a need. As described above, in the variable-shaped electron optical system,
It is important to have a mechanism for precisely imaging the electron source at the center of the molding deflection and a method of adjusting the molding lens and the like with high precision.

【0014】図3から明らかなように、成形偏向中心か
らの電子源像の位置ずれが大きい程、試料面への入射角
が増大する。したがって実際的には成形偏向動作時の第
二成形絞り11像の位置ずれ量を計測し、位置ずれ量を
最小にする第一成形レンズ6の条件を求める。本方式で
は、対物レンズ焦点位置をマーク検出精度に影響を与え
ない程度にシフトすることにより高精度に測定可能であ
る。例えば焦点位置を100μm移動し、校正マークの
検出精度0.01μmが得られた場合、入射角の測定精
度は0.01/100〜100μradの精度が可能で
ある。通常対物レンズの開口角は数mradであり、本
方式は十分の軸調整精度が達成可能である。
As is apparent from FIG. 3, the larger the displacement of the electron source image from the center of the shaping deflection, the greater the angle of incidence on the sample surface. Therefore, actually, the amount of displacement of the image of the second forming diaphragm 11 during the forming deflection operation is measured, and the condition of the first forming lens 6 that minimizes the amount of displacement is obtained. In this method, the measurement can be performed with high accuracy by shifting the focal position of the objective lens to such an extent that the mark detection accuracy is not affected. For example, if the focus position is moved by 100 μm and the detection accuracy of the calibration mark is 0.01 μm, the measurement accuracy of the incident angle can be 0.01 / 100 to 100 μrad. Usually, the aperture angle of the objective lens is several mrad, and this method can achieve sufficient axis adjustment accuracy.

【0015】図4はビーム寸法W、W'として可変矩形
ビーム端座標値を図2の走査微分波形23で計測した例
である。成形偏向設定値すなわちビーム寸法を電源を含
む処理及び制御装置25によりW、W'と変化させ、第
二成形絞り像20の位置に相当する座標値X1、X1'
を測定し、位置ずれdX=X1'X1を計算する。第
二成形絞り像の位置ずれdxを、第一成形レンズ6の励
磁電流Isを変化させて測定する。測定したdxをIs
の関数として近似し、極小となる第一成形レンズ励磁電
流Isxを求める。近似関数としては2次式以上の多項
式を用いる。同様に、Y方向の第二成形絞り像の位置ず
れdyを最小にする第一成形レンズ6励磁電流Isyを
求める。厳密には成形偏向器の加工精度、軸ずれ等によ
りIsx、Isyは異なる。その場合は第一成形レンズ
にはXY方向の平均値 Iso=(Isx+Isy)/2 を設定する。位置ずれdx、励磁電流Isx、Isy及
びIsoの計算並びに励磁電流Isoの設定は処理及び
制御装置25によって行うことができる。
FIG. 4 shows an example in which the coordinate values of the ends of a variable rectangular beam are measured with the scanning differential waveform 23 in FIG. 2 as the beam dimensions W and W '. The shaping deflection setting value, that is, the beam size is changed to W and W ′ by the processing and control device 25 including the power supply, and the coordinate values X1 and X1 ′ corresponding to the position of the second shaping diaphragm image 20 are set.
The measured misalignment dX = X1 '- compute the X1. The displacement dx of the second shaping diaphragm image is measured by changing the exciting current Is of the first shaping lens 6. The measured dx is Is
Is obtained as a function, and the minimum first lens excitation current Isx which is minimum is obtained. As the approximation function, a polynomial of quadratic or higher is used. Similarly, the exciting current Isy of the first molded lens 6 that minimizes the displacement dy of the second molded aperture image in the Y direction is obtained. Strictly speaking, Isx and Isy vary depending on the processing accuracy of the shaping deflector, axis deviation, and the like. In that case, the average value Iso = (Isx + Isy) / 2 in the XY directions is set for the first molded lens. The calculation of the displacement dx, the excitation currents Isx, Isy, and Iso, and the setting of the excitation current Iso can be performed by the processing and control device 25.

【0016】図1に示す成形偏向上段に偏向コイル等の
ビームアライナーと呼ぶことができる軸調整用偏向器7
を配置することによりX及びY方向の電子線の非対称性
を改善することも可能である。すなわち、成形偏向器内
のビ−ム軸ずれ量が多いと、成形偏向の収差により電子
源像のぼけが増大される。そのため、試料18面上で同
様の成形ビ−ム位置ずれが発生する。ビ−ムアライナ−
7を用いればその位置ずれを調整することができる。処
理及び制御装置25により位置ずれ量に応じてビ−ムア
ライナ−7を自動的に制御してもよい。また、第一成形
レンズ6は主成形レンズと焦点合わせ用の補助レンズ5
とを含むようにしてもよい。その補助レンズとしては空
芯コイルや静電レンズ等を用いることができる。
In the upper stage of the shaping deflection shown in FIG. 1, an axis adjusting deflector 7 which can be called a beam aligner such as a deflection coil is provided.
Can improve the asymmetry of the electron beam in the X and Y directions. That is, if the beam axis shift amount in the shaping deflector is large, blurring of the electron source image is increased due to shaping deflection aberration. As a result, the same misalignment of the forming beam occurs on the surface of the sample 18. Beam aligner
7, the positional deviation can be adjusted. The beam aligner 7 may be automatically controlled by the processing and control device 25 according to the amount of displacement. The first molded lens 6 is a main molded lens and an auxiliary lens 5 for focusing.
May be included. An air-core coil, an electrostatic lens, or the like can be used as the auxiliary lens.

【0017】第一成形レンズが特に磁界型の場合は、焦
点合わせ(焦点補正)を実行すると、電子線が回転す
る。この回転量は予めわかるから、その回転量に応じ
て、処理及び制御装置25により、第一第二成形レンズ
に配置された長焦点空芯レンズコイル9を自動的に逆励
磁すれば、電子線の無回転化が可能である。
When the first molded lens is of a magnetic field type in particular, when focusing (focus correction) is performed, the electron beam rotates. Since the amount of rotation is known in advance, if the processing and control device 25 automatically reversely excites the long-focal air-core lens coil 9 disposed on the first and second molded lenses according to the amount of rotation, the electron beam Can be non-rotating.

【0018】本発明の実施例によれば、成形偏向動作す
なわち可変成形ビーム寸法変化、一括露光用開口選択に
伴うビーム軸ずれを低減し、試料照射位置ずれを最小限
とする。異寸法または異開口ショット間の接続誤差を改
善し、部分一括露光では更に下地への合わせ精度が向上
する。また対物レンズ内での軸ずれを補正し収差の増大
を防止し解像性を改善することができる。
According to the embodiment of the present invention, the beam deflection caused by the shaping deflection operation, that is, the change in the variable shaping beam dimension and the selection of the aperture for collective exposure, is reduced, and the sample irradiation position shift is minimized. Connection errors between shots with different dimensions or different openings are improved, and the accuracy of alignment with the base is further improved in partial batch exposure. Further, it is possible to correct the axial deviation in the objective lens, prevent the aberration from increasing, and improve the resolution.

【0019】[0019]

【発明の効果】本発明によれば、電子線の成形偏向動作
時における望ましからぬ電子線位置ずれを防止して高精
度露光を可能にする電子線描画装置が提供される。
According to the present invention, to prevent unwanted electron beam position deviation at the time of shaping deflection operation of the electron beam electron beam drawing apparatus that enables high-precision exposure is provide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す電子線描画装置の概略
図。
FIG. 1 is a schematic diagram of an electron beam drawing apparatus showing one embodiment of the present invention.

【図2】本発明で用いられる可変成形ビーム寸法の評価
方法の一例の説明図。
FIG. 2 is an explanatory diagram of an example of a method for evaluating a variable shaped beam size used in the present invention.

【図3】軸ずれの影響を示す一例としての摸式図。FIG. 3 is a schematic diagram as an example showing the influence of axis deviation.

【図4】照射位置ずれ測定方法の一例の説明図。FIG. 4 is an explanatory diagram of an example of an irradiation position shift measuring method.

【符号の説明】[Explanation of symbols]

1:電子源、2:ブランカ、3:第一成形絞り、4:電
子線、5:補助レンズ、6:第一成形レンズ、7:ビー
ムアライナー(軸調整用偏向器)、8:成形偏向器、
9:空芯レンズコイル、10:第ニ成形レンズ、11:
第二成形絞り、12:電子源像、13:縮小レンズ、1
4:対物絞り、15:対物偏向器、16:対物レンズ、
17:反射電子検出器、18:校正用マーク(試料)、
19:第一成形絞り像、20:第二成形絞り像、21:
校正用マークエッヂ、22:走査波形、23:微分波
形、24:成形ビーム、25:処理及び制御装置。
1: electron source, 2: blanker, 3: first forming aperture, 4: electron beam, 5: auxiliary lens, 6: first forming lens, 7: beam aligner (axis adjusting deflector), 8: forming deflector ,
9: air-core lens coil, 10: second molded lens, 11:
Second forming aperture, 12: electron source image, 13: reduction lens, 1
4: Objective aperture, 15: Objective deflector, 16: Objective lens,
17: backscattered electron detector, 18: calibration mark (sample),
19: first formed stop image, 20: second formed stop image, 21:
Mark edge for calibration, 22: scanning waveform, 23: differential waveform, 24: shaped beam, 25: processing and control device.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電子線を発生させる電子源と、その発生さ
れた電子線が透過する第一及び第二成形絞りと、前記電
子源の像を前記第一及び第二成形絞り間の所定位置に形
成する第一成形レンズと、該第一成形レンズと協働して
前記第一成形絞りの像を前記第二成形絞り上に形成する
第二成形レンズと、前記第一成形絞りの条件を変化させ
て前記第二成形絞り上に形成される電子源像の位置ずれ
量を計測し、該位置ずれ量を最小にする前記第一成形レ
ンズの条件を求めて制御する制御装置と、前記第二成形
絞り上の前記第一成形絞りの像を移動させて前記第二成
形絞りを透過した電子線の寸法を制御するように前記電
子線を偏向する、前記第一及び第二成形絞り間に配置さ
れた成形偏向器と、前記第二成形絞りの像を試料面上に
形成する手段とを備えていることを特徴とする電子線描
画装置。
An electron source for generating an electron beam, first and second shaping apertures through which the generated electron beam passes, and an image of the electron source at a predetermined position between the first and second shaping apertures. The first molded lens to be formed, the second molded lens that forms the image of the first molded aperture on the second molded aperture in cooperation with the first molded lens, and the condition of the first molded aperture. Change
Of the electron source image formed on the second forming aperture
The first molding laser that measures the
A control device for obtaining and controlling the condition of the lens, and the electron beam so as to move the image of the first forming aperture on the second forming aperture and control the size of the electron beam transmitted through the second forming aperture. for deflecting said first and shaping deflector disposed between the second formation diaphragm, electron beam lithography, characterized in that it comprises a means for forming an image of the second formation diaphragm on the sample surface apparatus.
【請求項2】前記制御装置は、前記電子源像の位置ずれ
量を最小にするように前記第一成形レンズの励磁電流を
制御することを特徴とする請求項1に記載された電子線
描画装置。
2. The apparatus according to claim 1 , wherein said controller is configured to shift a position of said electron source image.
The excitation current of the first molded lens so as to minimize the amount.
The electron beam lithography apparatus according to claim 1, wherein the electron beam lithography is controlled.
【請求項3】前記制御装置は、前記電子源像の位置ずれ
量を前記励磁電流の関数として近似し、極小となる励磁
電流を求めて制御することをことを特徴とする請求項2
に記載された電子線描画装置。
3. The apparatus according to claim 2 , wherein said controller is configured to shift a position of said electron source image.
The amount is approximated as a function of the exciting current,
3. The method according to claim 2, wherein the current is obtained and controlled.
An electron beam lithography apparatus according to claim 1.
JP31893196A 1996-11-29 1996-11-29 Electron beam drawing equipment Expired - Fee Related JP3315882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31893196A JP3315882B2 (en) 1996-11-29 1996-11-29 Electron beam drawing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31893196A JP3315882B2 (en) 1996-11-29 1996-11-29 Electron beam drawing equipment

Publications (2)

Publication Number Publication Date
JPH10163089A JPH10163089A (en) 1998-06-19
JP3315882B2 true JP3315882B2 (en) 2002-08-19

Family

ID=18104592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31893196A Expired - Fee Related JP3315882B2 (en) 1996-11-29 1996-11-29 Electron beam drawing equipment

Country Status (1)

Country Link
JP (1) JP3315882B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3508622B2 (en) * 1999-05-20 2004-03-22 株式会社日立製作所 Electron beam drawing apparatus and drawing method using electron beam
WO2002103765A1 (en) 2001-06-18 2002-12-27 Advantest Corporation Electron beam exposure apparatus, electron beam exposing method, semiconductor manufacturing method, and electron beam shape measuring method
JP2008016541A (en) * 2006-07-04 2008-01-24 Tokyo Electron Ltd Device and method of electron beam lithography, and control program

Also Published As

Publication number Publication date
JPH10163089A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
US6864488B2 (en) Charged particle beam exposure method and apparatus
US8618515B2 (en) Lithography apparatus and device manufacturing method
CN111812947B (en) Multi-charged particle beam drawing device and multi-charged particle beam drawing method
KR100327010B1 (en) Electron beam exposure apparatus and exposure method
US20110168923A1 (en) Demagnification measurement method for charged particle beam exposure apparatus, stage phase measurement method for charged particle beam exposure apparatus, control method for charged particle beam exposure apparatus, and charged particle beam exposure apparatus
KR102221957B1 (en) Charged particle beam writing apparatus and charged particle beam writing method
US6027843A (en) Charged-particle-beam microlithography methods including correction of imaging faults
JP2001085303A (en) Charged particle beam exposure system and charged particle beam exposure method
JP3508622B2 (en) Electron beam drawing apparatus and drawing method using electron beam
JPH09320931A (en) Method for measuring imaging characteristic and transfer device by the method
JP4365579B2 (en) Electron beam exposure apparatus and electron beam exposure method
JP3315882B2 (en) Electron beam drawing equipment
JP2006210455A (en) Charged particle exposure apparatus and method of fabricating device using apparatus
US7034314B2 (en) Projection apparatus for projecting a pattern formed on a mask onto a substrate and a control method for a projection apparatus
JP4477434B2 (en) Charged particle beam exposure apparatus and device manufacturing method
JP4459524B2 (en) Charged particle beam exposure apparatus and device manufacturing method
US20050116180A1 (en) Charged-particle beam lithographic system
JP4095218B2 (en) Charged beam exposure method and exposure apparatus
JP4212181B2 (en) Semiconductor exposure method and exposure apparatus
JP3550476B2 (en) Charged particle beam processing method and processing apparatus
JP2002246303A (en) Method of adjusting focal point and electron beam lithography system
JP3110363B2 (en) Adjustment method of charged beam writing system
KR20010039855A (en) Electron beam exposure apparatus, adjusting method, and block mask for adjustment
JP3242481B2 (en) Charged particle beam exposure method
JP2007019193A (en) Charged particle beam equipment, method for regulating lens power, and process for fabricating device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees