JP3315761B2 - Bioabsorbable polymer-containing sintered bone substitute - Google Patents

Bioabsorbable polymer-containing sintered bone substitute

Info

Publication number
JP3315761B2
JP3315761B2 JP15878693A JP15878693A JP3315761B2 JP 3315761 B2 JP3315761 B2 JP 3315761B2 JP 15878693 A JP15878693 A JP 15878693A JP 15878693 A JP15878693 A JP 15878693A JP 3315761 B2 JP3315761 B2 JP 3315761B2
Authority
JP
Japan
Prior art keywords
bioabsorbable polymer
polymer
substance
block
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15878693A
Other languages
Japanese (ja)
Other versions
JPH078547A (en
Inventor
宏治 二木
孝 西尾
桂子 滋野
一郎 小野
法正 篠田
政三 太田黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP15878693A priority Critical patent/JP3315761B2/en
Publication of JPH078547A publication Critical patent/JPH078547A/en
Application granted granted Critical
Publication of JP3315761B2 publication Critical patent/JP3315761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、骨欠損部の補填に有用
な生体吸収性高分子含有焼結型骨補填材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bioabsorbable polymer-containing sintered bone filling material useful for filling a bone defect.

【0002】[0002]

【従来技術及びその問題点】リン酸カルシウム系化合物
の焼結体は、歯や骨の主成分と近似しており、骨との親
和性や材料安定性に優れるとともに、多孔質焼結体の場
合には、その気孔内に骨進入が可能であるため、歯科材
料や骨補填材として繁用されてきた。しかしながら、従
来の焼結型リン酸カルシウム骨補填材は、靱性及び加工
性に劣るものであった。一方、リン酸カルシウム系化合
物の多孔質焼結体顆粒の孔内に薬剤を含有する薬剤徐放
性顆粒が提案されている。このものは、体内で応力があ
まりかからない部分であれば、骨補填材としても利用す
ることができるが、強度を必要とする部分には使用する
ことができないという問題点があった。
2. Description of the Related Art A sintered body of a calcium phosphate compound is similar to the main components of teeth and bones, has excellent affinity with bones and material stability, and has a high performance in the case of a porous sintered body. Has been widely used as a dental material or a bone replacement material because bone can penetrate into the pores. However, the conventional sintered calcium phosphate bone substitute was inferior in toughness and workability. On the other hand, drug sustained-release granules containing a drug in the pores of porous sintered body granules of a calcium phosphate compound have been proposed. This material can be used as a bone replacement material as long as it does not receive much stress in the body, but there is a problem that it cannot be used in a portion requiring strength.

【0003】[0003]

【発明の目的】本発明は、上記従来技術の問題点を解消
し、強度、靱性及び加工性に優れた焼結型骨補填材及び
生体内で生理活性物質を徐々に放出しうる焼結型骨補填
材を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a sintered bone substitute having excellent strength, toughness and workability, and a sintered type capable of gradually releasing a physiologically active substance in vivo. It is intended to provide a bone substitute.

【0004】本発明は、特定の特性を有する多孔質リン
酸カルシウム焼結体ブロックと生体吸収性高分子を用い
ることによって上記目的を達成したものである。すなわ
ち、本発明の焼結型骨補填材は、Ca/P比1.3〜
1.8、気孔率0.1〜70%、比表面積0.1〜50
2 /g及び細孔径1nm〜10μmの連通気孔を有す
る多孔質リン酸カルシウム系化合物焼結体ブロックに生
体吸収性高分子物質を含浸させたことを特徴とする。
The present invention has achieved the above object by using a porous calcium phosphate sintered block having specific characteristics and a bioabsorbable polymer. That is, the sintered bone replacement material of the present invention has a Ca / P ratio of 1.3 to 1.3.
1.8, porosity 0.1-70%, specific surface area 0.1-50
It is characterized by impregnating a bioabsorbable polymer substance into a porous calcium phosphate compound sintered block having m 2 / g and continuous pores having a pore diameter of 1 nm to 10 μm.

【0005】本発明の焼結型骨補填材は、上記のように
多孔質リン酸カルシウム系化合物焼結体ブロックを基体
とするものである。原料として用いるリン酸カルシウム
系化合物は、Ca/P比1.3〜1.8のリン酸カルシ
ウム系化合物であれば、特に制限はなく、Ca/P比が
1.35〜1.75のものが好ましく、Ca/P比が
1.4〜1.7のものがより好ましい。例えば、ハイド
ロキシアパタイト、フッ素アパタイトなどの各種アパタ
イト、α−及びβ−リン酸三カルシウム、リン酸四カル
シウムなどが挙げられる。焼結体ブロックは、上記のよ
うなリン酸カルシウム系化合物のうちの1種以上を含む
ものであってよい。本発明に用いる多孔質焼結体ブロッ
クは、例えば、過酸化水素などの発泡剤を用いる方法や
加熱により消失する物質の粒子と混合して造粒し、加熱
して多孔質化する方法など、自体公知の方法により製造
することができる。本発明に用いる多孔質リン酸カルシ
ウム系化合物焼結体ブロックは、200〜1400℃、
好ましくは500〜1300℃、より好ましくは700
〜1200℃の温度で焼成したものである。200℃未
満であると、粒子の結合が弱く、生体吸収性高分子での
含浸過程などで崩れてしまい、使用に耐えなくなる。一
方、焼成温度が1400℃を超えると、ハイドロキシア
パタイトなど、リン酸カルシウム系化合物の分解が起こ
り、好ましくない。
[0005] The sintered bone replacement material of the present invention is based on a porous calcium phosphate compound sintered block as described above. The calcium phosphate compound used as a raw material is not particularly limited as long as it is a calcium phosphate compound having a Ca / P ratio of 1.3 to 1.8, and preferably has a Ca / P ratio of 1.35 to 1.75. Those having a / P ratio of 1.4 to 1.7 are more preferable. For example, various apatites such as hydroxyapatite and fluorapatite, α- and β-tricalcium phosphate, tetracalcium phosphate and the like can be mentioned. The sintered body block may include one or more of the calcium phosphate-based compounds as described above. The porous sintered body block used in the present invention is, for example, a method using a foaming agent such as hydrogen peroxide or a method of mixing and granulating with particles of a substance that disappears by heating, and a method of heating to be porous, It can be produced by a method known per se. The porous calcium phosphate compound sintered block used in the present invention has a temperature of 200 to 1400 ° C.
Preferably 500 to 1300 ° C, more preferably 700
It was fired at a temperature of ~ 1200 ° C. If the temperature is lower than 200 ° C., the bonding of the particles is weak, and the particles are broken during the impregnation process with the bioabsorbable polymer or the like, and cannot be used. On the other hand, if the firing temperature exceeds 1400 ° C., decomposition of a calcium phosphate compound such as hydroxyapatite occurs, which is not preferable.

【0006】本発明に用いる多孔質焼結体ブロックは、
気孔率0.1〜70%であることを必要とする。気孔率
が0.1%未満では、生体吸収性高分子物質の付着量が
少なすぎ、靱性、加工性などの向上という本発明の目的
が達成されず、70%を超えると、強度が弱くなり、使
用に耐えなくなる。気孔率が1〜60%の焼結体が好ま
しく、10〜50%の焼結体はより好ましい。さらに、
その比表面積は、0.1〜50m2 /gであることを必
要とする。比表面積が0.1m2 /g未満であると、生
体吸収性高分子物質の付着する表面積が小さすぎるた
め、生体吸収性高分子物質の付着量が少なく、目的の効
果が充分に得られず、50m2 /gを超えると、強度が
弱くなり、使用に耐えなくなる。比表面積は好ましくは
1〜40m2 /g、より好ましくは10〜30m2 /g
である。
The porous sintered body block used in the present invention comprises:
The porosity needs to be 0.1 to 70%. If the porosity is less than 0.1%, the amount of the bioabsorbable polymer substance attached is too small, and the object of the present invention of improving toughness and processability is not achieved. If it exceeds 70%, the strength becomes weak. , Becomes useless. A sintered body having a porosity of 1 to 60% is preferred, and a sintered body of 10 to 50% is more preferred. further,
Its specific surface area needs to be between 0.1 and 50 m 2 / g. When the specific surface area is less than 0.1 m 2 / g, the surface area to which the bioabsorbable polymer substance adheres is too small, so that the amount of the bioabsorbable polymer substance attached is small, and the intended effect cannot be sufficiently obtained. If it exceeds 50 m 2 / g, the strength becomes weak, and it cannot be used. The specific surface area is preferably 1~40m 2 / g, more preferably 10 to 30 m 2 / g
It is.

【0007】本発明に用いる多孔質焼結体は、生体吸収
性高分子物質や後記の生理活性物質の保持能力の観点か
ら1nm〜10μmの細孔径を有するものとするのが好
ましく、10nm〜8μmの細孔径を有するのがより好
ましく、50nm〜5μmの細孔径を有するのが最も好
ましい。細孔径が1nm未満であると、生体吸収性高分
子物質が孔内に浸透することができず、10μmを超え
ると、生体吸収性高分子物質が孔内に保持され難くなる
ので好ましくない。
The porous sintered body used in the present invention preferably has a pore diameter of 1 nm to 10 μm from the viewpoint of the ability to retain a bioabsorbable polymer substance and a physiologically active substance described below. More preferably, it has a pore diameter of 50 nm to 5 μm. If the pore diameter is less than 1 nm, the bioabsorbable polymer cannot penetrate into the pores, and if it exceeds 10 μm, the bioabsorbable polymer cannot be easily retained in the pores, which is not preferable.

【0008】本発明の骨補填材は、上記のような多孔質
リン酸カルシウム系化合物の焼結体ブロックに生体吸収
性高分子物質を含浸させたものである。ここで、生体吸
収性高分子物質としては、生体内で分解吸収されるもの
であれば、特に制限はなく、天然又は合成の各種のもの
を使用することができる。天然生体吸収性高分子物質と
しては、例えば、コラーゲン、ゼラチン、フィブリン、
アルブミン等のポリペプチド、デンプン、ヒアルロン
酸、キチン、デキストラン等のポリグリコシド、ポリ−
β−ヒドロキシブチレート等のポリエステル、核酸等の
ポリホスフェートなどが挙げられる。また、合成の生体
吸収性高分子物質としては、例えば、ポリグルタミン酸
等のポリペプチド、ポリグリコール酸、ポリ乳酸、ポリ
リンゴ酸、ポリラクトン、乳酸−グリコール酸共重合体
等のポリエステル、ポリ(テレフタル酸−セバシン酸無
水物)等のポリ酸無水物、ポリ(オキシカルボニルオキ
シエチレン)等のポリカーボネート、ポリ(イソブチル
シアノアクリレート)等のポリ−α−シアノアクリレー
トなどが挙げられる。これらの生体吸収性高分子物質
は、単独で又は2種以上の組合せで使用することがで
き、生体内での分解吸収速度などを考慮して適宜選択す
ればよい。
[0008] The bone substitute material of the present invention is obtained by impregnating a bioabsorbable polymer substance into a sintered block of the porous calcium phosphate compound as described above. Here, the bioabsorbable polymer substance is not particularly limited as long as it is decomposed and absorbed in a living body, and various natural or synthetic substances can be used. Examples of natural bioabsorbable polymer substances include collagen, gelatin, fibrin,
Polypeptides such as albumin, starch, hyaluronic acid, chitin, polyglycosides such as dextran, poly-
Examples thereof include polyesters such as β-hydroxybutyrate, and polyphosphates such as nucleic acids. Examples of the synthetic bioabsorbable polymer include, for example, polypeptides such as polyglutamic acid, polyesters such as polyglycolic acid, polylactic acid, polymalic acid, polylactone, and lactic acid-glycolic acid copolymer, and poly (terephthalic acid). Polyanhydrides such as sebacic anhydride); polycarbonates such as poly (oxycarbonyloxyethylene); and poly-α-cyanoacrylates such as poly (isobutylcyanoacrylate). These bioabsorbable polymer substances can be used alone or in combination of two or more, and may be appropriately selected in consideration of the rate of decomposition and absorption in a living body.

【0009】焼結体ブロックの生体吸収性高分子物質に
よる含浸は、その高分子物質が液体である場合には、そ
のままあるいは希釈剤で希釈した含浸液に浸漬すること
によって行われ、固体である場合には、加熱溶融した溶
融液に浸漬するか、又は生体吸収性高分子物質を適切な
溶剤に溶解又は懸濁した含浸液に浸漬することによって
行われる。また、いずれの場合でも、含浸を減圧下に行
うことによって、焼結体ブロックの中心部まで迅速に生
体吸収性高分子物質を含浸させることができる。含浸液
に浸漬する場合には、これらの濃度は、焼結体ブロック
に付着させたい生体吸収性高分子物質の量に応じて適宜
選定することができる。一般に、焼結体ブロックへの生
体吸収性高分子の付着量は、5〜90重量%であるのが
好ましい。この付着量が5重量%未満であると高分子を
付着した効果がほとんど見られずまた90重量%を超え
ると、焼結体ブロックへの付着が困難となる。
When the sintered body block is impregnated with a bioabsorbable polymer substance, if the polymer substance is a liquid, it is immersed in the impregnating liquid diluted with a diluent or as it is, and is solid. In this case, the immersion is performed by immersing in a melt that has been heated and melted, or by immersing in an impregnating solution in which a bioabsorbable polymer is dissolved or suspended in an appropriate solvent. In any case, by performing the impregnation under reduced pressure, it is possible to quickly impregnate the bioabsorbable polymer substance up to the center of the sintered body block. When immersed in the impregnating liquid, these concentrations can be appropriately selected according to the amount of the bioabsorbable polymer substance to be attached to the sintered body block. Generally, the amount of the bioabsorbable polymer attached to the sintered block is preferably 5 to 90% by weight. If the amount is less than 5% by weight, the effect of attaching the polymer is scarcely observed, and if it exceeds 90% by weight, it becomes difficult to adhere to the sintered block.

【0010】本発明においては、上記のようにして生体
吸収性高分子を含浸した焼結体ブロックを乾燥する。乾
燥は、常法で、例えば加熱又は凍結乾燥法により行うこ
とができる。加熱乾燥は、含浸焼結体ブロックを高温乾
燥機内で100℃以下で行うことができる。
In the present invention, the sintered block impregnated with the bioabsorbable polymer is dried as described above. Drying can be performed in a conventional manner, for example, by heating or freeze-drying. Heat drying can be performed on the impregnated sintered body block at a temperature of 100 ° C. or lower in a high-temperature dryer.

【0011】上記のように生体吸収性高分子物質で含浸
することによって得られる焼結体ブロックは、その孔内
及び外表面に生体吸収性高分子物質を有するものとな
り、強度、靱性及び加工性が著しく向上する。したがっ
て、焼結体ブロックを骨欠損部の形状に適切に加工して
埋入することができ、高分子物質が生体内で分解吸収さ
れた後、その孔内に骨進入が行われ、骨との有効な生着
が可能となる。生体吸収性高分子物質の分解吸収速度を
考慮して、使用する生体吸収性高分子物質を選択するこ
とにより孔の形成時期を調整することができる。
The sintered body block obtained by impregnating with the bioabsorbable polymer substance as described above has the bioabsorbable polymer substance in the pores and the outer surface thereof, and has strength, toughness and workability. Is significantly improved. Therefore, the sintered body block can be appropriately processed into the shape of the bone defect and embedded, and after the polymer substance is decomposed and absorbed in the living body, the bone penetrates into the hole, and the bone is removed. Effective engraftment becomes possible. The formation time of pores can be adjusted by selecting the bioabsorbable polymer substance to be used in consideration of the rate of decomposition and absorption of the bioabsorbable polymer substance.

【0012】本発明の焼結型骨補填材においては、さら
に、生体吸収性高分子物質と一緒に生理活性物質を含浸
させ、生体吸収性高分子物質が生体内で分解吸収される
に伴って生理活性物質を徐々に放出させることができ
る。この場合、多孔質焼結体のブロックの気孔率、比表
面積及び細孔径並びに生体吸収性高分子物質の種類を適
宜、選択することによって生理活性物質の徐放効果を制
御することができる。使用しうる生理活性物質として
は、例えば、抗生物質、抗癌剤、抗腫瘍剤、骨形成因
子、骨増殖因子などが挙げられる。
[0012] In the sintered bone replacement material of the present invention, a bioactive substance is further impregnated together with the bioabsorbable polymer, and the bioabsorbable polymer is decomposed and absorbed in the living body. The physiologically active substance can be released gradually. In this case, the sustained release effect of the physiologically active substance can be controlled by appropriately selecting the porosity, specific surface area and pore diameter of the block of the porous sintered body and the type of the bioabsorbable polymer substance. Examples of the physiologically active substance that can be used include antibiotics, anticancer agents, antitumor agents, bone morphogenetic factors, bone growth factors, and the like.

【0013】[0013]

【実施例】【Example】

実施例1 公知の湿式合成法でハイドロキシアパタイトスラリーを
合成し、このアパタイトスラリーを噴霧乾燥してハイド
ロキシアパタイト粉末を得た。得られたハイドロキシア
パタイト粉末100gに、粉末卵白アルブミン50gと
水300gを添加し、ハンドミキサーで約10分間混練
及び泡立てを行った。これをポリ容器に入れ、80℃の
乾燥器中で一昼夜乾燥して多孔質乾燥体を得た。これを
焼成後の形状が35×25×7mmになるように加工
し、1000℃で3時間焼成して、Ca/P比1.6
7、気孔率55%、比表面積20m2 /g、細孔径2.
0μmのハイドロキシアパタイトブロックを得た。
Example 1 A hydroxyapatite slurry was synthesized by a known wet synthesis method, and this apatite slurry was spray-dried to obtain a hydroxyapatite powder. 50 g of powdered ovalbumin and 300 g of water were added to 100 g of the obtained hydroxyapatite powder, and kneaded and whipped for about 10 minutes with a hand mixer. This was put in a plastic container and dried in a dryer at 80 ° C. for 24 hours to obtain a porous dried body. This was processed so that the shape after firing was 35 × 25 × 7 mm, and was fired at 1000 ° C. for 3 hours to have a Ca / P ratio of 1.6.
7, porosity 55%, specific surface area 20 m 2 / g, pore size 2.
A 0 μm hydroxyapatite block was obtained.

【0014】また、DL−乳酸単位52モル%とグリコ
ール酸単位48モル%とからなる乳酸−グリコール酸共
重合体(分子量45,000)300gを、500ml
のビーカーに取り、窒素置換した加熱乾燥器内で180
℃に加熱した。3時間後、溶融した共重合体中に、予め
作製したハイドロキシアパタイトブロックを浸漬した。
乾燥器内を徐々に減圧にしていくと、ハイドロキシアパ
タイトの表面から無数の気泡が発生し、気孔内に含まれ
ていた空気が排除されるとともにブロック表面ばかりで
なく、ブロック内部の気孔内にまで乳酸−グリコール酸
共重合体を浸透させることができた。乾燥機内を最終的
に5mmHg程度まで減圧して2時間保持し、気泡の発
生がなくなったことを確認した後、取り出し、乳酸−グ
リコール酸共重合体含有アパタイトブロックを得た。
In addition, 300 g of a lactic acid-glycolic acid copolymer (molecular weight: 45,000) composed of 52 mol% of DL-lactic acid units and 48 mol% of glycolic acid units is mixed with 500 ml
Into a beaker, and place it in a drying oven purged with nitrogen for 180
Heated to ° C. After 3 hours, the prepared hydroxyapatite block was immersed in the molten copolymer.
When the pressure inside the dryer is gradually reduced, countless air bubbles are generated from the surface of the hydroxyapatite, eliminating the air contained in the pores and not only into the block surface but also into the pores inside the block. The lactic acid-glycolic acid copolymer was able to penetrate. The inside of the dryer was finally depressurized to about 5 mmHg and kept for 2 hours. After confirming that the generation of air bubbles was eliminated, the lactic acid-glycolic acid copolymer-containing apatite block was obtained.

【0015】実施例2 含浸を大気圧下で行った以外は、実施例1と同様にして
乳酸−グリコール酸共重合体含有アパタイトブロックを
得た。このブロックでは、乳酸−グリコール酸共重合体
は表面付近にのみ付着していた。
Example 2 An apatite block containing a lactic acid-glycolic acid copolymer was obtained in the same manner as in Example 1 except that the impregnation was carried out at atmospheric pressure. In this block, the lactic acid-glycolic acid copolymer was attached only near the surface.

【0016】上記実施例1及び2で得られた乳酸−グリ
コール酸共重合体含有アパタイトブロックについて(試
料各5個について)、3点曲げ強度及び圧縮強度を測定
し、結果を表1に示す。
The lactic acid-glycolic acid copolymer-containing apatite blocks obtained in Examples 1 and 2 (for each of the five samples) were measured for three-point bending strength and compressive strength, and the results are shown in Table 1.

【0017】比較例 実施例1で作成したハイドロキシアパタイトブロックで
あって、生体吸収性高分子を含浸していないものの3点
曲げ強度を測定し、結果を表1に示す。
Comparative Example The three-point bending strength of the hydroxyapatite block prepared in Example 1, which was not impregnated with a bioabsorbable polymer, was measured. The results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】表1の結果から明らかなとおり、本発明に
よる生体吸収性高分子含有焼結型骨補填材は、優れた3
点曲げ強度及び圧縮強度を有する。
As is evident from the results in Table 1, the sintered bone graft material containing a bioabsorbable polymer according to the present invention has excellent 3
It has point bending strength and compressive strength.

【0020】[0020]

【発明の効果】本発明の焼結型骨補填材は、生体吸収性
高分子物質を含むため、従来の焼結型のものと比べて強
度、靱性及び加工性が著しく向上し、例えば、セルフタ
ップによるネジ止めが可能となるほどである。また、そ
の高分子物質の分解吸収に伴って、焼結体内部に骨進入
が可能な連通気孔が再生される。さらに、生体吸収性高
分子物質に各種の生理活性物質を混合しておくことによ
って、その生体吸収性高分子物質の分解吸収に伴い、生
理活性物質が徐々に放出される。したがって、本発明の
骨補填材は、骨進入が可能で、強度、靱性及び加工性に
優れた骨補填材であるとともに、例えば、骨形成因子等
を徐放することにより術後早期の骨との生着を期待でき
るなど、局所に生理活性物質の作用を集中・持続させう
る徐放性薬剤の機能をも発揮することができる。
The sintered bone substitute according to the present invention contains a bioabsorbable polymer, so that its strength, toughness and workability are remarkably improved as compared with those of the conventional sintered type. It is possible to screw with a tap. In addition, as the polymer substance is decomposed and absorbed, the continuous air holes that allow bone to enter into the sintered body are regenerated. Furthermore, by mixing various bioactive substances with the bioabsorbable polymer substance, the bioactive substance is gradually released as the bioabsorbable polymer substance is decomposed and absorbed. Therefore, the bone replacement material of the present invention is capable of penetrating bone and is a bone replacement material having excellent strength, toughness, and workability. It can also exhibit the function of a sustained-release drug that can concentrate and sustain the action of a physiologically active substance locally, such as expecting engraftment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 滋野 桂子 東京都板橋区前野町2丁目36番9号 旭 光学工業株式会社内 (72)発明者 小野 一郎 福島県福島市大森字堂の前23医大公舎B −2 (72)発明者 篠田 法正 愛知県名古屋市南区丹後通2丁目1番地 三井東圧化学株式会社内 (72)発明者 太田黒 政三 愛知県名古屋市南区丹後通2丁目1番地 三井東圧化学株式会社内 (56)参考文献 特開 平3−218310(JP,A) 特開 昭63−181756(JP,A) 特開 平1−288269(JP,A) 特表 平4−500013(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61L 27/00 A61K 6/033 ──────────────────────────────────────────────────続 き Continued on the front page (72) Keiko Shino Inventor Asahi Optical Industry Co., Ltd. 2-36-9 Maeno-cho, Itabashi-ku, Tokyo (72) Inventor Ichiro Ono 23 former medical colleges in Omori Jido, Fukushima City Public building B-2 (72) Inventor Norimasa Shinoda 2-1-1 Tango-dori, Minami-ku, Nagoya-shi, Aichi Prefecture Inside Mitsui Toatsu Chemicals Co., Ltd. 1 Mitsui Toatsu Chemical Co., Ltd. (56) References JP-A-3-218310 (JP, A) JP-A-63-181756 (JP, A) JP-A-1-288269 (JP, A) 4-500013 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) A61L 27/00 A61K 6/033

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ca/P比1.3〜1.8、気孔率0.
1〜70%、比表面積0.1〜50m2 /g及び細孔径
1nm〜10μmの連通気孔を有する多孔質リン酸カル
シウム系化合物焼結体ブロックに生体吸収性高分子物質
減圧下に含浸させて、該ブロックの中心部まで生体吸
収性高分子物質を含浸・保持させたことを特徴とする生
体吸収性高分子含有焼結型骨補填材。
1. A Ca / P ratio of 1.3 to 1.8 and a porosity of 0.
A bioabsorbable polymer substance is impregnated in a porous calcium phosphate compound sintered block having 1 to 70%, a specific surface area of 0.1 to 50 m 2 / g, and a continuous pore having a pore diameter of 1 nm to 10 μm under reduced pressure, Biological suction up to the center of the block
A bioresorbable polymer- containing sintered bone replacement material impregnated with and holding a harvesting polymer material.
【請求項2】 生体吸収性高分子物質がポリペプチド、
ポリグリコシド、ポリエステル、ポリホスフェート等の
天然生体吸収性高分子物質又はポリペプチド、ポリエス
テル、ポリ酸無水物、ポリカーボネート、ポリ−α−シ
アノアクリレート等の合成生体吸収性高分子物質である
請求項1記載の生体吸収性高分子含有焼結型骨補填材。
2. The bioabsorbable polymer substance is a polypeptide,
2. A natural bioabsorbable polymer such as polyglycoside, polyester or polyphosphate or a synthetic bioabsorbable polymer such as polypeptide, polyester, polyanhydride, polycarbonate or poly-α-cyanoacrylate. Bio-absorbable polymer-containing sintered bone substitute.
【請求項3】 生体吸収性高分子物質が乳酸−グリコー
ル酸共重合体である請求項1記載の生体吸収性高分子含
有焼結型骨補填材。
3. The bioresorbable polymer-containing sintered bone substitute according to claim 1, wherein the bioabsorbable polymer substance is a lactic acid-glycolic acid copolymer.
【請求項4】 生体吸収性高分子物質に生理活性物質を
添加混合した請求項記載の生体吸収性高分子含有焼結
型骨補填材。
4. A bioabsorbable polymer bio-absorbable material to claim 1, wherein the adding and mixing the physiologically active substance polymer containing sintered type bone filling material.
JP15878693A 1993-06-29 1993-06-29 Bioabsorbable polymer-containing sintered bone substitute Expired - Fee Related JP3315761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15878693A JP3315761B2 (en) 1993-06-29 1993-06-29 Bioabsorbable polymer-containing sintered bone substitute

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15878693A JP3315761B2 (en) 1993-06-29 1993-06-29 Bioabsorbable polymer-containing sintered bone substitute

Publications (2)

Publication Number Publication Date
JPH078547A JPH078547A (en) 1995-01-13
JP3315761B2 true JP3315761B2 (en) 2002-08-19

Family

ID=15679312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15878693A Expired - Fee Related JP3315761B2 (en) 1993-06-29 1993-06-29 Bioabsorbable polymer-containing sintered bone substitute

Country Status (1)

Country Link
JP (1) JP3315761B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989033B1 (en) 1992-09-17 2006-01-24 Karlheinz Schmidt Implant for recreating verterbrae and tubular bones
DE19917696A1 (en) 1999-04-20 2000-10-26 Karlheinz Schmidt Biological restoration agent, e.g. for filling bone defects, comprising a carrier coated with or including an active complex of structural, recruiting, adhesion and growth or maturation components
US7214654B1 (en) 1994-12-07 2007-05-08 Karlheinz Schmidt Agent for the manufacture of biological parts including an active ingredient complex and carrying materials suitable for the active ingredient complex
JP3360810B2 (en) 1998-04-14 2003-01-07 ペンタックス株式会社 Method for producing bone replacement material
SE515227C2 (en) * 1999-04-28 2001-07-02 Bruce Medical Ab Body for providing and growing bone and / or connective tissue and methods for making the body
MY133943A (en) * 2000-08-22 2007-11-30 Synthes Gmbh Bone replacement material
CN1309428C (en) * 2002-05-13 2007-04-11 东芝陶瓷株式会社 Member for regenerating joint cartilage and process for producing the same, method of regenerating joint cartilage and artificial cartilage for transplantation
JP4228070B2 (en) * 2003-03-03 2009-02-25 独立行政法人産業技術総合研究所 Porous calcium phosphate polymer hydrogel composite having penetration, method for producing the same, and artificial bone or drug sustained-release body using the same
JP4831559B2 (en) * 2004-03-30 2011-12-07 独立行政法人産業技術総合研究所 Nanoapatite phantom and its use
JP2007222611A (en) * 2006-01-26 2007-09-06 National Institute Of Advanced Industrial & Technology Artificial bone with sustained-release property of chemical and manufacturing method thereof
EP2014256A1 (en) * 2007-07-12 2009-01-14 Straumann Holding AG Composite bone repair material
EP2308519A4 (en) 2008-07-02 2013-05-29 Next21 Kk Artificial bone material having controlled calcium ion elution
ES2721876T3 (en) * 2009-06-15 2019-08-06 Cartiheal 2009 Ltd Solid forms for tissue repair
JP5578499B2 (en) * 2010-03-16 2014-08-27 学校法人明治大学 Calcium phosphate / biodegradable polymer hybrid material, its production method and implant using the hybrid material
JP5137993B2 (en) * 2010-04-14 2013-02-06 株式会社松浦機械製作所 Artificial bone manufacturing method and artificial bone manufactured by the method
JP2012016517A (en) * 2010-07-09 2012-01-26 Inoac Gijutsu Kenkyusho:Kk Bone regeneration material and method for manufacturing the same
CN103987392A (en) * 2011-09-02 2014-08-13 Adeka株式会社 Method for preparing decellularized tissue product, and graft provided with decellularized tissue product
JP6961504B2 (en) * 2018-01-26 2021-11-05 国立大学法人 岡山大学 Sustained release device

Also Published As

Publication number Publication date
JPH078547A (en) 1995-01-13

Similar Documents

Publication Publication Date Title
JP3315761B2 (en) Bioabsorbable polymer-containing sintered bone substitute
JP4873600B2 (en) Biodegradable and biocompatible implants
EP1588724A2 (en) Composite material comprising fibrous organic material and fibrous calcium phosphate
JP4463719B2 (en) Organic-inorganic composite porous body, method for producing fibrous organic substance, and method for producing organic-inorganic composite porous body
CA2271884C (en) Improved porous biomaterials and methods for their manufacture
Stylios et al. Present status and future potential of enhancing bone healing using nanotechnology
US11154638B2 (en) Methods for forming scaffolds
JPS61193666A (en) Hard tissue prosthesis and its production
JPH09509082A (en) Biocompatible porous matrix of bioabsorbable materials
JPS63272355A (en) Implant piece suitable for remedy by rebuilding operation having tissue specific porosity and production thereof
WO2007032390A1 (en) Composite porous material
AU2009251989A1 (en) Osteoinductive nanocomposites
CA2467252C (en) Composite biomaterials
JP5015570B2 (en) Biomaterial and method for producing biomaterial
JP4184652B2 (en) Organic-inorganic composite porous body and method for producing the same
EP1501771B1 (en) Method of preparing porous calcium phosphate granules
EP1086711B1 (en) Ceramic-polymer composites
JPH0731673A (en) Bioabsorbable polymer-containing curable bone filling material
JP2008054908A (en) Bone prosthetic material
US20100233269A1 (en) Mineralized polymer particles and the method for their production
PL235822B1 (en) Cryogel bone scaffold based on chitosan and calcium phosphate bioceramics as well as method of producing it
JPH01104635A (en) Production of cellular substance
JPH08257055A (en) Manufacture of cell structure
KR102473250B1 (en) A POROUS SCAFFOLD COMPRISING A β-TRICALCIUM PHOSPHATE AND A POLYCARPROLACTON FOR REGENERATING THE PERIODONTAL COMPLEX HAVING IMPROVED TENSILE STRENGTH CHARACTERISTICS, AND METHOD FOR PREPARING THE SAME
JPH01107769A (en) Osteoprosthetic agent

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees