JP3314322B2 - Sulfur dioxide oxidation catalyst structure - Google Patents

Sulfur dioxide oxidation catalyst structure

Info

Publication number
JP3314322B2
JP3314322B2 JP00082695A JP82695A JP3314322B2 JP 3314322 B2 JP3314322 B2 JP 3314322B2 JP 00082695 A JP00082695 A JP 00082695A JP 82695 A JP82695 A JP 82695A JP 3314322 B2 JP3314322 B2 JP 3314322B2
Authority
JP
Japan
Prior art keywords
catalyst
sulfur dioxide
ratio
reaction rate
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00082695A
Other languages
Japanese (ja)
Other versions
JPH08187430A (en
Inventor
健 片桐
洋三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Hitachi Zosen Corp filed Critical Nippon Mining and Metals Co Ltd
Priority to JP00082695A priority Critical patent/JP3314322B2/en
Publication of JPH08187430A publication Critical patent/JPH08187430A/en
Application granted granted Critical
Publication of JP3314322B2 publication Critical patent/JP3314322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、二酸化硫黄を三酸化
硫黄に酸化するのに用いられる五酸化バナジウムベース
の粒状触媒の新規構造に関する。
This invention relates to a novel structure of a vanadium pentoxide based particulate catalyst used to oxidize sulfur dioxide to sulfur trioxide.

【0002】[0002]

【発明の背景】二酸化硫黄酸化触媒は、静止触媒層を通
る二酸化硫黄含有ガスの流れ方向が周期的に反転する非
定常型二酸化硫黄酸化装置(以下、単に「非定常型」と
いう)において用いられる。この種の二酸化硫黄酸化触
媒としては、通常の硫酸製造装置に用いられている直径
5mm〜25mmの円柱粒状あるいはリング状の触媒が
使用できる。
BACKGROUND OF THE INVENTION A sulfur dioxide oxidation catalyst is used in an unsteady type sulfur dioxide oxidation apparatus (hereinafter simply referred to as "unsteady type") in which the flow direction of a sulfur dioxide-containing gas through a stationary catalyst layer is periodically reversed. . As this kind of sulfur dioxide oxidation catalyst, a cylindrical granular or ring-shaped catalyst having a diameter of 5 mm to 25 mm used in an ordinary sulfuric acid production apparatus can be used.

【0003】そして、非定常型の場合、触媒層内での効
率的な熱の移動が最終的な反応率に大きな影響を与える
ため、普通、原料二酸化硫黄の濃度によって触媒を大き
さにより使いわけている。すなわち、二酸化硫黄の濃度
が4%以下である場合、直径4mm〜12mmの触媒を
使用し、濃度4〜15%のときにはさらに大きな直径の
ものを使用する。これは、発生する反応熱を効率的に触
媒層中を移動させるためには、充填物の大きさが大きい
ほど有効であるためである。一方、反応率は反応器に充
填された触媒の全表面積に依存し、触媒表面積が大きい
ほど高い反応率が得られることは周知の事実である。従
って、非定常型の場合、高い反応を得るためには触媒の
充填量を従来の量よりも増加する必要がある。
[0003] In the case of the non-stationary type, since the efficient heat transfer in the catalyst layer has a great effect on the final reaction rate, the catalyst is usually selectively used depending on the concentration of the raw material sulfur dioxide. ing. That is, when the concentration of sulfur dioxide is 4% or less, a catalyst having a diameter of 4 mm to 12 mm is used, and when the concentration is 4 to 15%, a catalyst having a larger diameter is used. This is because the larger the size of the packing, the more effective it is to efficiently transfer the generated reaction heat in the catalyst layer. On the other hand, it is a well-known fact that the reaction rate depends on the total surface area of the catalyst packed in the reactor, and the larger the catalyst surface area, the higher the reaction rate. Therefore, in the case of the non-stationary type, in order to obtain a high reaction, it is necessary to increase the catalyst loading than the conventional amount.

【0004】[0004]

【従来技術および解決すべき課題】通常の硫酸製造工程
では、総合反応率99.5〜99.7%を得るために二
段接触二段吸収という手法を用いている。これは、一段
目の反応操作でSO2 が89〜92%までSO3 に酸化
されたガスを一度反応系から取り出し、生成したSO3
を硫酸に吸収させたのち、さらに二段目の反応器で反応
を行って高い反応率を得ようとするものである。
2. Description of the Related Art In a usual sulfuric acid production process, a technique of two-stage contact and two-stage absorption is used in order to obtain an overall reaction rate of 99.5 to 99.7%. This is because the gas oxidized to SO 3 until the SO 2 becomes 89 to 92% in the first-stage reaction operation is once taken out of the reaction system, and the generated SO 3
Is absorbed in sulfuric acid, and the reaction is further carried out in a second-stage reactor to obtain a high conversion.

【0005】非定常型二酸化硫黄酸化装置を用いた硫酸
製造方法は、低コストおよび省エネルギー型として従来
の硫酸製造方法よりも優れたものである。しかし、この
方法では、その反応機構の特殊性の故に、二段接触二段
吸収法で総合反応率99.7%を得るために一段目の反
応操作で89〜92%の反応率を得ようとすると、特殊
な形状の触媒が必要である。
[0005] A sulfuric acid production method using an unsteady type sulfur dioxide oxidation apparatus is superior to a conventional sulfuric acid production method as a low cost and energy saving type. However, in this method, due to the specificity of the reaction mechanism, in order to obtain an overall reaction rate of 99.7% by the two-step contact two-step absorption method, a reaction rate of 89 to 92% will be obtained in the first-step reaction operation. Then, a specially shaped catalyst is required.

【0006】この発明の目的は、上記のような実情に鑑
み、非定常型二酸化硫黄酸化装置に用いる有効な触媒構
造物を提供することにある。
[0006] An object of the present invention is to provide an effective catalyst structure for use in an unsteady type sulfur dioxide oxidation apparatus in view of the above situation.

【0007】[0007]

【課題を解決するための手段】この発明による二酸化硫
黄酸化触媒構造物は、上記目的を達成すべく工夫された
のものであって、二酸化硫黄を三酸化硫黄に酸化するの
に用いられる五酸化バナジウムベースの粒状触媒であっ
て、その高さ(H)と直径(D)の比(H/D)が0.
9〜1.5で、かつ表面積(A)と直径(D)の比(A
/D)が110mm〜440mmであることを特徴とす
るものである。
SUMMARY OF THE INVENTION A sulfur dioxide oxidation catalyst structure according to the present invention has been devised to achieve the above object, and is based on a vanadium pentoxide used for oxidizing sulfur dioxide to sulfur trioxide. Wherein the ratio (H / D) of height (H) to diameter (D) is 0.1.
9 to 1.5, and a ratio (A) between the surface area (A) and the diameter (D).
/ D) is 110 mm to 440 mm.

【0008】[0008]

【実施例】つぎに、この発明の実施例を幾つか挙げる。Next, several embodiments of the present invention will be described.

【0009】実施例1 二酸化硫黄を三酸化硫黄に酸化するのに通常用いられる
五酸化バナジウムベースの触媒をいろいろな形状に成型
した。こうして図1から図10の触媒構造物を得た。
Example 1 Vanadium pentoxide-based catalysts commonly used to oxidize sulfur dioxide to sulfur trioxide were molded into various shapes. Thus, the catalyst structures shown in FIGS. 1 to 10 were obtained.

【0010】図1の触媒は円柱状であり、図2、図3お
よび図6の触媒は軸心部に空筒を有する円柱状であり、
図4、図5、図7および図8の触媒は軸方向に4つの空
筒を有する円柱状であり、図9および図10の触媒は軸
方向に5つの空筒を有する円柱状である。
The catalyst of FIG. 1 has a cylindrical shape, and the catalysts of FIGS. 2, 3 and 6 have a cylindrical shape having a hollow cylinder at the axial center thereof.
The catalysts of FIGS. 4, 5, 7 and 8 have a cylindrical shape having four hollow cylinders in the axial direction, and the catalysts of FIGS. 9 and 10 have a cylindrical shape having five hollow cylinders in the axial direction.

【0011】なお、図1、図2および図3の触媒は公知
の触媒であり、本発明品との比較のために示したもので
ある。
The catalysts shown in FIGS. 1, 2 and 3 are known catalysts and are shown for comparison with the product of the present invention.

【0012】これらの触媒について、高さ(H)と直径
(D)の比(H/D)、表面積(A)と直径(D)の比
(A/D)などを表1に示す。
Table 1 shows the ratio (H / D) of the height (H) to the diameter (D) and the ratio (A / D) of the surface area (A) to the diameter (D) of these catalysts.

【0013】触媒を反応器に充填し、SO2 を約8モル
%、O2 を約10モル%含有するガスを反応器に流通さ
せ、SO2 をSO3 に酸化する反応を行い、各触媒につ
いて酸化反応率を求めた。その結果を表1に示す。
A catalyst is charged into a reactor, a gas containing about 8 mol% of SO 2 and about 10 mol% of O 2 is passed through the reactor, and a reaction for oxidizing SO 2 to SO 3 is carried out. The oxidation reaction rate was determined for. Table 1 shows the results.

【0014】[0014]

【表1】 実施例2 この実施例では、SO2 濃度を10〜12モル%にし、
その他の点を実施例1と同様にして各触媒について酸化
反応率を求めた。これらの触媒について、高さ(H)と
直径(D)の比(H/D)および表面積(A)と直径
(D)の比(A/D)、求めた反応率、ならびに反応条
件を表2に示す。
[Table 1] Example 2 In this example, the concentration of SO 2 was set to 10 to 12 mol%,
The oxidation reaction rate of each catalyst was determined in the same manner as in Example 1 except for the above. For these catalysts, the ratio of the height (H) to the diameter (D) (H / D) and the ratio of the surface area (A) to the diameter (D) (A / D), the obtained reaction rate, and the reaction conditions are shown. It is shown in FIG.

【0015】SO2 濃度が10%以上の高濃度の場合、
酸化反応の進行に伴って発生する時間当りの反応熱が多
量であるため、非定常型反応器の熱の移動を良好にする
ためには実施例1で用いた触媒よりも比(A/D)をさ
らに大きくする必要があることが判る。
When the SO 2 concentration is as high as 10% or more,
Since a large amount of heat of reaction is generated per time as the oxidation reaction proceeds, the ratio (A / D) is higher than that of the catalyst used in Example 1 in order to improve the heat transfer in the non-stationary reactor. ) Needs to be further increased.

【0016】[0016]

【表2】 実施例1および実施例2の結果から以下の結論が得られ
た。
[Table 2] The following conclusions were obtained from the results of Example 1 and Example 2.

【0017】SO2 濃度が8%である場合、実験No. 4
において最もよい効果が得られた。
When the SO 2 concentration was 8%, the experiment No. 4
The best effect was obtained.

【0018】比較のために行った実験No. 1−1、1−
2、2−1、2−2、2−3、3−1および3−2で
は、比(A/D)が100以下である場合、非定常型で
は高い反応率が得られないことが判明した。
Experiment Nos. 1-1 and 1-
In the case of 2, 2-1, 2-2, 2-3, 3-1 and 3-2, it was found that when the ratio (A / D) was 100 or less, a high reaction rate could not be obtained with the non-stationary type. did.

【0019】実験No. 1−1および1−2では、実験N
o. 4と同じ反応率を得るためには1.5倍量の触媒を
必要とした。また、実験No. 2−1、2−2および2−
3ではガスは流通速度を低下することによって反応率が
上昇したが、いずれも実際的ではない。
In Experiment Nos. 1-1 and 1-2, Experiment N
To obtain the same conversion as in o. 4, 1.5 times the amount of catalyst was required. Experiment Nos. 2-1 2-2 and 2-
In No. 3, the reaction rate of the gas was increased by decreasing the flow rate of the gas, but none of them was practical.

【0020】実験No. 5−1および5−2では最も高い
反応が得られたが、実験No. 4と同じ触媒量では反応率
が悪く、実際に採用することは困難である。
Although the highest reactions were obtained in Experiment Nos. 5-1 and 5-2, the reaction rate was poor with the same amount of catalyst as in Experiment No. 4, and it was difficult to actually use them.

【0021】実験No. 6の結果は実験No. 4とほぼ同じ
であった。
The results of Experiment No. 6 were almost the same as those of Experiment No. 4.

【0022】実験No. 7−1および7−2では、必要触
媒量、反応率ともに、実験No. 4、6と、実験No. 5−
1および5−2との中間であった。
In Experiment Nos. 7-1 and 7-2, both the required amount of catalyst and the reaction rate were the same as those of Experiment Nos. 4 and 6 and Experiment No. 5-
It was intermediate between 1 and 5-2.

【0023】SO2 濃度が10%以上である場合、実験
No. 8−1および8−2と、実験No. 11−1および1
1−2との結果から、触媒充填量を増加しても非定常型
酸化反応では一定以上の反応率は得られず、反応率を上
げるために触媒形状をより大きな比(A/D)を持つも
のに変える必要があることが判明した。
When the SO 2 concentration is 10% or more,
Nos. 8-1 and 8-2 and Experiment Nos. 11-1 and 1
From the result of 1-2, even if the catalyst loading amount was increased, the reaction rate of a certain level or more was not obtained in the unsteady oxidation reaction, and the catalyst shape was increased to increase the reaction rate by increasing the ratio (A / D). It turns out that you need to change to what you have.

【0024】SO2 濃度が8%以下である場合、各触媒
について、比(A/D)と反応率の関係を図11に示
す。同図から、SO2 濃度が8%以下である場合、比
(A/D)の最適な範囲は110〜220mmであるこ
とが判る。
FIG. 11 shows the relationship between the ratio (A / D) and the reaction rate for each catalyst when the SO 2 concentration is 8% or less. From the figure, it is understood that when the SO 2 concentration is 8% or less, the optimal range of the ratio (A / D) is 110 to 220 mm.

【0025】また、SO2 濃度が10%以上である場
合、比(A/D)と反応率の関係を図12に示す。同図
から、SO2 濃度が10%以上である場合、比(A/
D)の最適な値は440mm付近であることが判る。
FIG. 12 shows the relationship between the ratio (A / D) and the reaction rate when the SO 2 concentration is 10% or more. From the figure, when the SO 2 concentration is 10% or more, the ratio (A /
It can be seen that the optimal value of D) is around 440 mm.

【0026】[0026]

【発明の効果】この発明によれば、その高さ(H)と直
径(D)の比(H/D)が0.9〜1.5で、かつ表面
積(A)と直径(D)の比(A/D)が110〜440
(mm)である最適な触媒形状を選定することにより、
満足できる反応率を得ることができる。
According to the present invention, the ratio (H / D) of the height (H) to the diameter (D) is 0.9 to 1.5, and the ratio of the surface area (A) to the diameter (D) is large. The ratio (A / D) is 110 to 440
(Mm) by selecting the optimal catalyst shape
A satisfactory reaction rate can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】触媒の斜視図である。FIG. 1 is a perspective view of a catalyst.

【図2】触媒の斜視図である。FIG. 2 is a perspective view of a catalyst.

【図3】触媒の斜視図である。FIG. 3 is a perspective view of a catalyst.

【図4】触媒の斜視図である。FIG. 4 is a perspective view of a catalyst.

【図5】触媒の斜視図である。FIG. 5 is a perspective view of a catalyst.

【図6】触媒の斜視図である。FIG. 6 is a perspective view of a catalyst.

【図7】触媒の斜視図である。FIG. 7 is a perspective view of a catalyst.

【図8】触媒の斜視図である。FIG. 8 is a perspective view of a catalyst.

【図9】触媒の斜視図である。FIG. 9 is a perspective view of a catalyst.

【図10】触媒の斜視図である。FIG. 10 is a perspective view of a catalyst.

【図11】SO2 濃度8%の場合の(表面積/直径)比
(A/D)と反応率との関係を示すグラフである。
FIG. 11 is a graph showing the relationship between the (surface area / diameter) ratio (A / D) and the reaction rate when the SO 2 concentration is 8%.

【図12】SO2 濃度が10%以上である場合の(表面
積/直径)比(A/D)と反応率との関係を示すグラフ
である。
FIG. 12 is a graph showing the relationship between the (surface area / diameter) ratio (A / D) and the reaction rate when the SO 2 concentration is 10% or more.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−89946(JP,A) 特開 昭60−261539(JP,A) 特開 平6−134318(JP,A) 特開 平6−170239(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 C01B 17/69 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-89946 (JP, A) JP-A-60-261539 (JP, A) JP-A-6-134318 (JP, A) JP-A-6-134318 170239 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01J 21/00-37/36 C01B 17/69

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二酸化硫黄を三酸化硫黄に酸化するのに
用いられる五酸化バナジウムベースの粒状触媒であっ
て、その高さ(H)と直径(D)の比(H/D)が0.
9〜1.5で、かつ表面積(A)と直径(D)の比(A
/D)が110〜440(mm)であることを特徴とす
る、二酸化硫黄酸化触媒構造物。
1. A particulate catalyst based on vanadium pentoxide for use in oxidizing sulfur dioxide to sulfur trioxide, wherein the ratio of height (H) to diameter (D) (H / D) is 0.
9 to 1.5, and a ratio (A) between the surface area (A) and the diameter (D).
/ D) is 110 to 440 (mm).
JP00082695A 1995-01-06 1995-01-06 Sulfur dioxide oxidation catalyst structure Expired - Fee Related JP3314322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00082695A JP3314322B2 (en) 1995-01-06 1995-01-06 Sulfur dioxide oxidation catalyst structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00082695A JP3314322B2 (en) 1995-01-06 1995-01-06 Sulfur dioxide oxidation catalyst structure

Publications (2)

Publication Number Publication Date
JPH08187430A JPH08187430A (en) 1996-07-23
JP3314322B2 true JP3314322B2 (en) 2002-08-12

Family

ID=11484461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00082695A Expired - Fee Related JP3314322B2 (en) 1995-01-06 1995-01-06 Sulfur dioxide oxidation catalyst structure

Country Status (1)

Country Link
JP (1) JP3314322B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3838393A1 (en) 2019-12-19 2021-06-23 Basf Se Process for the oxidation of sulfur dioxide to sulfur trioxide involving a structured catalyst bed

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489320B (en) * 2011-11-15 2013-12-18 南京云泰化工总厂 Nanometer vanadium catalyst for preparing sulfuric acid through oxidizing SO2 and preparation method thereof
CN109095441B (en) * 2017-06-20 2022-01-07 中国瑞林工程技术股份有限公司 Process for preparing sulfuric acid
CN107081007A (en) * 2017-06-27 2017-08-22 福州大学 A kind of new oxidants prepare functionalization denitration sulfur resistive composite filtering material
EP3431178A1 (en) 2017-07-20 2019-01-23 Basf Se Catalysts and method for the catalytic oxidation of so2 to so3

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0082831A3 (en) * 1981-11-24 1984-01-04 Catalysts and Chemical Europe" Vanadium pentoxide catalysts and use thereof
JPS60261539A (en) * 1984-06-11 1985-12-24 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for oxidizing sulfur dioxide
IT1256156B (en) * 1992-10-06 1995-11-29 Montecatini Tecnologie Srl GRANULES CATALYST PARTICULARLY FOR THE OXIDATIVE DEHYDROGENATION OF METHANOL TO FORMALDEHYDE
JPH06170239A (en) * 1992-12-11 1994-06-21 Mitsubishi Rayon Co Ltd Catalytic formed body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and its use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3838393A1 (en) 2019-12-19 2021-06-23 Basf Se Process for the oxidation of sulfur dioxide to sulfur trioxide involving a structured catalyst bed

Also Published As

Publication number Publication date
JPH08187430A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
US4912776A (en) Process for removal of NOx from fluid streams
KR890005057B1 (en) Production process of chlorine
JP3287066B2 (en) Method for producing acrylic acid
JPH08196B2 (en) Catalyst for reducing nitrogen oxide content in flue gas
EP0811597A3 (en) Process for production of acrylic acid
US5034369A (en) Novel catalysts for the treatment of gaseous effluents containing oxidizable sulfur pollutants
EP1466883A4 (en) Method for vapor phase catalytic oxidation
US5700440A (en) Selective oxidation of hydrogen sulfide in the presence of iron-based catalysts
JPH0813777B2 (en) Acrylic acid manufacturing method
EP0768110B1 (en) Catalyst and process for converting nitrogen oxide compounds
JP3314322B2 (en) Sulfur dioxide oxidation catalyst structure
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
JPH01274843A (en) Catalyst for treatment of gas effluence and method for treating the effluence
KR20010079954A (en) Process for Manufacture and Use of Improved Attrition Resistant Catalyst
EP0643991A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
EP0134594B2 (en) Process for the oxidation of hydrogen sulphide to elemental sulphur and/or sulphur dioxide
US4695559A (en) Catalyst for the selective reduction of nitrogen oxides in waste gases and process for the manufacture of such a catalyst
JPH03137937A (en) Preparation of catalyst for preparing methacrylic acid
WO1999052630A1 (en) In-situ regeneration of iron-molybdate catalysts for methanol oxidation to formaldehyde
JP3252696B2 (en) Purification method of exhaust gas containing oxidizable nitrogen compound
TW327633B (en) Vapor phase catalytic oxidation of N-butane to maleic anhydride incorporating in situ catalyst calcination/activation
WO1990014889A1 (en) Catalyst for heterogeneous catalysis consisting of an alloy of transition metals
Li et al. Selective oxidation of hydrogen sulfide over BiMo catalysts
US4960914A (en) Method for the preparation of naphthoquinone
JPS5929285B2 (en) Sulfur recovery equipment tail gas purification method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020416

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees