JP3314184B2 - Method for producing swellable silicate - Google Patents

Method for producing swellable silicate

Info

Publication number
JP3314184B2
JP3314184B2 JP18615094A JP18615094A JP3314184B2 JP 3314184 B2 JP3314184 B2 JP 3314184B2 JP 18615094 A JP18615094 A JP 18615094A JP 18615094 A JP18615094 A JP 18615094A JP 3314184 B2 JP3314184 B2 JP 3314184B2
Authority
JP
Japan
Prior art keywords
reaction
silicate
magnesium
water
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18615094A
Other languages
Japanese (ja)
Other versions
JPH0848516A (en
Inventor
隆文 鈴木
一雄 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Chemical Industry Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Kyowa Chemical Industry Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Chemical Industry Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Kyowa Chemical Industry Co Ltd
Priority to JP18615094A priority Critical patent/JP3314184B2/en
Publication of JPH0848516A publication Critical patent/JPH0848516A/en
Application granted granted Critical
Publication of JP3314184B2 publication Critical patent/JP3314184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、天然鉱物のヘクトライ
トとして知られている粘土鉱物に類似した構造を有する
ケイ酸塩の製造方法に関するものである。さらに詳しく
は、高性能で且つ高品質の膨潤性ケイ酸塩の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicate having a structure similar to a clay mineral known as a natural mineral hectorite. More particularly, it relates to a method for producing a high-performance and high-quality swellable silicate.

【0002】[0002]

【従来の技術】ヘクトライト型粘土鉱物の合成方法とし
ては従来より、各種の原料を用いた種々の反応方法が提
案されている。例えば、特開昭58−185431号公
報では、ケイ酸塩溶液に硝酸、塩酸、硫酸などの鉱酸を
添加して酸性とし、マグネシウム塩溶液と混合して均質
混合液とし、これにアルカリ溶液を加えてケイ酸・マグ
ネシウム共沈物を形成させ副生溶解質を水洗除去した
後、アルカリイオンおよびフッ素イオンを添加して水熱
反応を行なう方法が記載されている。上記方法では、最
初に得られるケイ酸・マグネシウム共沈物の濾過が非常
に困難であり、副生溶解質を完全に且つ短時間で能率良
く除去するのが困難であるという問題がある。この問題
の解決策として、限外濾過膜モジュールを用いて、選択
された特定の運転条件下で副生溶解質除去のための洗浄
および共沈物の分離・濃縮する方法が提案されている
(特開平5−279012号公報参照)。
2. Description of the Related Art As a method for synthesizing a hectorite-type clay mineral, various reaction methods using various raw materials have been conventionally proposed. For example, in JP-A-58-185431, a silicate solution is made acidic by adding a mineral acid such as nitric acid, hydrochloric acid or sulfuric acid, mixed with a magnesium salt solution to form a homogeneous mixed solution, and an alkali solution is added thereto. In addition, a method is described in which a co-precipitate of silicic acid / magnesium is formed to remove by-product solutes with water, and then an alkali ion and a fluorine ion are added to carry out a hydrothermal reaction. In the above method, there is a problem that it is very difficult to filter the silicic acid / magnesium coprecipitate obtained first, and it is difficult to remove by-product solutes completely and efficiently in a short time. As a solution to this problem, a method has been proposed in which an ultrafiltration membrane module is used to wash for removing by-product solutes and to separate and concentrate coprecipitates under selected specific operating conditions ( See JP-A-5-279012).

【0003】最初の反応で得られるケイ酸・マグネシウ
ム共沈物の副生溶解質の除去が不充分である場合、次の
水熱反応により得られるケイ酸塩の性能、すなわち溶媒
中でのゲル形成能(増粘性、懸濁安定性、チクソトロピ
ィ付与性)が悪くなり、高品質の膨潤性ケイ酸塩が得ら
れないのでこの水洗除去工程は必須である。高品質のケ
イ酸塩を安定に能率よく製造するために、ケイ酸・マグ
ネシウム共沈物の溶解質を水洗除去および共沈物の分離
・濃縮を容易にできる対策が望まれている。
If the removal of by-product solutes of the silicate-magnesium coprecipitate obtained in the first reaction is insufficient, the performance of the silicate obtained by the subsequent hydrothermal reaction, ie, the gel in a solvent, This water washing and removing step is indispensable because the forming ability (thickening property, suspension stability, thixotropy-imparting property) deteriorates and a high-quality swellable silicate cannot be obtained. In order to stably and efficiently produce high-quality silicate, there is a demand for a measure capable of easily removing a solute of a silicate / magnesium coprecipitate with water and separating / concentrating the coprecipitate.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、ケイ
酸・マグネシウム共沈物中の溶解質の充分な水洗除去お
よび共沈物の分離・濃縮を容易に能率よく実施すること
を可能にし、高性能且つ高品質の膨潤性ケイ酸塩を安定
に生産性よく製造する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to make it possible to carry out sufficient washing of a solute in a silicic acid / magnesium coprecipitate with sufficient water and to separate and concentrate the coprecipitate easily and efficiently. An object of the present invention is to provide a method for stably producing a high-performance and high-quality swellable silicate with high productivity.

【0005】[0005]

【課題を解決するための手段】本発明者は、膨潤性ケイ
酸塩の合成反応に注目して鋭意研究した結果、シリカ成
分の出発原料として鉱酸を添加していないケイ酸ナトリ
ウム溶液を用い、これにマグネシムウ塩溶液をアルカリ
性水性媒体中で反応させると、濾過・水洗が容易に実施
できるケイ酸・マグネシウム共沈物が得られることを見
い出し、さらに得られた共沈物に水酸化リチウムおよび
/または水酸化ナトリウムを添加して水熱反応を行なっ
て得られたケイ酸塩は高性能且つ高品質であることを見
出し本発明に到達した。
Means for Solving the Problems The present inventors have conducted intensive studies focusing on the synthesis reaction of a swellable silicate, and as a result, using a sodium silicate solution to which no mineral acid has been added as a starting material for a silica component. It was found that when the magnesium salt solution was reacted with the magnesium salt solution in an alkaline aqueous medium, a silicic acid-magnesium coprecipitate that could be easily filtered and washed was obtained, and further, lithium hydroxide and lithium hydroxide were added to the obtained coprecipitate.
The present inventors have found that a silicate obtained by performing a hydrothermal reaction by adding sodium hydroxide has high performance and high quality, and reached the present invention.

【0006】なすわち、本発明は下記工程、 (1)ケイ酸ナトリウムおよびマグネシウム塩をアルカ
リ性水性媒体中で反応させてケイ酸・マグネシウム共沈
物を沈澱させる工程、 (2)該沈澱物を濾過および水洗して副生溶解質を除去
する工程、 (3)かくして得られた沈澱物に水酸化リチウムおよび
/または水酸化ナトリウムを添加し、さらに必要により
フッ素イオンを添加し100℃〜300℃の温度で水熱
反応せしめる工程および (4)得られた反応生成物を乾燥する工程、よりなるこ
とを特徴とする下記一般式
That is, the present invention provides the following steps: (1) a step of reacting sodium and magnesium silicates in an alkaline aqueous medium to precipitate a coprecipitate of silicate and magnesium; (2) (3) Lithium hydroxide and / or sodium hydroxide are added to the precipitate thus obtained, and if necessary, fluorine ions are added. A hydrothermal reaction at a temperature of (4) and (4) a step of drying the obtained reaction product.

【0007】[0007]

【数2】 (Equation 2)

【0008】[式中、xおよびyは、0≦x≦2、0≦
y≦4、M+は1価の陽イオンを示す]で表わされるヘ
クトライト型粘土鉱物に類似した構造を有する膨潤性ケ
イ酸塩の製造方法である。
Wherein x and y are 0 ≦ x ≦ 2, 0 ≦
y ≦ 4, and M + represents a monovalent cation.] This is a method for producing a swellable silicate having a structure similar to a hectorite-type clay mineral represented by the formula:

【0009】本発明の第1工程において、ケイ酸ナトリ
ウムおよびマグネシウム塩をアルカリ性水性溶媒中で反
応させる場合、具体的方法としては例えば攪拌下に、マ
グネシウム塩の水溶液中に、ケイ酸ナトリウムおよびア
ルカリ水溶液を加えて沈澱させてもよく、またその逆の
順序に滴下してもよく、さらにまた3種類の溶液を同時
に滴下して混合してもよい。ケイ酸ナトリウムとマグネ
シウム塩の混合割合は前記一般式を満足するような化学
量論的割合であるのが好ましいがいずれか一方を過剰に
用いることもできる。また用いるアルカリ水溶液の量は
3種類の反応溶液を混合後の反応母液のpHが9.0か
ら11.0、特に好ましくは9.5から10.5の範囲に
あることが望ましい。生成したケイ酸・マグネシウム共
沈物は濾過・水洗により副生した溶解質不純物を除去す
る。
In the first step of the present invention, when the sodium silicate and the magnesium salt are reacted in an alkaline aqueous solvent, specific methods include, for example, stirring the aqueous solution of the sodium silicate and the aqueous alkali solution in an aqueous solution of the magnesium salt. May be added to cause precipitation, or the mixture may be added dropwise in the reverse order, or three kinds of solutions may be added simultaneously and mixed. The mixing ratio of the sodium silicate and the magnesium salt is preferably a stoichiometric ratio that satisfies the above general formula, but any one of them can be used in excess. The amount of the aqueous alkali solution used is preferably such that the pH of the reaction mother liquor after mixing the three reaction solutions is in the range of 9.0 to 11.0, particularly preferably in the range of 9.5 to 10.5. The generated silicic acid / magnesium coprecipitate removes by-product solute impurities by filtration and washing with water.

【0010】前記した条件下に反応させることにより生
成したケイ酸・マグネシウム共沈物は、濾過が容易であ
り水洗により副生した溶解質不純物が簡単に除去され
る。前記ケイ酸・マグネシウム共沈物は、その中に副生
溶解質不純物が実質的存在しないものであることが望ま
しく、そのため水洗は、水洗濾過中の塩素イオン、硫酸
イオンなどのイオンが実質的に認められなくなるまで行
うのが適当である。
The coprecipitate of silicate and magnesium produced by the reaction under the above-mentioned conditions is easy to filter, and solute impurities by-produced by washing with water are easily removed. It is desirable that the silicic acid / magnesium coprecipitate contains substantially no by-product solute impurities therein. Therefore, washing with water is substantially free of ions such as chloride ions and sulfate ions during washing and filtration. It is appropriate to do this until it is no longer recognized.

【0011】かくして濾過・水洗を行うことにより、精
製・濃縮されたケイ酸・マグネシウム共沈物を得、これ
に水、リチウムイオン、1価陽イオン要すればフッ素イ
オンを添加したスラリーをオートクレーブに仕込み10
0℃ないし300℃の温度条件下で水熱反応を行う。本
発明で用いる水熱反応条件として、反応温度は100℃
ないし300℃、特に好ましくは170℃ないし250
℃、圧力は0ないし100kg/cm2(ゲージ圧)、
特に好ましくは6〜40kg/cm2(ケージ圧)の圧
力下で行なうのがよく、反応時間は1ないし24時間で
充分である。本発明で用いられる出発原料のうち、ケイ
酸ナトリウムとしてはメタケイ酸ソーダおよび1号ない
し4号水ガラスを使用することができ、アルカリ性水性
媒体としては、水酸化ナトリウム、水酸化カリウム、ア
ンモニア、炭酸ナトリウムまたは水酸化リチウム等の水
溶液を使用することができる。またマグネシウム塩とし
ては、塩化マグネシウム、硝酸マグネシウム、硫酸マグ
ネシウム等のマグネシウムの鉱酸塩を使用することがで
きる。また水熱反応に用いるスラリーに添加するリチウ
ムイオンとしては水酸化リチウムまたは水酸化リチウム
・1水和物が用いられる。リチウムイオンの添加割合は
前記一般式における0<x≦2であれば本発明は達成で
きるが、好ましくは0.4≦x≦2の範囲にあるのがよ
い。反応に用いるナトリウムイオンとしては水酸化ナト
リウムが用いられる。 更にフッ素イオンは特に添加しな
くても目的とするケイ酸塩は得られるが、添加すること
によってケイ酸塩の特性を向上することができる。フッ
素イオンの添加割合は0≦y≦4、好ましくは2≦y≦
4の範囲である。フッ素イオンとしてはフッ化水素酸、
フッ化リチウム、フッ化ナトリウム、フッ化カリウム、
フッ化アンモニウム等が用いられる。
By performing filtration and washing with water in this way, a purified and concentrated coprecipitate of silicic acid and magnesium is obtained, and a slurry obtained by adding water, lithium ions, monovalent cations and, if necessary, fluorine ions, to an autoclave. Preparation 10
The hydrothermal reaction is performed at a temperature of 0 ° C to 300 ° C. As the hydrothermal reaction conditions used in the present invention, the reaction temperature is 100 ° C.
To 300 ° C, particularly preferably 170 ° C to 250
° C, pressure is 0 to 100 kg / cm 2 (gauge pressure),
Particularly preferably, the reaction is carried out under a pressure of 6 to 40 kg / cm 2 (cage pressure), and a reaction time of 1 to 24 hours is sufficient. Among the starting materials used in the present invention, sodium metasilicate and water glass Nos. 1 to 4 can be used as sodium silicate, and sodium hydroxide, potassium hydroxide, ammonia, carbonate An aqueous solution such as sodium or lithium hydroxide can be used. As the magnesium salt, a mineral salt of magnesium such as magnesium chloride, magnesium nitrate, and magnesium sulfate can be used. Lithium ion to be added to the slurry used for the hydrothermal reaction is lithium hydroxide or lithium hydroxide.
-Monohydrate is used. The present invention can be achieved if the addition ratio of lithium ions is 0 <x ≦ 2 in the above general formula, but is preferably in the range of 0.4 ≦ x ≦ 2. Sodium hydroxide is used as the sodium ion used for the reaction . Further, although the desired silicate can be obtained without particularly adding fluorine ions, the characteristics of the silicate can be improved by adding it. The addition ratio of fluorine ions is 0 ≦ y ≦ 4, preferably 2 ≦ y ≦
4 range. Hydrofluoric acid as fluorine ion,
Lithium fluoride, sodium fluoride, potassium fluoride,
Ammonium fluoride or the like is used.

【0012】水熱反応終了後、オートクレーブ内容物を
取り出し、乾燥・粉砕することにより最終製品である合
成膨潤性ケイ酸塩が得られる。本発明によって得られた
合成ケイ酸塩は3−八面体型スメクタイトであるヘクト
ライトに類似したX線回析パターンを持っている。また
大きな陽イオン交換容量を持っており、水中において優
れた膨潤性および分散性を示しほとんど着色しない水系
ゲルを生成する特徴があり、チクソトロピー的性質を有
している。そのため、増粘剤、チクソトロピー付与剤、
粘結剤、コロイド安定剤として水性塗料、インク、化粧
品、医薬品などに幅広く利用することができる。更に有
機物複合体とすることにより親油性粘土として用いるこ
ともできる。
After completion of the hydrothermal reaction, the contents of the autoclave are taken out, dried and pulverized to obtain a synthetic swellable silicate as a final product. The synthetic silicate obtained according to the present invention has an X-ray diffraction pattern similar to hectorite, which is a 3-octahedral smectite. In addition, it has a large cation exchange capacity, is characterized by producing an aqueous gel that exhibits excellent swelling and dispersing properties in water and hardly discolors, and has thixotropic properties. Therefore, thickeners, thixotropic agents,
It can be widely used as a binder and a colloid stabilizer in aqueous paints, inks, cosmetics, pharmaceuticals and the like. Furthermore, it can be used as a lipophilic clay by forming an organic composite.

【0013】[0013]

【実施例】以下実施例を掲げて本発明を詳述する。なお
実施例中、下記測定および試験はそれぞれ以下に説明す
る方法に従って行った。
The present invention will be described in detail with reference to the following examples. In the examples, the following measurements and tests were performed according to the methods described below.

【0014】(1)1%液透過率測定方法:試料1gを
純水99gを入れた200ml溶ビーカーに投入し、ホ
モミキサーで10分間分散させた後、室温で24時間放
置し、分光光度計を用いて波長500nmの光線透過率
を測定した。 (2)メチレンブルー吸着試験方法:JBAS−107
−77に準じて測定した。 (3)流動学的性質測定方法:試料8gを純粋392g
を入れた500ml溶ビーカーに投入し、ホモミキサー
で10分間分散させた後室温で24時間放置し、JBA
S−108−77の2.4直読式回転粘土計による流動
性質の測定法に準じて測定した。粘度計はFann V
Gメーターを用いた。 (4)洗浄速度測定法:直径11cmの磁製ヌッチェに
No.5濾紙をセットし吸引ビンに取付け吸引圧500
mmHgで各反応沈澱物スラリーを濾過し、ケーキ形成
後純水1000mlを通水し、その速度を測定する。
(1) Method for measuring 1% liquid transmittance: 1 g of a sample was put into a 200 ml melting beaker containing 99 g of pure water, dispersed for 10 minutes by a homomixer, and then left at room temperature for 24 hours to obtain a spectrophotometer. Was used to measure the light transmittance at a wavelength of 500 nm. (2) Methylene blue adsorption test method: JBAS-107
It measured according to -77. (3) Rheological property measuring method: 392 g of pure 8 g of sample
Into a 500 ml dissolving beaker, and disperse with a homomixer for 10 minutes, then stand at room temperature for 24 hours.
It was measured according to the method of measuring flow properties using a 2.4 direct-reading rotary clay meter of S-108-77. Viscometer is Fann V
A G meter was used. (4) Washing speed measuring method: No. 5 filter paper was set in a porcelain nutsche having a diameter of 11 cm, and was attached to a suction bottle, and suction pressure was 500
Each reaction precipitate slurry was filtered at mmHg, and after forming a cake, 1000 ml of pure water was passed through to measure the speed.

【0015】実施例1 2lのビーカーに水1,000mlを入れ、塩化マグネ
シウム六水和物一般試薬(純度98%)52gを溶解し
た。別の500mlのビーカーに3号水ガラス(SiO
2 29%、Na2O 9.4%)78.5gを入れ、水20
0mlを加えて希釈液とし、これに6NのNaOH液4
6mlを加えて均一な溶液として、この液を上記塩化マ
グネシウム溶液に攪拌下、10分間で注下した。
Example 1 1,000 ml of water was placed in a 2 liter beaker, and 52 g of magnesium chloride hexahydrate general reagent (purity: 98%) was dissolved therein. In a separate 500 ml beaker, place the No. 3 water glass (SiO
2 29%, placed in a Na 2 O 9.4%) 78.5g, water 20
0 ml was added to make a diluent, to which 6N NaOH solution 4
6 ml was added to form a uniform solution, and this solution was poured into the magnesium chloride solution with stirring for 10 minutes.

【0016】得られた反応沈澱物を直ちに濾過および1
lの純粋で洗浄し、内容積1lのステンレス製オートク
レーブに移し、水酸化リチウム−水和物[LiOH・H
2O]1.4gを溶解した水溶液50mlおよび水酸化ナ
トリウム 1.3gを溶解した水溶液50mlを加えてス
ラリー状し、170℃、8kg/cm2ゲージ圧で12
時間反応させた。反応終了後、冷却し反応物を取り出
し、80℃で乾燥した後ラボミルにて粉砕した。オート
クレーブ処理前の反応沈澱物の洗浄速度を下記表1に示
した。本実施例で得た物質の粉末回析X線パターンはヘ
クトライトにほぼ一致した。一方、本物質のメチレンブ
ルー吸着量(JBAS−107−77)および蒸留水を
用いて2%の懸濁液となした分散液の流動学的性質を回
転粘土計の一種であるFann VGメーターで測定し
た結果を下記表2に示した。
The reaction precipitate obtained is immediately filtered and
of pure water, transferred to a stainless steel autoclave having an internal volume of 1 l, and lithium hydroxide-hydrate [LiOH.H
[2 O] 50 ml of an aqueous solution in which 1.4 g of sodium hydroxide was dissolved and 50 ml of an aqueous solution in which 1.3 g of sodium hydroxide were dissolved, and slurried at 170 ° C. and 8 kg / cm 2 gauge pressure.
Allowed to react for hours. After completion of the reaction, the reaction mixture was cooled, the reaction product was taken out, dried at 80 ° C., and then pulverized by a lab mill. The washing speed of the reaction precipitate before the autoclave treatment is shown in Table 1 below. The powder diffraction X-ray pattern of the substance obtained in this example almost coincided with hectorite. On the other hand, the amount of methylene blue adsorbed on this substance (JBAS-107-77) and the rheological properties of a 2% suspension using distilled water were measured with a Fann VG meter, a kind of rotary clay meter. The results obtained are shown in Table 2 below.

【0017】実施例2 実施例1と同様にして得られた反応沈澱物の水洗物を1
l内容積のオートクレーブに移し、水酸化リチウム・1
水和物[LiOH・H2O]1.4gを溶解した水溶液5
0mlおよび46%フッ化水素酸6.2gを水50ml
に希釈した液を加えてスラリー状とし、150℃、5k
g/cm2ゲージ圧で10時間反応させた。反応終了後
冷却し、反応物を取り出し、80℃で乾燥した後、ラボ
ミルにて粉砕した。
Example 2 A washed product of the reaction precipitate obtained in the same manner as in Example 1 was washed with 1
1 Transfer to an autoclave of internal volume and add lithium hydroxide
Aqueous solution 5 in which 1.4 g of hydrate [LiOH.H 2 O] is dissolved
0 ml and 6.2 g of 46% hydrofluoric acid in 50 ml of water
Into a slurry by adding the diluted solution to
The reaction was performed at g / cm 2 gauge pressure for 10 hours. After completion of the reaction, the reaction mixture was cooled, the reaction product was taken out, dried at 80 ° C., and pulverized by a lab mill.

【0018】得られた物質の粉末回析X線パターンはヘ
クトライトにほぼ一致し、一方メチレンブルー吸着量
(JBAS−107−77)および蒸留水を用いて2%
懸濁液となした分散液の流動学的性質を表2に示した。
The powder diffraction X-ray pattern of the obtained substance almost coincides with that of hectorite, while the amount of adsorbed methylene blue (JBAS-107-77) and 2%
The rheological properties of the suspension dispersion are shown in Table 2.

【0019】実施例3 1lのビーカーに水300mlと3号水ガラス(SiO
2 29%、Na2O 9.4%)78.5gおよび12N
NH4OH 179mlを投入した。別に硫酸マグネシウ
ム7水塩(純度98%)68.5gを200mlに溶解
した。この液を上記水ガラス・アンモニア水混液中に5
分間で滴下した。得られた反応沈澱物を直ちに濾過、洗
浄し、内容積1lのステンレス製オートクレーブに移
し、水酸化リチウム1水和物(LiOH・H2O)1.4
gを溶解した水溶液50mlおよび水酸化ナトリウム
1.8gを溶解した水溶液50mlを加えてスラリー状
とし、200℃、24kg/cm2ゲージ圧で5時間反
応させた。反応終了後、冷却し反応物を取り出し、80
℃で乾燥した後、ラボミルにて粉砕した。オートクレー
ブ処理前の反応沈澱物の洗浄速度を表1に示した。得ら
れた物質の粉末回析X線パターンはヘクトライトにほぼ
一致した。一方、メチレンブルー吸着量および2%分散
液の流動学的性質を表2に示した。
EXAMPLE 3 300 ml of water and No. 3 water glass (SiO
2 29%, Na 2 O 9.4%) 78.5 g and 12N
179 ml of NH 4 OH were introduced. Separately, 68.5 g of magnesium sulfate heptahydrate (98% purity) was dissolved in 200 ml. Put this solution in the above water glass / ammonia water mixture.
In minutes. The resulting reaction precipitate was immediately filtered and washed, transferred to a stainless steel autoclave having an internal volume of 1 liter, and lithium hydroxide monohydrate (LiOH.H 2 O) 1.4.
g of an aqueous solution containing 50 g of sodium hydroxide and sodium hydroxide
A slurry was prepared by adding 50 ml of an aqueous solution in which 1.8 g was dissolved, and reacted at 200 ° C. and 24 kg / cm 2 gauge pressure for 5 hours. After completion of the reaction, the reaction product was cooled and taken out.
After drying at ℃, it was pulverized in a laboratory mill. The washing speed of the reaction precipitate before the autoclave treatment is shown in Table 1. The powder diffraction X-ray pattern of the obtained substance almost coincided with hectorite. Table 2 shows the methylene blue adsorption amount and the rheological properties of the 2% dispersion.

【0020】実施例4 3号水ガラス78.5gを水300mlに加えて希釈液
とした(原料−1)。別に塩化マグネシウム6水和物、
1級試薬(純度98%)52gを水 200mlに溶解
した(原料−2)。更に別に1N NaOH276ml
を調製した(原料−3)。2lのビーカーに水500m
lを投入し攪拌下で上記3種類の原料を同時に10分間
で注加した。得られた反応沈澱物を直ちに濾過・洗浄し
内容積1lのステンレス製オートクレーブに移し、水酸
化リチウム1水和物(LiOH・H2O)1.4gを溶解
した水溶液50mlおよび水酸化ナトリウム1.8gを
溶解した水溶液50mlを加えてスラリー状とし250
℃、42kg/cm2ゲージ圧で2時間反応させた。反
応終了後冷却し、反応物を取り出し80℃で乾燥した
後、ラボミルにて粉砕した。オートクレーブ処理前の反
応沈澱物の洗浄速度を表1に示した。得られた物質の粉
末回析X線パターンはヘクトライトにほぼ一致した。メ
チレンブルー吸着量および2%分散液の流動学的性質を
表2に示した。
Example 4 78.5 g of No. 3 water glass was added to 300 ml of water to prepare a diluent (raw material-1). Separately magnesium chloride hexahydrate,
52 g of a primary reagent (98% purity) was dissolved in 200 ml of water (raw material-2). 276 ml of 1N NaOH
Was prepared (raw material-3). 500m water in 2l beaker
and the above three kinds of raw materials were simultaneously poured in 10 minutes under stirring. The resulting reaction precipitate was immediately filtered and washed, transferred to a stainless steel autoclave having an internal volume of 1 l, and 50 ml of an aqueous solution in which 1.4 g of lithium hydroxide monohydrate (LiOH.H 2 O) was dissolved, and 1.0 ml of sodium hydroxide. 50 g of an aqueous solution in which 8 g are dissolved to form a slurry,
The reaction was performed at 42 ° C. and a pressure of 42 kg / cm 2 gauge for 2 hours. After completion of the reaction, the reaction mixture was cooled, the reaction product was taken out, dried at 80 ° C., and pulverized by a lab mill. The washing speed of the reaction precipitate before the autoclave treatment is shown in Table 1. The powder diffraction X-ray pattern of the obtained substance almost coincided with hectorite. Table 2 shows the amount of methylene blue adsorbed and the rheological properties of the 2% dispersion.

【0021】比較例1 1lのビーカーに水300mlを入れ、3号ガラス(S
iO2 29%、Na2O 9.4%)78.5gを溶解し1
2規定の塩酸20mlを攪拌しながら一度に加えてケイ
酸溶液を得た。次に水100mlに塩化マグネシウム6
水和物、試薬1級(純度98%)52gを溶解した溶液
を加えてケイ酸−マグネシウム塩均質溶液を得た。この
ケイ酸−マグネシウム塩均質溶液を2規定の水酸化ナト
リウム溶液260ml中に攪拌しながら5分間で滴下し
た。得られた反応沈澱物を直ちに濾過洗浄し内容積1l
のステンレス製オートクレーブに移し、水酸化リチウム
水和物(LiOH・H2O)1.4gを溶解した水溶液5
0mlおよび水酸化ナトリウム1.3gを溶解した水溶
液50mlを加えてスラリー状とし、200℃、16k
g/cm2で3時間反応させた。冷却後、反応物を取り
出し、80℃で乾燥した後ラボミルにて粉砕した。オー
トクレーブ処理前の反応沈澱物の洗浄速度を表1に示し
た。一方、本比較例で得られた物質の粉末回析X線パタ
ーンはヘクトライトにほぼ一致した。メチレンブルー吸
着量および蒸留水を用いて2%懸濁液とした分散液の流
動学的性質を表2に示した。
Comparative Example 1 300 ml of water was placed in a 1 liter beaker, and glass No. 3 (S
dissolve 78.5 g of iO 2 29%, Na 2 O 9.4%)
20 ml of 2N hydrochloric acid was added all at once with stirring to obtain a silicic acid solution. Then magnesium chloride 6 in 100 ml of water
A solution in which 52 g of the hydrate and reagent first grade (purity 98%) were dissolved was added to obtain a homogeneous solution of silicic acid-magnesium salt. The homogeneous solution of the silicate-magnesium salt was added dropwise to 260 ml of a 2N sodium hydroxide solution over 5 minutes with stirring. The resulting reaction precipitate was immediately washed by filtration and the internal volume was 1 l.
Aqueous solution in which 1.4 g of lithium hydroxide hydrate (LiOH.H 2 O) was dissolved.
0 ml and 50 ml of an aqueous solution in which 1.3 g of sodium hydroxide are dissolved to form a slurry.
The reaction was performed at g / cm 2 for 3 hours. After cooling, the reaction product was taken out, dried at 80 ° C., and pulverized by a lab mill. The washing speed of the reaction precipitate before the autoclave treatment is shown in Table 1. On the other hand, the powder diffraction X-ray pattern of the substance obtained in this comparative example almost coincided with hectorite. Table 2 shows the amount of methylene blue adsorbed and the rheological properties of the dispersion prepared as a 2% suspension using distilled water.

【0022】[0022]

【表1】 [Table 1]

【0023】実施例5 実施例1と同様にして得られた反応沈澱物の水洗物を1
l内容積のオートクレーブに移し、水酸化リチウム1水
和物(LiOH・H2O)1.4gを溶解した水溶液50
mlおよび水酸化ナトリウム1.3gを溶解した水溶液
50mlを加えてスラリー状とし、200℃、16kg
/cm2ゲージ圧で10時間反応させた。反応終了後冷
却し、反応物を3lのビーカーに移し、水を加えて全量
を1,500mlとした。別に1lのビーカーに80℃
の熱水700mlを入れ、第四級アンモニウム塩(ジメ
チル・ジアルキルアンモニウムクロライド、アルキル基
の炭素数16〜18個)32.5gを溶解した。この第
4級アンモニウム塩水溶液を上記反応物スラリーに加熱
攪拌しながら10分間で滴下し、滴下終了後90℃に加
熱して1時間保持した。生成物を濾過し熱水で充分水洗
し、80℃で乾燥後、ラボミルにて粉砕した。
Example 5 The washed product of the reaction precipitate obtained in the same manner as in Example 1 was washed with 1
The solution was transferred to an autoclave having an internal volume of 1 l, and an aqueous solution 50 dissolved with 1.4 g of lithium hydroxide monohydrate (LiOH.H 2 O).
and 50 g of an aqueous solution in which 1.3 g of sodium hydroxide are dissolved to form a slurry.
The reaction was carried out at a pressure of / cm 2 gauge for 10 hours. After completion of the reaction, the mixture was cooled, and the reaction product was transferred to a 3 liter beaker, and water was added to make the total volume 1,500 ml. Separately into a 1L beaker at 80 ° C
Of hot water (700 ml) was dissolved to dissolve 32.5 g of a quaternary ammonium salt (dimethyl dialkylammonium chloride, having 16 to 18 carbon atoms in the alkyl group). This quaternary ammonium salt aqueous solution was added dropwise to the reaction slurry with heating and stirring over 10 minutes, and after completion of the addition, the mixture was heated to 90 ° C. and maintained for 1 hour. The product was filtered, sufficiently washed with hot water, dried at 80 ° C., and pulverized by a lab mill.

【0024】上記の操作で得られた物質は、炭素数16
〜18のアルキル基を有するジメチルジアルキルアンモ
ニウムとの有機複合体で親油性を示し、トルエン、キシ
レン、ベンゼン、四塩化炭素、クロロホルムなど各種有
機溶媒中で膨潤・分散した。その例としてトルエン系溶
媒へ4%分散させた時の流動学的性質(Fann VG
メーターによる測定結果)を表3に示した。
The substance obtained by the above operation has 16 carbon atoms.
An organic complex with dimethyldialkylammonium having an alkyl group of from 18 to 18 showed lipophilicity and swelled and dispersed in various organic solvents such as toluene, xylene, benzene, carbon tetrachloride and chloroform. As an example, rheological properties when dispersed in a toluene-based solvent at 4% (Fann VG
Table 3 shows the results of measurement with a meter.

【0025】[0025]

【表2】 [Table 2]

【0026】表2に明らかなように実施例1、2、3お
よび4で得られた本発明による製品の水系分散液は、比
較例1で得られた物および市販の純モンモリロナイトで
あるクニピアFの水系分散液に比較して極めて高い粘
性、降伏値およびゲル強度を有し、水系溶媒に対するゲ
ル化剤として優れた性能を有するのがわかる。
As is evident from Table 2, the aqueous dispersions of the products according to the invention obtained in Examples 1, 2, 3 and 4 are those obtained in Comparative Example 1 and the commercially available pure montmorillonite Kunipia F It has an extremely high viscosity, yield value and gel strength as compared with the aqueous dispersion of No. 5, and has excellent performance as a gelling agent for aqueous solvents.

【0027】[0027]

【表3】 [Table 3]

【0028】本発明の有機複合体は表3に明らかなよう
に有機溶媒中で膨潤、分散するので各種有機溶媒におけ
るゲル化剤、懸濁安定剤、チクソトロピィー付与剤など
として有用であることがわかる。
As is clear from Table 3, the organic complex of the present invention swells and disperses in an organic solvent, and thus is useful as a gelling agent, a suspension stabilizer, a thixotropic agent and the like in various organic solvents. .

【0029】[0029]

【発明の効果】ケイ酸塩、アルカリおよびマグネシウム
塩を主原料として膨潤性ケイ酸塩を製造する場合、中間
生成物であるケイ酸・マグネシウム共沈物からの溶解質
の水洗除去が最終製品である該ケイ酸塩の品質に大きく
影響を与えるが、本発明の製造方法によれば、この共沈
物の水洗除去が短時間で容易に達成できるため、ゲル形
成能に優れ、分散水溶液の透明性にも優れた高性能のケ
イ酸塩を能率良く生産できる。また、濾過速度が速いた
め特殊な濾過・水洗装置を使用する必要はなく、従来の
装置で通常の条件下で実施できる。またケイ酸塩溶液は
そのままで反応に用いるため鉱酸類は不必要で且つその
分必要なアルカリ量も少なくてよいので経済的である。
According to the present invention, when a swellable silicate is produced using silicate, alkali and magnesium salts as main raw materials, the final product is to wash and remove solutes from an intermediate product, a silicate-magnesium coprecipitate, with water. Although this greatly affects the quality of a certain silicate, according to the production method of the present invention, the coprecipitate can be easily washed off with water in a short time, so that it has excellent gel-forming ability and clearness of the dispersed aqueous solution. A high-performance silicate with excellent properties can be produced efficiently. In addition, since the filtration speed is high, it is not necessary to use a special filtration / washing device, and it can be carried out with a conventional device under ordinary conditions. In addition, since the silicate solution is used as it is in the reaction, mineral acids are unnecessary, and the amount of alkali required is less, which is economical.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭48−96499(JP,A) 特開 昭61−86414(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 33/22 - 33/24 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-48-96499 (JP, A) JP-A-61-86414 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01B 33/22-33/24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記工程、 (1)ケイ酸ナトリウムおよびマグネシウム塩をアルカ
リ性水性媒体中で反応させてケイ酸・マグネシウム共沈
物を沈澱させる工程、 (2)該沈澱物を濾過および水洗して副生溶解質を除去
する工程、 (3)かくして得られた沈澱物に水酸化リチウムおよび
/または水酸化ナトリウムを添加し、さらに必要により
フッ素イオンを添加し100℃〜300℃の温度で水熱
反応せしめる工程および (4)得られた反応生成物を乾燥する工程、 よりなることを特徴とする下記一般式 【数1】 [式中、xおよびyは、0≦x≦2、0≦y≦4、M+
は1価の陽イオンを示す] で表わされるヘクトライト型粘土鉱物に類似した構造を
有する膨潤性ケイ酸塩の製造方法。
1. The following steps: (1) a step of reacting a sodium silicate and a magnesium salt in an alkaline aqueous medium to precipitate a silicate-magnesium coprecipitate; and (2) filtering and washing the precipitate. (3) Lithium hydroxide and / or sodium hydroxide are added to the precipitate thus obtained, and if necessary, fluorine ions are added, and hydrothermal treatment is performed at a temperature of 100 ° C to 300 ° C. A step of reacting; and (4) a step of drying the obtained reaction product. Wherein x and y are 0 ≦ x ≦ 2, 0 ≦ y ≦ 4, M +
Represents a monovalent cation.] A method for producing a swellable silicate having a structure similar to a hectorite-type clay mineral represented by the formula:
JP18615094A 1994-08-08 1994-08-08 Method for producing swellable silicate Expired - Fee Related JP3314184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18615094A JP3314184B2 (en) 1994-08-08 1994-08-08 Method for producing swellable silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18615094A JP3314184B2 (en) 1994-08-08 1994-08-08 Method for producing swellable silicate

Publications (2)

Publication Number Publication Date
JPH0848516A JPH0848516A (en) 1996-02-20
JP3314184B2 true JP3314184B2 (en) 2002-08-12

Family

ID=16183263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18615094A Expired - Fee Related JP3314184B2 (en) 1994-08-08 1994-08-08 Method for producing swellable silicate

Country Status (1)

Country Link
JP (1) JP3314184B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7403789B2 (en) 2003-04-16 2008-07-22 Nec Corporation Synchronization establishment between a mobile station and base station system and method used for them
JP4925040B2 (en) * 2006-09-06 2012-04-25 独立行政法人物質・材料研究機構 Method for producing metal ion-containing synthetic layered silicate
KR100748211B1 (en) * 2006-10-25 2007-08-09 한국지질자원연구원 Manufacturing method of hectorite from water glass
JP5405998B2 (en) * 2009-12-08 2014-02-05 クニミネ工業株式会社 Protein crystal formation control agent

Also Published As

Publication number Publication date
JPH0848516A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
JPH0123414B2 (en)
US2689245A (en) Organic nitrogen base silicates and method of producing same
FR2608068A1 (en) NOVEL PROCESS FOR THE SYNTHESIS OF FERRISILICATE-LIKE ZEOLITES, PRODUCTS THUS OBTAINED AND USES THEREOF
KR102070380B1 (en) Method for producing synthetic hectorite at low temperature and atmospheric pressure
JPH01313320A (en) Zeolite based on silica and germanium oxide and synthesis
JPH0769621A (en) Magnesium fluoride hydrate sol and production thereof
JP3314184B2 (en) Method for producing swellable silicate
JPH0648725A (en) Production of beta-type zeolite
JP2564095B2 (en) Novel clay-organic composite
Frary Adventures with Alumina. Medal Address.
JP3479676B2 (en) Method for continuous production of synthetic swellable silicate
JPS59501901A (en) Silica manufacturing method
JP3998748B2 (en) Synthetic layered silicate
JP3502993B2 (en) Organic clay complex
JPH11131047A (en) Composition comprising organic-clay complex and organic solvent
JP5678648B2 (en) ZSM-5 fine particles and method for producing the same
JPS62292615A (en) Production of swelling silicate
DE19727893A1 (en) Process for the preparation of synthetic sheet silicates of the hectorite type
JPS636485B2 (en)
JPH05507054A (en) A simple method for producing swellable layered silicates
JP3656655B2 (en) Synthetic swellable silicate and method for producing the same
RU2424189C1 (en) Method of producing high-purity strontium fluoride
JPH07196313A (en) Clay-organic complex, its composition, use and production of clay-organic complex
CN117338607B (en) Preparation method and application of amorphous silica abrasive for toothpaste
JPH02116611A (en) Preparation of clay mineral containing metal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020408

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees