JP3312172B2 - Distribution line ground fault protection relay test method and apparatus - Google Patents

Distribution line ground fault protection relay test method and apparatus

Info

Publication number
JP3312172B2
JP3312172B2 JP34378398A JP34378398A JP3312172B2 JP 3312172 B2 JP3312172 B2 JP 3312172B2 JP 34378398 A JP34378398 A JP 34378398A JP 34378398 A JP34378398 A JP 34378398A JP 3312172 B2 JP3312172 B2 JP 3312172B2
Authority
JP
Japan
Prior art keywords
phase
zero
ground
current
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34378398A
Other languages
Japanese (ja)
Other versions
JP2000171505A (en
Inventor
宣明 清地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP34378398A priority Critical patent/JP3312172B2/en
Publication of JP2000171505A publication Critical patent/JP2000171505A/en
Application granted granted Critical
Publication of JP3312172B2 publication Critical patent/JP3312172B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、6.6kV配電線
(非接地系統母線)に対して、接地変圧器(GPT)、
零相変流器(ZCT)、地絡方向継電器(DGR)、及
び地絡過電圧継電器(OVGR)とを用いてする配電線
地絡保護リレー試験方法及び装置に係り、詳しくは、母
線・各配電線の各相(a,b,c)で異なる対地アドミ
タンスを有し、かつ、各線間電圧が平衡している配電系
統(配電バンク)に対して、残留分と1回の母線の1相
地絡時の各配電線〔以下、フィーダ。〕に設けたZCT
の一次電流(被測定電流)の値を高精度に算出し、か
つ、各フィーダの対地零相アドミタンスと対地逆相アド
ミタンスを高精度に算出することにより、任意抵抗地絡
時の各フィーダの零相一次電流及び対地静電容量不平衡
を算出又は評価可能とする配電線地絡保護リレー試験方
法、及び該試験方法(試験手順)をコンピュータ支援に
より実行可能とする配電線地絡保護リレー試験装置に関
する。
TECHNICAL FIELD The present invention relates to a grounding transformer (GPT) for a 6.6 kV distribution line (ungrounded system bus).
The present invention relates to a method and an apparatus for testing a distribution line ground fault protection relay using a zero-phase current transformer (ZCT), a ground fault directional relay (DGR), and a ground fault overvoltage relay (OVGR). For a distribution system (distribution bank) that has different ground admittances in each phase (a, b, c) of the electric wire and in which the voltage between the lines is balanced, the residual and one bus ground of one bus Each distribution line at the time of tangling [hereinafter referred to as feeder. ] ZCT
By accurately calculating the value of the primary current (current to be measured) of each feeder and calculating the zero-phase admittance to ground and the negative phase admittance to ground of each feeder with high accuracy, the zero of each feeder at the time of an arbitrary resistance ground fault is obtained. Distribution line ground fault protection relay test method capable of calculating or evaluating phase primary current and capacitance unbalance to ground, and distribution line ground fault protection relay test device capable of executing the test method (test procedure) with computer support About.

【0002】[0002]

【従来の技術】従来より、6.6kV配電線(非接地系
統母線)の地絡保護リレー試験では、活線作業である母
線の人工地絡操作を数十回試行することにより、地絡保
護リレーの構成機器であるOVGR(バンク一括)、D
GR(フィーダ毎)の整定や動作・不動作試験をおこな
っている。
2. Description of the Related Art Conventionally, in a ground fault protection relay test of a 6.6 kV distribution line (ungrounded system bus), an artificial ground fault operation of a bus, which is a live line operation, is performed several tens of times, thereby protecting the ground fault. OVGR (bank lump) which is a component of relay, D
Settling of GR (for each feeder) and operation / non-operation test are performed.

【0003】図8に示すように、従来試験ではそれぞれ
の機器の操作や測定に作業員が必要であり、通常6名を
要している。実施する試験項目は、残留測定(零相電
圧・零相電流測定)、母線地絡特性、線路位相特
性、最小動作試験である。これらの目的と方法は以下
のとおりである。
As shown in FIG. 8, a conventional test requires an operator to operate and measure each device, and usually requires six workers. The test items to be performed are residual measurement (zero-sequence voltage / zero-sequence current measurement), bus ground fault characteristics, line phase characteristics, and minimum operation test. These objectives and methods are as follows.

【0004】残留測定(零相電圧・零相電流測定) 〔目的〕地絡保護リレーの誤動作がないようにリレーを
整定するため。 〔方法〕GPT3次側に常時発生している零相電圧と、
ZCT2次側に常時発生しているフィーダ毎の零相電流
を測定する。
[0004] Residual measurement (measurement of zero-sequence voltage and zero-sequence current) [Purpose] To set the ground fault protection relay so that it does not malfunction. [Method] Zero-phase voltage constantly generated on the GPT tertiary side,
The zero-phase current for each feeder constantly generated on the secondary side of the ZCT is measured.

【0005】母線地絡特性 〔目的〕バンクの地絡特性の把握と、OVGR,DGR
の零相電圧の整定値を定めるため。 〔方法〕各相について3〜16kΩの範囲で人工地絡し、
地絡抵抗に対する零相電圧、地絡電流を測定・記録す
る。また、零相電圧、地絡電流からバンク全体の充電電
流を求める。
[0005] Bus ground fault characteristics [Purpose] To understand the ground fault characteristics of the bank and to determine the OVGR, DGR
To determine the set value of the zero-sequence voltage. [Method] For each phase, an artificial ground fault is set in the range of 3 to 16 kΩ,
Measure and record the zero-sequence voltage and the ground fault current with respect to the ground fault resistance. Further, the charging current of the entire bank is obtained from the zero-phase voltage and the ground fault current.

【0006】線路位相特性 〔目的〕DGRを内部地絡(自フィーダの地絡時)では
確実に動作し、外部地絡(自フィーダ以外の地絡時)で
誤動作しないように整定するため。 〔方法〕地絡抵抗6kΩで人工地絡させ、内部地絡時と
外部地絡時の零相電圧、零相電流及び零相電圧基準の零
相電流の位相(差)を測定する。
[0006] Line phase characteristics [Purpose] To set the DGR so that it operates reliably when there is an internal ground fault (when there is a ground fault in the own feeder) and does not malfunction when there is an external ground fault (when there is a ground fault other than the own feeder). [Method] An artificial ground fault is made with a ground fault resistance of 6 kΩ, and the phase (difference) of the zero-phase voltage, the zero-phase current and the zero-phase current based on the zero-phase voltage at the time of the internal ground fault and the external ground fault are measured.

【0007】最小動作試験 〔目的〕OVGR,DGRの整定後、これらが目標の検
出感度になっていることを調べる。 〔方法〕人工地絡により、それぞれのリレーが動作する
最大地絡抵抗値(零相電圧、零相電流における最小動作
値)と、動作しない最小地絡抵抗値を250Ω刻みで調
べる。
Minimum operation test [Purpose] After the OVGR and DGR have been settled, it is checked whether or not they have the target detection sensitivity. [Method] Due to the artificial ground fault, the maximum ground fault resistance value (minimum operating value at zero-sequence voltage and zero-phase current) at which each relay operates and the minimum ground fault resistance value at which each relay does not operate are checked at intervals of 250Ω.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来試験の手法では、安全に対する十分な配慮が必要であ
ると同時に、多大な労力と時間を要してきた。このた
め、より安全で、効率的な試験手法が望まれる。
However, in the above-mentioned conventional test method, sufficient consideration for safety is required, and a great deal of labor and time are required. Therefore, a safer and more efficient test method is desired.

【0009】こうしたなかで本発明者は、研究過程で以
下の知見を有するにいたり、新たな試験方法及び装置の
開発を進めてきた。
Under these circumstances, the present inventor has made the following findings in the course of research and has been developing new test methods and devices.

【0010】地絡抵抗値に対する零相電圧、及びフィ
ーダの零相一次電流(値)を高精度に算出できれば、そ
の結果をGPT三次側、ZCT一次側に出力して試験が
おこなえること。
If the zero-phase voltage with respect to the ground fault resistance value and the zero-phase primary current (value) of the feeder can be calculated with high accuracy, the results can be output to the GPT tertiary side and the ZCT primary side for testing.

【0011】また、残留分と人工地絡時のフィーダの
零相一次電流(値)を知得できれば、フィーダの対地零
相アドミタンスと対地逆相アドミタンスを高精度に算出
できること。
Further, if the residual and the zero-phase primary current (value) of the feeder at the time of the artificial ground fault can be known, the zero-phase admittance to ground and the negative-phase admittance to ground of the feeder can be calculated with high accuracy.

【0012】さらに、これらの値を用いれば、任意抵
抗地絡時の各フィーダの零相一次電流(地絡電流)及び
対地静電容量不平衡を算出又は評価できること。
Further, by using these values, it is possible to calculate or evaluate a zero-phase primary current (ground fault current) of each feeder and an unbalanced capacitance to ground at the time of an arbitrary resistance ground fault.

【0013】上記プロセスは、コンピュータ(パソコ
ン)の機能を利用して、計算、測定、制御がおこなえる
こと。したがって、より安全で、かつ、効率的なリレー
試験がおこなえること。
In the above process, calculation, measurement, and control can be performed using functions of a computer (personal computer). Therefore, a safer and more efficient relay test can be performed.

【0014】本発明はこのような事情に鑑みなされたも
のであって、上記課題を解消し、コンピュータ支援によ
り総合的にリレー試験手順を実行可能な配電線地絡保護
リレー試験方法及び装置を提供するものである。
The present invention has been made in view of the above circumstances, and provides a distribution line ground fault protection relay test method and apparatus capable of solving the above-described problems and executing a comprehensive relay test procedure with computer support. Is what you do.

【0015】[0015]

【課題を解決するための手段】課題を解決するために本
発明は、6.6kV配電線(非接地系統)の母線に設け
た接地変圧器(GPT)に接続され母線・各配電線全体
の地絡事故を検出する地絡過電圧継電器(OVGR)
と、前記GPT及び配電線(フィーダ)毎に設けた零相
変流器(ZCT)に接続されフィーダ毎の地絡事故を各
別に検出する地絡方向継電器(DGR)とを用い、母線
・各配電線の各相(a,b,c)で異なる対地アドミタ
ンスを有し、かつ、各線間電圧が平衡している配電系統
(配電バンク)に対して、前記対地アドミタンスの不平
衡等に起因する残留零相電流及び残留零相電圧では動作
せず、一定の抵抗値以下又はコンダクタンス値以上の1
相地絡では動作するように、前記OVGR及びDGRの
整定(感度調整)と最小動作試験をおこなう配電線地絡
保護リレー試験方法において、各フィーダに設けたZC
Tの一次電流値(零相一次電流値)を地絡していないと
きの残留分及び1回の母線の1相地絡時について測定に
基づき算出し、バンク全体の対地零相アドミタンスと対
地逆相アドミタンスをGPTでの測定に基づき算出し、
これらの値を既知として各フィーダの対地零相アドミタ
ンスと対地逆相アドミタンスを算出し、さらにa,b,
cいずれか1相が任意の抵抗又はコンダクタンスで地絡
したときの各フィーダの零相一次電流値を算出し、か
つ、対地静電容量不平衡を評価するようにした配電線地
絡保護リレー試験方法であって、少なくとも以下(1)
〜(5)の処理手順又は試験手順を包含することを特徴
とするものである。 (1)ZCTの一次側の試験用貫通線に数通りの付加電
流を出力する。 (2)前記付加電流とZCTの一次電流との合成電流の
二次電流を測定する。 (3)付加電流に係る数通りの出力条件から、各別にZ
CTの一次電流と変流比を変数とする連立方程式を立
その解としてZCTの一次電流値であるそれぞれ残
留零相一次電流値及び1回の母線の1相地絡操作に対す
る零相一次電流値を求める。 (4)GPTにおいて、いずれか一組の相の線間電圧、
残留零相電圧、及び1回の母線の1相地絡操作に対する
零相電圧を測定し、これら線間電圧、残留零相電 圧、及
び1回の母線の1相地絡操作に対する零相電圧、並びに
地絡時の抵抗又はコンダクタンスの関係から導出される
計算式に基づき、バンク全体の対地零相アドミタンス及
び対地逆相アドミタンスを求める。 (5)上記手順(3)において求めた残留零相一次電流
値及び1回の母線の1相地絡操作に対する零相一次電流
値と、上記手順(4)において求めたバンク全体の対地
零相アドミタンス及び対地逆相アドミタンスとの関係か
ら導出される計算式に基づき、各フィーダの対地零相ア
ドミタンス及び対地逆相アドミタンスを求め、さらに
a,b,cいずれか1相が任意の抵抗又はコンダクタン
スで地絡したときの各フィーダの零相一次電流値を求め
る。
In order to solve the problem, the present invention provides a 6.6 kV distribution line (ungrounded system) provided on a bus.
Connected to the grounded transformer (GPT)
Ground fault overvoltage relay (OVGR) for detecting ground fault
And the zero-phase provided for each of the GPT and the distribution line (feeder)
Each of the feeders is connected to a current transformer (ZCT) to
A power distribution system using a separately detected ground fault directional relay (DGR), which has different ground admittances in each phase (a, b, c) of the bus and each distribution line, and in which the line voltages are balanced. Distribution bank), the ground admittance complaint
Operates with residual zero-sequence current and voltage due to balance
No, one that is less than a certain resistance value or more than a conductance value
In order to operate in the case of a phase-to-ground fault, the OVGR and DGR
In the distribution line ground fault protection relay test method for performing setting (sensitivity adjustment) and minimum operation test, the ZC
The primary current value of T (zero-phase primary current value) is calculated based on the measurement of the residual when there is no ground fault and the single-phase ground fault of one bus, based on the measurement. Phase admittance is calculated based on GPT measurements,
These values are known, and the zero-phase admittance to ground and the negative-phase admittance to ground of each feeder are calculated.
c. Distribution line ground fault protection relay test that calculates the zero-phase primary current value of each feeder when any one phase is grounded at an arbitrary resistance or conductance, and evaluates the unbalanced capacitance to ground. A method comprising at least the following (1):
And (5) a procedure or a test procedure. (1) Several additional currents are output to the primary through-hole test line on the ZCT. (2) The secondary current of the combined current of the additional current and the primary current of the ZCT is measured. (3) From several output conditions related to the additional current, Z
Simultaneous equations using the primary current of CT and the current transformation ratio as variables are set up , and the solutions thereof are the primary current value of ZCT, respectively, the residual zero-phase primary current value and the zero-phase primary current for one-phase ground fault operation of one bus. Find the value. (4) In the GPT, the line voltage of any one set of phases,
Residual zero-phase voltage, and the zero-phase voltage for 1 AICHI絡操operation of one of the bus is measured, these line voltage, residual zero-phase voltage,
And zero-phase voltage for one bus-to-phase ground fault operation, and
The zero phase admittance to ground and the negative phase admittance to ground of the entire bank are obtained based on a calculation formula derived from the resistance or conductance at the time of ground fault . (5) The residual zero-sequence primary current value obtained in the above procedure (3) and the zero-phase primary current value for one single-phase ground fault operation of the bus, and the ground zero phase of the whole bank obtained in the above procedure (4) Based on a calculation formula derived from the relationship between the admittance and the reverse phase admittance to the ground, the zero phase admittance to the ground and the reverse phase admittance to the ground of each feeder are obtained. Find the zero-phase primary current value of each feeder when a ground fault occurs.

【0016】また、上記試験方法(手順)をコンピュー
タ支援により総合的に実行可能とした配電線地絡保護リ
レー試験装置であって、母線・各配電線の各相(a,
b,c)で異なる対地アドミタンスを有し、かつ、各線
間電圧が平衡している配電系統(配電バンク)に対し
て、GPT、ZCT、DGR及びOVGRに端子接続し
た入出力回路と、該入出力回路に接続した計測・出力装
置と、該計測・出力装置に接続したコンピュータ及びプ
リンタを配備して、母線の1相地絡操作を含み、前記コ
ンピュータからの指示操作により計測・出力装置及び入
出力回路を介してGPT、ZCT、DGR及びOVGR
に対する入出力をおこない、かつ、これらの装置出力を
データ取得して演算処理及び表示・出力処理をおこなう
ように装置系を構成するとともに、前記装置系が、ZC
Tの一次側の試験用貫通線に数通りの付加電流を出力
し、該付加電流とZCTの一次電流との合成電流の二次
電流を測定するための第一の測定手段、及び前記付加電
流に係る数通りの出力条件から、各別にZCTの一次電
と変流比を変数とする連立方程式を立てその解とし
てZCTの一次電流値であるそれぞれ残留零相一次電流
値及び1回の母線の1相地絡操作に対する零相一次電流
値を求めるための第一の演算処理手段と、GPTにおい
て、いずれか一組の相の線間電圧、残留零相電圧、及び
1回の母線の1相地絡操作に対する零相電圧を測定する
ための第二の測定手段、及びこれら線間電圧、残留零相
電圧、及び1回の母線の1相地絡操作に対する零相電
圧、並びに地絡時の抵抗又はコンダクタンスの関係から
導出される計算式に基づき、バンク全体の対地零相アド
ミタンス及び対地逆相アドミタンスを求めるための第二
の演算処理手段と、各ZCTにおける残留零相一次電流
及び1回の母線の1相地絡操作に対する零相一次電流を
測定するか、又は前記第一の演算処理手段の結果を参照
取得するための第三の測定手段、及び該第三の測定手段
により得られた残留零相一次電流値及び1回の母線の1
相地絡操作に対する零相一次電流値と、前記第二の演算
処理手段の結果であるバンク全体の対地零相アドミタン
ス及び対地逆相アドミタンスとの関係から導出される計
算式に基づき、各フィーダの対地零相アドミタンス及び
対地逆相アドミタンスを求め、さらにa,b,cいずれ
か1相が任意の抵抗又はコンダクタンスで地絡したとき
の各フィーダの零相一次電流値を求めるための第三の演
算処理手段を具備してなり、装置系から、OVGRに対
し前記第二の演算処理手段により得られたバンク全体の
対地零相アドミタンス及び対地逆相アドミタンスから算
出されるa,b,cいずれか1相が任意の抵抗又はコン
ダクタンスで地絡したときの零相電圧値を入力し、DG
Rに対し該零相電圧値を入力し、かつ、ZCTを介して
前記第三の演算処理手段により算出されるたa,b,c
いずれか1相が任意の抵抗又はコンダクタンスで地絡し
たときの当該フィーダの零相一次電流値を入力して、そ
れぞれ動作信号の有無を取得することにより、少なくと
もOVGR及びDGRの整定と最小動作試験をおこなう
ようにしたことを特徴とするものである。
Also, the present invention is a distribution line ground fault protection relay test apparatus capable of comprehensively executing the above-described test method (procedure) with computer assistance , wherein each phase (a,
b, c) have different ground admittances and each line
For distribution systems (distribution banks) with balanced voltages
Te, GPT, ZCT, input and output circuits terminal connected to the DGR and OVGR, a measurement-output device connected to the input output circuit, and deploying computer and printer connected to the measuring and output devices, the bus 1 GPT, ZCT, DGR and OVGR through measurement / output device and input / output circuit by instruction operation from the computer, including phase-to-ground operation
The input / output to / from the device and the device system are configured to acquire the data of these devices and perform arithmetic processing and display / output processing.
First measuring means for outputting several additional currents to the test through wire on the primary side of T and measuring a secondary current of a combined current of the additional current and the primary current of the ZCT, and the additional current primary collector from the output conditions of several different, the ZCT to each other according to the
Making a simultaneous equation as a variable flow and current transformer ratio, and the solution
A first arithmetic processing means for determining a residual zero-phase primary current value, which is a primary current value of the ZCT, and a zero-phase primary current value for one single-phase ground fault operation of the bus, respectively; Second measuring means for measuring the line voltage of the set of phases, the residual zero-sequence voltage, and the zero-sequence voltage for a single-phase ground fault operation of one bus, and these line voltages, residual zero-sequence
Voltage and zero-phase power for one bus-to-phase ground fault operation
A second arithmetic processing means for obtaining the ground zero-phase admittance and the ground negative-phase admittance of the entire bank based on the pressure and the calculation formula derived from the resistance or conductance at the time of ground fault, and the residual zero in each ZCT. Either measure the phase primary current and the zero-phase primary current for one bus ground fault operation of one bus , or refer to the result of the first arithmetic processing means
Third measuring means for acquiring, and the third measuring means
Of the residual zero-phase primary current obtained by
A zero-phase primary current value for a phase-to-ground fault operation and the second calculation
Based on a calculation formula derived from the relationship between the ground zero-phase admittance and the ground negative-phase admittance of the whole bank as a result of the processing means, the ground zero-phase admittance and the ground negative-phase admittance of each feeder are obtained. and c) a third arithmetic processing means for calculating a zero-phase primary current value of each feeder when any one of the phases is grounded by an arbitrary resistance or conductance .
The entire bank obtained by the second arithmetic processing means
Calculated from zero phase admittance to ground and reverse phase admittance to ground
Any one of the output phases a, b, and c is an arbitrary resistor or capacitor.
Enter the zero-sequence voltage value when a ground fault occurs at the
Input the zero-phase voltage value to R, and through ZCT
A, b, c calculated by the third arithmetic processing means
One of the phases is grounded with an arbitrary resistance or conductance
Input the zero-phase primary current value of the feeder at
By acquiring the presence or absence of each operation signal, at least
Also conduct OVGR and DGR settling and minimum operation test
It is characterized by doing so.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態を添付図面を
参照しながら以下説明する。なお、この欄で参照する添
付図面は実施例においても参照される。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The attached drawings referred to in this section are also referred to in the embodiments.

【0018】上記発明方法の処理(試験)手順(1)〜
(3)〔及び上記発明装置の第一の測定手段及び演算処
理手段〕において、付加電流の出力条件は、合成電流の
大きさがZCT電流のしきい値(既知)以上となるよう
に設定され、大きさが同じで位相が異なる3通りの電流
を採用するものである。
Processing (test) procedure (1) to above-mentioned method of the present invention
(3) In [and the first measuring means and the arithmetic processing means of the apparatus of the present invention], the output condition of the additional current is set such that the magnitude of the combined current is equal to or larger than the threshold (known) of the ZCT current. , Three currents having the same magnitude but different phases.

【0019】この場合の手法〔以下、手法I〕を以下に
述べる。あわせて、手法Iの測定回路の構成例を図1に
示す。図示するように、ZCT一次側の試験用貫通線に
付加電流を出力して、該付加電流とZCT一次電流(被
測定電流;未知)との合成電流の二次電流を測定し、出
力条件ごとにZCTの一次電流値と変流比を変数とする
連立方程式を立てて演算処理し、その解によりそれぞれ
の値を求める。(手法II及びIII において同じ。)以下
に計算式を示す。
The technique in this case (hereinafter, technique I) will be described below. FIG. 1 also shows a configuration example of the measurement circuit of the method I. As shown in the figure, an additional current is output to a test through wire on the primary side of the ZCT, and a secondary current of a combined current of the additional current and the ZCT primary current (current to be measured; unknown) is measured. , A simultaneous equation using the primary current value of the ZCT and the current-transformation ratio as variables is calculated and processed, and the respective values are obtained by their solutions. (The same applies to methods II and III.) The calculation formula is shown below.

【0020】[0020]

【数1】 (Equation 1)

【0021】以上の計算式により、I0,φ,nが求まる
が、(1−5)式から、計算結果の精度を考慮すると、
Q<<−1,すなわちI0>>I0A 又はI0<<I0A となるように
I0Aを与えなければならない。このとき、I0のおよその
値としては、ZCT二次値に、ZCT電流のしきい値以
上のときの変流比の概ねの値を乗じた値を用いればよ
い。なお、ZCT電流のしきい値の概ねの値と、しきい
値以上のときのZCT変流比の概ねの値を予め測定等に
より求めておく必要がある。
From the above equations, I 0 , φ, and n are obtained. From the equation (1-5), considering the accuracy of the calculation results,
Q << − 1, that is, I 0 >> I 0A or I 0 << I 0A
I 0A must be given. At this time, as the approximate value of I 0 , a value obtained by multiplying the ZCT secondary value by the approximate value of the current transformation ratio when the ZCT current is equal to or higher than the threshold value may be used. The approximate value of the threshold value of the ZCT current and the approximate value of the ZCT current conversion ratio at or above the threshold value need to be determined in advance by measurement or the like.

【0022】また、同処理(試験)手順(1)〜(3)
〔及び同装置の第一の測定手段及び演算処理手段〕にお
いて、付加電流の出力条件は、合成電流の大きさがZC
T電流のしきい値(既知)以上となるように設定され、
位相が同じで大きさが異なる3通りの電流を採用する場
合がある。
The same processing (test) procedure (1) to (3)
[And the first measuring means and the arithmetic processing means of the apparatus], the output condition of the additional current is such that the magnitude of the combined current is ZC
Is set to be equal to or more than the threshold value (known) of the T current,
There are cases where three types of currents having the same phase but different magnitudes are employed.

【0023】この場合の手法〔以下、手法II〕を以下に
述べる。手法IIの測定回路の構成例を図2に示すととも
に、以下に計算式を示す。
The technique in this case (hereinafter, technique II) will be described below. FIG. 2 shows a configuration example of the measurement circuit of the method II, and a calculation formula is shown below.

【0024】[0024]

【数2】 (Equation 2)

【0025】また、同処理(試験)手順(1)〜(3)
〔及び同装置の第一の測定手段及び演算処理手段〕にお
いて、付加電流の出力条件は、合成電流の大きさがZC
T電流のしきい値(既知)以上となるように設定され、
異なる2通りの電流を採用する場合がある。
The same processing (test) procedure (1) to (3)
[And the first measuring means and the arithmetic processing means of the apparatus], the output condition of the additional current is such that the magnitude of the combined current is ZC
Is set to be equal to or more than the threshold value (known) of the T current,
There are cases where two different currents are employed.

【0026】この場合の手法〔以下、手法III 〕を以下
に述べる。手法III の測定回路の構成例を図3に示すと
ともに、以下に計算式を示す。
The method in this case (hereinafter referred to as method III) will be described below. FIG. 3 shows an example of the configuration of the measurement circuit of the method III, and the calculation formula is shown below.

【0027】[0027]

【数3】 (Equation 3)

【0028】また、上記発明方法の処理(試験)手順
(4)〔上記発明装置の第二の測定手段及び演算処理手
段〕において、バンク全体の対地零相アドミタンス及び
対地逆相アドミタンスを求めるための導出過程(以下の
数4)を述べる。
In the processing (test) procedure (4) of the method of the present invention (the second measuring means and the arithmetic processing means of the above-described invention apparatus), the zero-phase admittance to ground and the negative-phase admittance to ground for the entire bank are obtained. The derivation process (Equation 4 below) will be described.

【0029】さらに、同処理(試験)手順(5)〔上記
発明装置の第三の測定手段及び演算処理手段〕におい
て、各フィーダの対地零相アドミタンス及び対地逆相ア
ドミタンスを求めるとともに、任意抵抗地絡時のフィー
ダの零相一次電流を求めるための導出過程(以下の数5
及び数6)を述べる。
Further, in the same processing (test) procedure (5) [third measuring means and arithmetic processing means of the above-described invention device], the zero-phase admittance to ground and the negative-phase admittance to ground of each feeder are obtained, and the arbitrary resistance ground is determined. Derivation process for obtaining the zero-phase primary current of the feeder at the time of a short circuit (Equation 5 below)
And Equation 6).

【0030】ここで、対象とする三相不平衡な対地アド
ミタンスをもつ配電バンクを図4に示す。また、以下の
導出過程(数式)で使用する添字kに関し、k=0は母
線、k=1,2,・・・nはフィーダの号数である。な
お、線間電圧は平衡しているものとする。
FIG. 4 shows a distribution bank having three-phase unbalanced ground admittance. Also, regarding the subscript k used in the following derivation process (formula), k = 0 is a bus, and k = 1, 2,... N is the number of feeders. It is assumed that the line voltages are balanced.

【0031】[0031]

【数4】 (Equation 4)

【0032】[0032]

【数5】 (Equation 5)

【0033】上記(21)、(22)、(24)、(25)、
(27)〜(30)式での電圧は、GPT一次電圧で表して
いる。ただし、線間電圧はGPT二次端子、零相電圧は
GPT三次端子で測定されるので、実際にはこれらの式
にGPTの変圧比を考慮した式を用いる。また、(27)
〜(30)式での零相電流はZCT一次電流で表してい
る。
The above (21), (22), (24), (25),
The voltages in the expressions (27) to (30) are represented by GPT primary voltages. However, since the line voltage is measured at the GPT secondary terminal and the zero-phase voltage is measured at the GPT tertiary terminal, equations that take into account the GPT transformation ratio are actually used in these equations. Also, (27)
The zero-phase current in Expressions (30) to (30) is represented by a ZCT primary current.

【0034】ここで、(24)、(25)式よりa,b相線
間電圧、残留零相電圧、1回の地絡に対する零相電圧を
測定すれば、バンク全体の対地零相アドミタンスと対地
逆相アドミタンスが求まることがわかる。さらに、(2
9)、(30)式よりフィーダの残留零相電流、1回の母
線地絡に対する零相電流を測定すれば(この2つは上述
の手法Iにより測定できる)、そのフィーダの対地零相
アドミタンスと対地逆相アドミタンスが求まることがわ
かる。
Here, by measuring the a-b phase line voltage, the residual zero-sequence voltage, and the zero-sequence voltage with respect to one earth fault from the equations (24) and (25), the zero-sequence admittance to the ground of the whole bank is obtained. It can be seen that the reverse phase admittance to the ground is obtained. In addition, (2
If the residual zero-sequence current of the feeder and the zero-sequence current with respect to one bus ground fault are measured from the equations (30) and (30), these two can be measured by the above-mentioned method I. It can be seen that the reverse phase admittance to the ground is obtained.

【0035】さらに、任意抵抗地絡時(a,b,c相が
任意のコンダクタンス<G>で地絡したとき)のフィー
ダの零相一次電流<Ik0aout>,<Ik0bout>,<Ik0cout> (外
部地絡); <Ik0ain >,<Ik0bin >,<Ik0cin > (内部地
絡)は以下により求まる。
Further, the zero-phase primary currents <I k0aout >, <I k0bout >, <I k0cout of the feeder at the time of an arbitrary resistance ground fault (when the a, b, and c phases are grounded at an arbitrary conductance <G>). > (External ground fault); <I k0ain >, <I k0bin >, <I k0cin > (internal ground fault) are obtained as follows.

【0036】[0036]

【数6】 (Equation 6)

【0037】上記(31)〜(36)式での電圧は、GPT
一次電圧で表している。ただし、線間電圧はGPT二次
端子、零相電圧はGPT三次端子で測定されるので、実
際にはこれらの式にGPTの変圧比を考慮した式を用い
る。また、零相電流はZCT一次電流で表している。な
お、これらの式で求めた値をZCT一次電流として出力
するときは、残留零相一次電流分を差し引いておく必要
がある。
The voltage in the above equations (31) to (36) is expressed by GPT
Expressed as primary voltage. However, since the line voltage is measured at the GPT secondary terminal and the zero-phase voltage is measured at the GPT tertiary terminal, equations that take into account the GPT transformation ratio are actually used in these equations. Further, the zero-phase current is represented by a ZCT primary current. When outputting the value obtained by these equations as the ZCT primary current, it is necessary to subtract the residual zero-phase primary current.

【0038】ここでは、式の導出のために、a相を人工
地絡した場合の零相電圧・零相電流測定を用いたが、地
絡相はb相あるいはc相でも同様に式を導くことができ
る。また、<Vab>を電圧の基準として用いたが、上述
の(23)式により<Vbc>,<Vca>を用いることもで
きる。
Here, for the derivation of the equation, the zero-phase voltage / zero-phase current measurement in the case where the a-phase is artificially grounded is used, but the equation is similarly derived when the ground-fault phase is the b-phase or the c-phase. be able to. Although <V ab > is used as the reference for the voltage, <V bc > and <V ca > can be used according to the above equation (23).

【0039】[0039]

【実施例】本発明の一実施例を添付図面を参照して以下
の順序で説明する。なお、以下の説明文中、<>はベク
トル量である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described in the following order with reference to the accompanying drawings. In the following description, <> indicates a vector amount.

【0040】1.装置構成 2.零相一次電流測定 2−1.測定手法 2−2.有効性の検証 3.模擬配電バンクでの試験(説明一部省略) 4.実配電バンクでの試験(説明一部省略) 5.まとめ1. 1. Device configuration Zero-phase primary current measurement 2-1. Measurement method 2-2. 2. Verification of effectiveness 3. Test on a simulated distribution bank (some explanation omitted) 4. Test on actual distribution bank (some explanation omitted) Conclusion

【0041】1.装置構成 図5に回路構成として示すように、本試験装置(X)へ
の入力信号は、GPT二次側線間電圧<Vab>、GPT
三次側電圧<V0 >、各フィーダのZCT二次側<I0
>でリレー盤の試験端子から入力される。また、リレー
動作信号も直接取り込む。出力は各地絡抵抗値に対して
計算された<V0 >、一次側<I0 >で、<V0 >はリ
レー盤試験端子を経由してOVGR及びDGRに入力
し、一次側<I0 >は各フィーダのZCTに貫通させ
る。なお、GPT二次側線間電圧<V ab>は位相基準と
する。
[0041]1. Device configuration As shown as a circuit configuration in FIG.
Input signal of the GPT secondary line voltage <Vab>, GPT
Tertiary voltage <V0>, ZCT secondary side of each feeder <I0
> Is input from the test terminal of the relay panel. Also a relay
The operation signal is also taken directly. The output is for each ground resistance value.
Calculated <V0>, Primary side <I0>, <V0> Is
Input to OVGR and DGR via lathe test terminal
And the primary side <I0> Penetrate the ZCT of each feeder
You. In addition, GPT secondary line voltage <V ab> Is the phase reference
I do.

【0042】また、本発明の構成手段に係る実施例ブロ
ック図を図6に示す。図中、1がGPT、2がZCT、
3がDGR、4がOVGR、5が入出力回路、6が計測
・出力装置、11が第一の測定手段、12が第二の測定手
段、13が第三の測定手段、21が第一の演算処理手段、22
が第二の演算処理手段、23が第三の演算処理手段、PCが
コンピュータ(パソコン)、LPがプリンタ、及びXが本
試験装置である。
FIG. 6 is a block diagram showing an embodiment of the present invention. In the figure, 1 is GPT, 2 is ZCT,
3 is a DGR, 4 is an OVGR, 5 is an input / output circuit, 6 is a measurement / output device, 11 is a first measuring means, 12 is a second measuring means, 13 is a third measuring means, and 21 is a first measuring means. Arithmetic processing means, 22
Is a second arithmetic processing means, 23 is a third arithmetic processing means, PC is a computer (PC), LP is a printer, and X is the present test apparatus.

【0043】2.零相一次電流測定 2−1.測定手法 ZCTの変流比は零相電流がある値〔しきい値〕以上に
なるとほぼ一定値となる。〔ZCT二次電流vs. 変流比
のデータプロットは図示を省略する。〕この特性を用
い、ZCT一次側の試験用貫通線に、フィーダの零相一
次電流との合成値の大きさがしきい値以上となるような
電流を2,3通り出力すれば、ZCT一次・二次電流に
関する連立方程式が得られる。〔上記の手法I〜III に
おいて既述。〕
2. Zero-phase primary current measurement 2-1. The current transformation ratio of the measuring method ZCT becomes substantially constant when the zero-phase current becomes a certain value [threshold value] or more. [ZCT secondary current vs. data transformation ratio data plot is not shown. By using this characteristic and outputting two or three types of current to the test through wire on the ZCT primary side such that the magnitude of the combined value with the zero-phase primary current of the feeder exceeds the threshold value, the ZCT primary and secondary A simultaneous equation for the secondary current is obtained. [Already described in the above methods I to III. ]

【0044】2−2.有効性の検証 上記2−1の測定手法の有効性を検証するために、模擬
配電バンクのZCTを用いて試験を行った。試験回路を
図7に示す。
2-2. Verification of Effectiveness In order to verify the effectiveness of the measurement method described in 2-1 above, a test was performed using ZCT of a simulated distribution bank. The test circuit is shown in FIG.

【0045】ここで、フィーダは停電しておき、商用1
00V電源、抵抗器、スライダックを用いてZCT一次
回路に<I0>模擬電流を流した(出力)。I0の値は50〜
1995mAとした。通常、零相一次電流は多少変動してお
り、その変動を模擬するため、各回の試験の初めにスラ
イダックによりI0の値を決めた後は、その調整をおこな
わなかった。
Here, the feeder is turned off and the commercial 1
A <I 0 > simulated current was passed through the primary ZCT circuit using a 00V power supply, a resistor, and a slidac (output). I 0 value is 50 ~
1995 mA. Normally, zero-phase primary current is varies somewhat, in order to simulate the variation, after determining the value of I 0 by variac at the beginning of each round of tests, was not carried out the adjustment.

【0046】また、リレー試験器を用いて付加電流<I
0Am>=I0A exp(jθm )[m=1,2,3]を流した。電流の大
きさI0A はI0の値により適当に決め、位相θm は<I0
の位相φを基準として位相計で測定し、3通りの付加電
流の位相差が互いに120 °となるように調整した。ZC
Tの二次電流は、通常のリレー回路の中に電流計(内部
抵抗 1.2Ω固定)を挿入して測定した。試験は、各々の
I0値に対して4回おこなった。なお、試験に使用したリ
レー試験器、位相計、ZCT二次電流測定用電流計は、
本発明装置の構成要素と同様のものである。
Further, using a relay tester, additional current <I
0Am> = I 0A exp (jθ m) shed [m = 1,2,3]. The magnitude of the current I 0A is appropriately determined by the value of I 0 , and the phase θ m is <I 0 >
Was measured using a phase meter with the phase φ as a reference, and the three kinds of additional currents were adjusted so that the phase difference between them was 120 °. ZC
The secondary current of T was measured by inserting an ammeter (internal resistance fixed at 1.2Ω) into a normal relay circuit. The exam is for each
Four runs were performed on the I 0 value. The relay tester, phase meter, and ammeter for ZCT secondary current measurement used in the test were:
The components are the same as those of the device of the present invention.

【0047】試験結果を表1に示す。I0入力値はスライ
ダックで調整した初期値であり、多少変動している。
I0,φ測定(算出)値は、4回の試験の変動範囲を示し
ている。I0入力値と測定値の差はI0で約1%以下、φで
2°以下であり、付加電流<I0 Am>を適当に選べば、非
常に高い精度で零相一次電流値が求まることがわかっ
た。
Table 1 shows the test results. The I 0 input value is an initial value adjusted by the Slidac and slightly fluctuates.
The I 0 and φ measured (calculated) values indicate the fluctuation range of the four tests. The difference between the I 0 input value and the measured value is about 1% or less for I 0 and 2 ° or less for φ. If the additional current <I 0 Am > is appropriately selected, the zero-phase primary current value can be extremely accurately calculated. It turned out to be determined.

【0048】[0048]

【表1】 [Table 1]

【0049】このあと、3.模擬配電バンクでの試験
及び4.実配電バンクでの試験を実行した。試験項目は
零相電圧・零相電流測定、対地アドミタンス計算、母線
地絡特性計算、線路位相特性試験、及びリレー最小動作
試験である。それぞれの試験方法(機器操作)及び試験
結果については説明を省略する。
Thereafter, 3. Testing in a simulated distribution bank ,
And 4. A test was conducted on an actual distribution bank . Test items are zero-sequence voltage / zero-sequence current measurement, ground admittance calculation, bus-to-ground fault characteristic calculation, line phase characteristic test, and relay minimum operation test. A description of each test method (equipment operation) and test results is omitted.

【0050】5.まとめ 任意抵抗地絡時の零相一次電流をバンク全体・各フィ
ーダの対地アドミタンスから精度よく求めることができ
た。
[0050] 5. Conclusion The zero-phase primary current at the time of an arbitrary ground fault can be accurately obtained from the ground admittance of the whole bank and each feeder.

【0051】残留分及び3kΩ母線地絡時の零相一次
電流を、ZCT二次電流測定値から精度よく求めること
ができた。
The residual and the zero-phase primary current at the time of a 3 kΩ bus ground fault could be accurately obtained from the measured ZCT secondary current.

【0052】しきい値以上の零相電流に対するZCT
の変流比を表示し、零相二次電流測定回路の良否を判断
することができた。
ZCT for Zero Phase Current Above Threshold
Of the zero-phase secondary current measurement circuit was determined.

【0053】これにより、線路位相特性試験、及びリレ
ー(DGR)最小動作試験でZCT一次回路への電流出
力が精度よくできるようになり、効率的なリレー試験が
可能となった。
As a result, the current output to the ZCT primary circuit can be accurately performed in the line phase characteristic test and the relay (DGR) minimum operation test, and an efficient relay test can be performed.

【0054】[0054]

【発明の効果】本発明は以上の構成よりなるものであ
り、これによればコンピュータ支援により総合的にリレ
ー試験手順を実行可能なので、より安全で、かつ、効率
的なリレー試験をおこなうことができる。しかも、少人
数(3名)で短時間(15分前後)に試験を遂行でき、リ
レーをロックする時間の短縮が図れるので、運用上有益
である。
According to the present invention, the relay test procedure can be executed comprehensively with the aid of a computer, so that a safer and more efficient relay test can be performed. it can. Moreover, the test can be performed in a short time (around 15 minutes) with a small number of people (three), and the time for locking the relay can be shortened, which is useful in operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における手法Iの測定回路の構成例を示
す説明図である。
FIG. 1 is an explanatory diagram showing a configuration example of a measurement circuit of a technique I in the present invention.

【図2】同じく手法IIの測定回路の構成例を示す説明図
である。
FIG. 2 is an explanatory diagram showing a configuration example of a measurement circuit of the technique II.

【図3】同じく手法III の測定回路の構成例を示す説明
図である。
FIG. 3 is an explanatory diagram showing a configuration example of a measurement circuit of the method III.

【図4】本発明が対象とする三相不平衡な対地アドミタ
ンスをもつ配電バンクを示す説明図である。
FIG. 4 is an explanatory diagram showing a distribution bank having three-phase unbalanced ground admittance to which the present invention is applied.

【図5】装置構成を説明する回路構成概要図である。FIG. 5 is a schematic circuit configuration diagram illustrating a device configuration.

【図6】装置構成を説明する実施例ブロック図である。FIG. 6 is a block diagram of an embodiment explaining a device configuration.

【図7】零相一次電流測定に係る試験回路の構成例を示
す説明図である。
FIG. 7 is an explanatory diagram illustrating a configuration example of a test circuit related to zero-phase primary current measurement.

【図8】従来の試験例を示す説明図である。FIG. 8 is an explanatory diagram showing a conventional test example.

【符号の説明】[Explanation of symbols]

1 GPT 2 ZCT 3 DGR 4 OVGR 5 入出力回路 6 計測・出力装置 11 第一測定手段 12 第二測定手段 13 第三測定手段 21 第一演算処理手段 22 第二演算処理手段 23 第三演算処理手段 PC コンピュータ(パソコン) LP プリンタ X 配電線地絡保護リレー試験装置(本試験装置) DESCRIPTION OF SYMBOLS 1 GPT 2 ZCT 3 DGR 4 OVGR 5 I / O circuit 6 Measuring / output device 11 First measuring means 12 Second measuring means 13 Third measuring means 21 First processing means 22 Second processing means 23 Third processing means PC Computer (PC) LP Printer X Distribution line ground fault protection relay tester (this tester)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 31/00 H02H 3/00 - 3/52 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) G01R 31/00 H02H 3/00-3/52

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 6.6kV配電線(非接地系統)母線
に設けた接地変圧器(GPT)に接続され母線・各配電
線全体の地絡事故を検出する地絡過電圧継電器(OVG
R)と、前記GPT及び配電線(フィーダ)毎に設けた
零相変流器(ZCT)に接続されフィーダ毎の地絡事故
を各別に検出する地絡方向継電器(DGR)とを用い
母線・各配電線の各相(a,b,c)で異なる対地アド
ミタンスを有し、かつ、各線間電圧が平衡している配電
系統(配電バンク)に対して、前記対地アドミタンスの
不平衡等に起因する残留零相電流及び残留零相電圧では
動作せず、一定の抵抗値以下又はコンダクタンス値以上
の1相地絡では動作するように、前記OVGR及びDG
Rの整定(感度調整)と最小動作試験をおこなう配電線
地絡保護リレー試験方法において、 各フィーダに設けたZCTの一次電流値(零相一次電流
値)を地絡していないときの残留分及び1回の母線の1
相地絡時について測定に基づき算出し、バンク全体の対
地零相アドミタンスと対地逆相アドミタンスをGPTで
の測定に基づき算出し、これらの値を既知として各フィ
ーダの対地零相アドミタンスと対地逆相アドミタンスを
算出し、さらにa,b,cいずれか1相が任意の抵抗又
はコンダクタンスで地絡したときの各フィーダの零相一
次電流値を算出し、かつ、対地静電容量不平衡を評価す
るようにした配電線地絡保護リレー試験方法であって、 少なくとも以下(1)〜(5)の処理手順又は試験手順
を包含することを特徴とする配電線地絡保護リレー試験
方法。 (1)ZCTの一次側の試験用貫通線に数通りの付加電
流を出力する。 (2)前記付加電流とZCTの一次電流との合成電流の
二次電流を測定する。 (3)付加電流に係る数通りの出力条件から、各別にZ
CTの一次電流と変流比を変数とする連立方程式を立
その解としてZCTの一次電流値であるそれぞれ残
留零相一次電流値及び1回の母線の1相地絡操作に対す
る零相一次電流値を求める。 (4)GPTにおいて、いずれか一組の相の線間電圧、
残留零相電圧、及び1回の母線の1相地絡操作に対する
零相電圧を測定し、これら線間電圧、残留零相電圧、及
び1回の母線の1相地絡操作に対する零相電圧、並びに
地絡時の抵抗又は コンダクタンスの関係から導出される
計算式に基づき、バンク全体の対地零相アドミタンス及
び対地逆相アドミタンスを求める。 (5)上記手順(3)において求めた残留零相一次電流
値及び1回の母線の1相地絡操作に対する零相一次電流
値と、上記手順(4)において求めたバンク全体の対地
零相アドミタンス及び対地逆相アドミタンスとの関係か
ら導出される計算式に基づき、各フィーダの対地零相ア
ドミタンス及び対地逆相アドミタンスを求め、さらに
a,b,cいずれか1相が任意の抵抗又はコンダクタン
スで地絡したときの各フィーダの零相一次電流値を求め
る。
1. A bus connected to a ground transformer (GPT) provided on a bus of a 6.6 kV distribution line (ungrounded system).
Ground fault over voltage relay to detect a ground fault of the entire line (OVG
R) and the ground fault of each feeder connected to the GPT and the zero-phase current transformer (ZCT) provided for each distribution line (feeder).
Using a ground fault directional relay (DGR) for detecting each different and
Different ground ad for each phase (a, b, c) of bus and distribution line
Power distribution with mittens and balanced line voltages
To the grid (distribution bank),
In residual zero-sequence current and residual zero-sequence voltage due to unbalance, etc.
Does not operate and is below a certain resistance value or above a conductance value
The OVGR and the DG are operated so as to operate in a one-phase ground fault.
In the test method of the distribution line ground fault protection relay for setting R (sensitivity adjustment) and performing the minimum operation test, the residual current when the primary current value (zero-phase primary current value) of the ZCT provided for each feeder is not grounded And one of the buses
Calculate based on the measurement at the time of phase ground fault, and calculate the ground zero phase admittance and ground reverse phase admittance of the whole bank based on the measurement by GPT. These values are known and the ground zero phase admittance and ground reverse phase of each feeder are known. The admittance is calculated, the zero-phase primary current value of each feeder is calculated when any one of the phases a, b, and c is grounded by an arbitrary resistance or conductance, and the capacitance unbalance to the ground is evaluated. A method for testing a distribution line ground fault protection relay as described above, comprising at least the following processing procedures or test procedures (1) to (5). (1) Several additional currents are output to the primary through-hole test line on the ZCT. (2) The secondary current of the combined current of the additional current and the primary current of the ZCT is measured. (3) From several output conditions related to the additional current, Z
Simultaneous equations using the primary current of CT and the current transformation ratio as variables are set up , and the solutions thereof are the primary current value of ZCT, respectively, the residual zero-phase primary current value and the zero-phase primary current for one-phase ground fault operation of one bus. Find the value. (4) In the GPT, the line voltage of any one set of phases,
Measure the residual zero-sequence voltage and the zero-sequence voltage for one-phase ground fault operation of one bus.
And zero-phase voltage for one bus-to-phase ground fault operation, and
The zero phase admittance to ground and the negative phase admittance to ground of the entire bank are obtained based on a calculation formula derived from the resistance or conductance at the time of ground fault . (5) The residual zero-sequence primary current value obtained in the above procedure (3) and the zero-phase primary current value for one single-phase ground fault operation of the bus, and the ground zero phase of the whole bank obtained in the above procedure (4) The zero-phase admittance to ground and the negative-phase admittance to ground of each feeder are obtained based on a calculation formula derived from the relationship between admittance and negative-phase admittance to ground. Further, any one of a, b, and c has any resistance or conductance. Find the zero-phase primary current value of each feeder when a ground fault occurs.
【請求項2】 付加電流の出力条件が、合成電流の大き
さがZCT電流のしきい値(既知)以上となるように設
定され、大きさが同じで位相が異なる3通りの電流であ
る請求項1記載の配電線地絡保護リレー試験方法。
2. An output condition of the additional current is set so that the magnitude of the combined current is equal to or larger than a threshold value (known) of the ZCT current, and the current is three kinds of currents having the same magnitude but different phases. Item 6. The test method for a distribution line ground fault protection relay according to item 1.
【請求項3】 付加電流の出力条件が、合成電流の大き
さがZCT電流のしきい値(既知)以上となるように設
定され、位相が同じで大きさが異なる3通りの電流であ
る請求項1記載の配電線地絡保護リレー試験方法。
3. The output condition of the additional current is set so that the magnitude of the combined current is equal to or larger than the threshold value (known) of the ZCT current, and the three currents have the same phase but different magnitudes. Item 6. The test method for a distribution line ground fault protection relay according to item 1.
【請求項4】 付加電流の出力条件が、合成電流の大き
さがZCT電流のしきい値(既知)以上となるように設
定され、異なる2通りの電流である請求項1記載の配電
線地絡保護リレー試験方法。
4. The distribution line ground according to claim 1, wherein output conditions of the additional current are set so that the magnitude of the combined current is equal to or larger than a threshold value (known) of the ZCT current, and are two different currents. Short-circuit protection relay test method.
【請求項5】 請求項1乃至4のいずれか1項記載の配
電線地絡保護リレー試験方法を、コンピュータ支援によ
り総合的にリレー試験手順を実行可能とした配電線地絡
保護リレー試験装置であって、母線・各配電線の各相(a,b,c)で異なる対地アド
ミタンスを有し、かつ、各線間電圧が平衡している配電
系統(配電バンク)に対して、 GPT、ZCT、DGR及びOVGRに端子接続した入
出力回路と、該入出力回路に接続した計測・出力装置
と、該計測・出力装置に接続したコンピュータ及びプリ
ンタを配備して、母線の1相地絡操作を含み、前記コン
ピュータからの指示操作により計測・出力装置及び入出
力回路を介してGPT、ZCT、DGR及びOVGRに
対する入出力をおこない、かつ、これらの装置出力をデ
ータ取得して演算処理及び表示・出力処理をおこなうよ
うに装置系を構成するとともに、 前記装置系が、 ZCTの一次側の試験用貫通線に数通りの付加電流を出
力し、該付加電流とZCTの一次電流との合成電流の二
次電流を測定するための第一の測定手段、及び前記付加
電流に係る数通りの出力条件から、各別にZCTの一次
電流と変流比を変数とする連立方程式を立てその解
してZCTの一次電流値であるそれぞれ残留零相一次電
流値及び1回の母線の1相地絡操作に対する零相一次電
流値を求めるための第一の演算処理手段と、 GPTにおいて、いずれか一組の相の線間電圧、残留零
相電圧、及び1回の母線の1相地絡操作に対する零相電
圧を測定するための第二の測定手段、及びこれら線間電
圧、残留零相電圧、及び1回の母線の1相地絡操作に対
する零相電圧、並びに地絡時の抵抗又はコンダクタンス
の関係から導出される計算式に基づき、バンク全体の対
地零相アドミタンス及び対地逆相アドミタンスを求める
ための第二の演算処理手段と、 各ZCTにおける残留零相一次電流及び1回の母線の1
相地絡操作に対する零相一次電流を測定するか、又は前
記第一の演算処理手段の結果を参照取得するための第三
の測定手段、及び該第三の測定手段により得られた残留
零相一次電流値及び1回の母線の1相地絡操作に対する
零相一次電流値と、前記第二の演算処理手段の結果であ
バンク全体の対地零相アドミタンス及び対地逆相アド
ミタンスとの関係から導出される計算式に基づき、各フ
ィーダの対地零相アドミタンス及び対地逆相アドミタン
スを求め、さらにa,b,cいずれか1相が任意の抵抗
又はコンダクタンスで地絡したときの各フィーダの零相
一次電流値を求めるための第三の演算処理手段を具備
てなり、 装置系から、OVGRに対し前記第二の演算処理手段に
より得られたバンク全体の対地零相アドミタンス及び対
地逆相アドミタンスから算出されるa,b,cいずれか
1相が任意の抵抗又はコンダクタンスで地絡したときの
零相電圧値を入力し、DGRに対し該零相電圧値を入力
し、かつ、ZCTを介して前記第三の演算処理手段によ
り算出されるa,b,cいずれか1相が任意の抵抗又は
コンダクタンスで地絡したときの当該フィーダの零相一
次電流値を入力して、それぞれ動作信号の有無を取得す
ることにより、少なくともOVGR及びDGRの整定と
最小動作試験をおこなうようにした ことを特徴とする配
電線地絡保護リレー試験装置。
5. The arrangement according to claim 1, wherein
A distribution line ground fault protection relay tester which can execute a relay test procedure comprehensively with a computer-assisted wire ground fault protection relay test method, wherein each phase (a, b, c) of a bus and each distribution line Different ground ads
Power distribution with mittens and balanced line voltages
For the system (distribution bank), an input / output circuit connected to GPT, ZCT, DGR, and OVGR terminals, a measurement / output device connected to the input / output circuit, and a computer and a printer connected to the measurement / output device Deployed, including one-phase ground fault operation of the bus, input / output to / from GPT, ZCT, DGR and OVGR via measurement / output device and input / output circuit by instruction operation from the computer, and these devices The device system is configured to perform arithmetic processing and display / output processing by acquiring data from the output, and the device system outputs several additional currents to the test through wire on the primary side of the ZCT, and outputs the additional current. The first measuring means for measuring the secondary current of the combined current of the current and the primary current of the ZCT, and several output conditions related to the additional current, respectively, First order
A simultaneous equation with the current and the current transformer ratio as variables is set up , and its solution and
A first arithmetic processing means for obtaining a residual zero-phase primary current value which is a primary current value of the ZCT and a zero-phase primary current value for one single-phase ground fault operation of the bus, respectively; line voltages of a set of phases, the second measuring means for measuring the zero-phase voltage for 1 AICHI絡操operation of residual zero-phase voltage, and one of the bus, and these lines between collector
Voltage, residual zero-sequence voltage, and one bus ground fault operation.
A second arithmetic processing means for calculating the zero-phase admittance to ground and the negative-phase admittance to ground of the entire bank based on a zero-sequence voltage, and a calculation formula derived from the relationship between the resistance or conductance at the time of ground fault. And the residual zero-phase primary current in each ZCT and one of the buses
Measure the zero-phase primary current for phase-to-ground fault operation or
The third for referring to and obtaining the result of the first arithmetic processing means
Measurement means, the residual zero-phase primary current value obtained by the third measurement means, the zero-phase primary current value for one-phase ground fault operation of one bus, and the result of the second arithmetic processing means. Ah
That based on the equation derived from the relationship between the bank whole ground zero-phase admittances and ground reversed phase admittance, determine the ground zero-phase admittances and ground reversed phase admittance of the feeder, additionally a, b, c or 1-phase There comprises a third processing means for determining the zero-phase primary current value of each feeder when the ground fault in any resistance or conductance
From the device system to the second arithmetic processing means for OVGR
Zero phase admittance and ground of the whole bank obtained from
Any of a, b, and c calculated from ground reversed phase admittance
When one phase is grounded by any resistance or conductance
Input the zero-phase voltage value and input the zero-phase voltage value to DGR
And by the third arithmetic processing means via ZCT.
Any one of the phases a, b, and c is an arbitrary resistance or
Zero phase of the feeder when a ground fault occurs in conductance
Input the next current value to obtain the presence or absence of
By doing so, at least OVGR and DGR
A distribution line ground fault protection relay tester characterized by performing a minimum operation test .
JP34378398A 1998-12-03 1998-12-03 Distribution line ground fault protection relay test method and apparatus Expired - Lifetime JP3312172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34378398A JP3312172B2 (en) 1998-12-03 1998-12-03 Distribution line ground fault protection relay test method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34378398A JP3312172B2 (en) 1998-12-03 1998-12-03 Distribution line ground fault protection relay test method and apparatus

Publications (2)

Publication Number Publication Date
JP2000171505A JP2000171505A (en) 2000-06-23
JP3312172B2 true JP3312172B2 (en) 2002-08-05

Family

ID=18364213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34378398A Expired - Lifetime JP3312172B2 (en) 1998-12-03 1998-12-03 Distribution line ground fault protection relay test method and apparatus

Country Status (1)

Country Link
JP (1) JP3312172B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209030A (en) * 2010-03-29 2011-10-20 Chugoku Electric Power Co Inc:The Device and method for computing line characteristic
CN104158030A (en) * 2013-05-16 2014-11-19 介国安 Voltage reducing energy-saving type grounding all-purpose self-checking connector assembly capable of realizing zero wire breaking protection through capacitors

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5623768B2 (en) * 2010-03-29 2014-11-12 中国電力株式会社 Ground capacitance measuring apparatus and ground capacitance measuring method
JP2014011909A (en) * 2012-07-02 2014-01-20 Hirakawa Hewtech Corp Leakage detection/diagnosis circuit and power supply device having the same
CN103296541B (en) * 2013-05-16 2015-10-07 介国安 Protection off zero and ground connection general-purpose self-checking plug seat
CN103605003B (en) * 2013-11-20 2016-05-25 武汉大学 Ultra-high/extra-high voltage transmission line with four-circuit on single tower zero sequence electric capacity high-precision measuring method
CN104052024B (en) * 2014-07-09 2017-03-08 国家电网公司 Transformer winding fault relay protecting method based on winding resistance characteristic
KR102390202B1 (en) * 2021-04-16 2022-04-26 전명수 3-phase 3-wire power system ground fault protection device and method thereof
CN114167160B (en) * 2021-10-21 2023-08-29 国网天津市电力公司电力科学研究院 Method for detecting accuracy of low-power zero-sequence current transformer in ring main unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209030A (en) * 2010-03-29 2011-10-20 Chugoku Electric Power Co Inc:The Device and method for computing line characteristic
CN104158030A (en) * 2013-05-16 2014-11-19 介国安 Voltage reducing energy-saving type grounding all-purpose self-checking connector assembly capable of realizing zero wire breaking protection through capacitors
CN104158030B (en) * 2013-05-16 2017-12-12 介国安 The energy-saving protection off zero of capacitor step-down and ground connection general-purpose self-checking plug seat

Also Published As

Publication number Publication date
JP2000171505A (en) 2000-06-23

Similar Documents

Publication Publication Date Title
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
EP1992954B1 (en) Method for determining location of phase-to-earth fault
EP1870717B1 (en) System and method for determining phase-to-earth admittances of a three-phase electric line
EP1089081A2 (en) Method for computational determination of ground fault distance in an electrical power distribution network having a ring configuration
EP2000811A9 (en) Method for determining location of phase-to-earth fault
JP3312172B2 (en) Distribution line ground fault protection relay test method and apparatus
Penido et al. An analytical zero sequence method to locate fault in distribution systems rich in DG
Abasi et al. Location of double-circuit grounded cross-country faults in GUPFC-compensated transmission lines based on current and voltage phasors analysis
JP5444122B2 (en) Non-grounded circuit ground fault detection device, ground fault protection relay using the same, and ground fault detection method
JP3167620B2 (en) Harmonic outflow evaluation device
CN107169213B (en) Method, device and system for testing function indexes of zero-sequence current adaptive protection device
JP2020076671A (en) Ground electrostatic capacitance measurement device and ground electrostatic capacitance measurement method
JP5501820B2 (en) Line characteristic calculation device and line characteristic calculation method
Kuliš et al. Protection relay software models in interaction with power system simulators
Mati et al. A new framework of numerical distance relay using LabVIEW
JPH11142465A (en) Ground-fault point detecting method
Monemi et al. A Protection Scheme in RTDS Model of an IEEE 16-Bus System
JPH0619400B2 (en) Distribution line artificial ground fault tester
JPH0692997B2 (en) Measuring device for ground capacitance of power system
Kletsel et al. The device for determining the distance to single phase fault on the power line
Ramos et al. Behavior of phase voltages due to faults in radial power systems: An educational tool
Das et al. Characterization of short circuit faults and incipient insulation degradation between stator winding turns of induction motor
Junior et al. Evaluation of High Impedance Faults in Delta 13.8 kV Distribution Network
US20240210491A1 (en) Phase to ground fault apparent admittance method with phase/ground boundaries for detecting fault types
Arsoniadis et al. Precise Fault Location in Active Distribution Systems Using Unsynchronized Source Measurements

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term