JP3310704B2 - Ammonia injection method for denitration equipment - Google Patents

Ammonia injection method for denitration equipment

Info

Publication number
JP3310704B2
JP3310704B2 JP28982092A JP28982092A JP3310704B2 JP 3310704 B2 JP3310704 B2 JP 3310704B2 JP 28982092 A JP28982092 A JP 28982092A JP 28982092 A JP28982092 A JP 28982092A JP 3310704 B2 JP3310704 B2 JP 3310704B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
injection nozzle
nozzle
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28982092A
Other languages
Japanese (ja)
Other versions
JPH06134259A (en
Inventor
利幸 大西
祥三 金子
敏彦 今本
淳 守井
内藤  治
六夫 倉ケ崎
茂行 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP28982092A priority Critical patent/JP3310704B2/en
Publication of JPH06134259A publication Critical patent/JPH06134259A/en
Application granted granted Critical
Publication of JP3310704B2 publication Critical patent/JP3310704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は乾式排煙脱硝装置におけ
るアンモニア注入方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for injecting ammonia into a dry flue gas denitration apparatus.

【0002】[0002]

【従来の技術】ボイラやガスタービン等の燃焼排ガスか
ら窒素酸化物(以下NOx と記す)を除去する技術とし
て、乾式排煙脱硝装置がある。これはアンモニア(以下
NH3と記す)等の還元性ガスを脱硝触媒の上流側に注
入し、排ガス中のNOx と反応させて無害な窒素
(N2 )と水蒸気(H2 O)とするものである。この場
合、効率よくNOx を除去するためには、触媒入口でN
x とNH3 等を均一に混合し、脱硝触媒入口における
NH3 等とNOx との比率(モル比)のばらつきを小さ
くする必要がある。
2. Description of the Related Art As a technique for removing nitrogen oxides (hereinafter, referred to as NO x ) from combustion exhaust gas from boilers, gas turbines, and the like, there is a dry flue gas denitration apparatus. This involves injecting a reducing gas such as ammonia (hereinafter referred to as NH 3 ) into the upstream side of the denitration catalyst and reacting with NO x in the exhaust gas to form harmless nitrogen (N 2 ) and water vapor (H 2 O). Things. In this case, in order to efficiently remove NO x is, N at the catalyst inlet
It is necessary to uniformly mix O x and NH 3 to reduce the variation in the ratio (molar ratio) between NH 3 and the like and NO x at the inlet of the denitration catalyst.

【0003】図7は従来のNH3 注入ノズルの母管およ
び供給管の配置の一例を示す図である。この図におい
て、(1)は排ガスダクト,(2)は同排ガスダクト
(1)内に設けられた脱硝触媒である。(3a),(3
b)はその脱硝触媒(2)のガス流れ上流に設けられ、
多数のNH3 注入ノズルを具えたノズル母管,(4
a),(4b)はそれらノズル母管(3a),(3b)
にNH3 ガスを供給するNH3供給管である。
FIG. 7 is a view showing an example of an arrangement of a main pipe and a supply pipe of a conventional NH 3 injection nozzle. In this figure, (1) is an exhaust gas duct, and (2) is a denitration catalyst provided in the exhaust gas duct (1). (3a), (3
b) is provided upstream of the gas flow of the denitration catalyst (2),
Nozzle mother tube with multiple NH 3 injection nozzles, (4
a) and (4b) are the nozzle mother tubes (3a) and (3b)
An NH 3 supply pipe for supplying an NH 3 gas to the apparatus.

【0004】多数のNH3 注入ノズルから注入されるN
3 ガスを排ガス中に均一に分散させるために、注入点
の排ガスダクト断面を16ないし20のブロックに分割
し、それら各ブロックにそれぞれノズル母管を設置し
て、それらノズル母管(3a),(3b)にNH3 を供
給するNH3 供給管(4a),(4b)にそれぞれ取付
けられたダンパ(ダクト外であるが、図示せず)を調整
している。すなわち、図7に示されている4本のノズル
母管(3a),(3b)が紙面に垂直な方向に4ないし
5組設けられているのである。しかし、各ノズル母管
(3a),(3b)についているノズル一個毎の注入量
を平均化する技術は無かった。
N injected from a number of NH 3 injection nozzles
In order to uniformly disperse the H 3 gas in the exhaust gas, the exhaust gas duct section at the injection point is divided into 16 to 20 blocks, and a nozzle mother pipe is installed in each of these blocks. , and adjusting the NH 3 supply pipe for supplying NH 3 to (3b) (4a), (is a duct outside, not shown) damper attached respectively (4b). That is, four or five sets of four nozzle mother pipes (3a) and (3b) shown in FIG. 7 are provided in a direction perpendicular to the paper surface. However, there is no technique for averaging the injection amount for each nozzle of each nozzle mother pipe (3a), (3b).

【0005】[0005]

【発明が解決しようとする課題】前記従来のNH3 注入
ノズル配置では、排ガスダクト(1)の中央部に設置さ
れたノズル母管(3a)に接続されたNH3 供給管(4
a)は、その一部が排ガスダクト(1)内を横切るの
で、高温の燃焼排ガスに曝されることになる。したがっ
て約40℃で供給されたNH3 希釈空気が、燃焼排ガス
で加熱された後ノズル母管(3a)に供給される。一方
排ガスダクト(1)内の両縁部に設置されたノズル母管
(3b)については、NH3 供給管(4b)が排ガスダ
クト(1)内に入ると直ちにノズル母管に接続される。
したがって、中央部のノズル母管(3a)と両縁部のノ
ズル母管(3b)とでは、供給されるNH3 ガスの温度
が異なる。更にそれらノズル母管(3a),(3b)自
体も燃焼排ガスによって加熱されるから、NH3 供給管
の近くに設けられたNH3 注入ノズルと、NH3 供給管
から遠い先端部に設けられたNH3 注入ノズルとでは、
注入されるNH3 ガスの温度が異なる。
In the above-mentioned conventional NH 3 injection nozzle arrangement, the NH 3 supply pipe (4) connected to the nozzle mother pipe (3a) installed at the center of the exhaust gas duct (1).
In a), a part of the gas crosses the inside of the exhaust gas duct (1), so that it is exposed to high-temperature combustion exhaust gas. Therefore, the NH 3 -diluted air supplied at about 40 ° C. is heated by the combustion exhaust gas and then supplied to the nozzle mother pipe (3a). On the other hand, as for the nozzle mother pipe (3b) installed at both edges in the exhaust gas duct (1), the NH 3 supply pipe (4b) is connected to the nozzle mother pipe as soon as it enters the exhaust gas duct (1).
Therefore, the temperature of the supplied NH 3 gas is different between the nozzle mother pipe (3a) at the center and the nozzle mother pipe (3b) at both edges. Furthermore, they nozzle header pipe (3a), provided from (3b) itself heated by the combustion exhaust gas, and NH 3 injection nozzle provided in the vicinity of the NH 3 supply pipe, the far tip from NH 3 supply pipe With the NH 3 injection nozzle,
The temperature of the injected NH 3 gas is different.

【0006】したがって、図5中に破線で示されるよう
に、排ガスダクト(1)内壁からの距離により、注入さ
れるNH3 希釈空気の温度が著しく異なることになる。
そうすると、NH3 希釈空気は温度上昇により比重が軽
くなるから、排ガスダクト(1)の内壁付近のNH3
入ノズルと中央部に位置するNH3 注入ノズルとでは、
図6中に破線で示されるように、NH3 の重量流量に差
を生じる。このため、排ガスの流れが均一な場合であっ
ても、脱硝触媒入口におけるモル比のばらつきは11%
にもなり、それが脱硝装置の高効率化を防げる一因とな
っていた。
Therefore, as shown by the broken line in FIG. 5, the temperature of the NH 3 -diluted air to be injected is significantly different depending on the distance from the inner wall of the exhaust gas duct (1).
Then, since NH 3 dilution air density becomes lighter due to the temperature rise, with the NH 3 injection nozzle located in NH 3 injection nozzle and the central portion near the inner wall of the exhaust gas duct (1),
As shown by the broken line in FIG. 6, a difference occurs in the weight flow rate of NH 3 . For this reason, even when the flow of the exhaust gas is uniform, the variation in the molar ratio at the inlet of the denitration catalyst is 11%.
This has been a factor in preventing the efficiency of the denitration device from being improved.

【0007】[0007]

【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、燃焼排ガス中にNH3 ガスを注入
し、同燃焼排ガス中の窒素酸化物を還元除去する乾式排
煙脱硝装置のアンモニア注入方法において、排ガスダク
ト内でガス流れ方向と直交する方向に同一長さで4分割
され上記NH3 ガスを注入する注入ノズル母管を配列
し、同4本の注入ノズル母管にはそれぞれ前記排ガスダ
クト内で同一長さの供給管を接続し、同それぞれの供給
管により前記注入ノズル母管に至る前に同NH3 ガスを
上記燃焼排ガスにより加熱することを特徴とする脱硝装
置のNH3 注入方法;ならびに上記要件に加えて、注入
ノズル位置における上記NH3 ガスの温度を450℃未
満とすることを特徴とする脱硝装置のNH3 注入方法を
提案するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, the present invention provides a dry flue gas denitration for injecting NH 3 gas into flue gas to reduce and remove nitrogen oxides in the flue gas. In the ammonia injection method of the apparatus, injection nozzle mother pipes for injecting the NH 3 gas, which are divided into four in the direction perpendicular to the gas flow direction in the exhaust gas duct and have the same length, are arranged. A denitration apparatus, wherein supply pipes of the same length are connected in the exhaust gas duct, and the NH 3 gas is heated by the combustion exhaust gas before reaching the injection nozzle mother pipe by the supply pipes. NH 3 injection method; in addition to well above requirements and proposes the NH 3 injection method of denitration apparatus characterized by a temperature less than 450 ° C. of the NH 3 gas in the injection nozzle position.

【0008】[0008]

【作用】本発明方法においては、NH3 注入点の排ガス
温度付近までNH3 ガスが昇温されて注入ノズル母管に
到達する。したがって、注入ノズル母管の入口から先端
へ至る間のNH3 ガスの温度上昇が小さくなり、比重差
も小さくなるため、各注入ノズルのNH3 の重量流量差
が小さくなる。その結果、同一注入ノズル母管内での各
ノズルあたりの流量が平均化される。NH3 希釈ガス温
度をNH3 注入点での排ガス温度とほぼ同一とすれば各
ノズルでの吹出し流量は均一となる。
In the method of the present invention, the NH 3 gas is heated to a temperature near the exhaust gas temperature at the NH 3 injection point and reaches the injection nozzle main pipe. Therefore, the temperature rise of the NH 3 gas from the inlet to the tip of the injection nozzle mother pipe is small, and the specific gravity difference is also small, so that the difference in NH 3 weight flow rate between each injection nozzle is small. As a result, the flow rate per nozzle within the same injection nozzle mother pipe is averaged. If the temperature of the NH 3 dilution gas is substantially the same as the temperature of the exhaust gas at the NH 3 injection point, the blowout flow rate at each nozzle becomes uniform.

【0009】しかしNH3 は、450℃以上において、
鉄,クロム等の金属表面で酸化反応を起こし分解する。
ガスタービンの排熱回収ボイラに乾式脱硝を適用する場
合、NH3 注入ノズルを設置する高圧一次加熱器出口の
温度は最大470℃付近となるが、上記理由によりNH
3 希釈ガスの温度は、最高となるNH3 注入ノズル末端
部でも450℃未満となるようにする。これにより、脱
硝触媒入口におけるモル比ばらつきを最小とすることが
できる。
However, at a temperature of 450 ° C. or more, NH 3
Oxidation reaction occurs on the surface of metals such as iron and chromium to decompose.
When dry denitration is applied to an exhaust heat recovery boiler of a gas turbine, the temperature at the outlet of the high-pressure primary heater in which the NH 3 injection nozzle is installed is around 470 ° C. at the maximum.
(3) The temperature of the diluent gas is set to be lower than 450 ° C. even at the end of the NH 3 injection nozzle which is the highest. Thereby, the variation in the molar ratio at the inlet of the denitration catalyst can be minimized.

【0010】[0010]

【実施例】図1は本発明方法を実施する装置の第1の実
施例を示す配置図である。本実施例では、排ガスダクト
(1)内に4分割されたノズル母管(3a),(3b)
に外部からNH3 供給管(14a),(14b)を経由
してNH3 希釈ガスを排ガス流れ中に均一に注入するも
のである。ノズル母管(3a),(3b)には、反対側
(遠い方)のダクト壁の外からNH3 供給管(14
a),(14b)が接続されており、排ガスダクト
(1)内ではそれらNH3 供給管(14a),(14
b)の長さがすべて同一になるよう配置されている。そ
して各ノズル母管(3a),(3b)もすべて同一長さ
になっている。
FIG. 1 is a layout diagram showing a first embodiment of an apparatus for carrying out the method of the present invention. In this embodiment, the nozzle mother pipes (3a) and (3b) divided into four parts in the exhaust gas duct (1).
The NH 3 dilution gas is uniformly injected into the exhaust gas flow from the outside via the NH 3 supply pipes (14a) and (14b). The NH 3 supply pipe (14) is inserted into the nozzle mother pipes (3a) and (3b) from the outside of the opposite (far) duct wall.
a) and (14b) are connected. In the exhaust gas duct (1), the NH 3 supply pipes (14a) and (14b) are connected.
b) All the lengths are arranged to be the same. Each of the nozzle mother pipes (3a) and (3b) has the same length.

【0011】上記の配置例において、NH3 発生設備
(図示しない)により発生したNH3ガスを希釈通風機
(図示しない)からの希釈空気で希釈して得られたNH
3 希釈空気が、NH3 供給管(14a),(14b)に
よりノズル母管(3a),(3b)に供給される。NH
3 希釈空気の温度は、排ガスダクト(1)の外部では約
40℃であるが、NH3 供給管(14a),(14b)
の排ガスダクト(1)内部分において燃焼排ガスにより
加熱され、例えば排ガス温度が470℃の場合、図5中
に実線で示されるとおり、NH3 供給管(14a),
(14b)の末端で380℃となり、更にノズル母管
(3a),(3b)の末端では445℃となる。これに
より、各ノズル間でのNH3 の吹出し流量差は図6中に
実線で示されるように大幅に平均化され、従来±11%
の流量差があったのに対し、本実施例においては±2%
となる。
In the above arrangement example, NH 3 gas obtained by diluting NH 3 gas generated by an NH 3 generation facility (not shown) with dilution air from a dilution ventilator (not shown).
The 3 dilution air is supplied to the nozzle mother pipes (3a) and (3b) by NH 3 supply pipes (14a) and (14b). NH
3 the temperature of the dilution air, in the outside of the exhaust gas duct (1) is about 40 ° C., NH 3 supply pipe (14a), (14b)
Is heated by the combustion exhaust gas in the exhaust gas duct (1), for example, when the exhaust gas temperature is 470 ° C., as shown by the solid line in FIG. 5, the NH 3 supply pipe (14a),
At the end of (14b), the temperature becomes 380 ° C, and at the ends of the nozzle mother pipes (3a), (3b), it becomes 445 ° C. As a result, the difference in the flow rate of blowing NH 3 between the nozzles is greatly averaged as shown by the solid line in FIG.
In this embodiment, the flow rate difference was ± 2%.
Becomes

【0012】上記のようにして本実施例では、各NH3
注入ノズルのNH3 の吹出し流量を均一化することによ
り、脱硝触媒(2)入口でのモル比のばらつきが低減さ
れる。このことが脱硝率に与える効果を図4に示す。図
中に破線で示す従来の性能曲線では、脱硝装置出口のN
3 値が10ppm の時、脱硝率=(入口NOx −出口N
x )/入口NOx は85%(NH3 /NOx =1.0
4)であったが、実線で示す実施例の場合は、同一の出
口NH3 値でモル比を上げることができ、脱硝率が91
%に向上する。
As described above, in this embodiment, each NH 3
By making the flow rate of NH 3 blown out from the injection nozzle uniform, the variation in the molar ratio at the inlet of the denitration catalyst (2) is reduced. FIG. 4 shows the effect of this on the denitration rate. In the conventional performance curve shown by the broken line in the figure, the N
When the H 3 value is 10 ppm, the denitration rate = (inlet NO x −outlet N
O x ) / 85% of inlet NO x (NH 3 / NO x = 1.0)
However, in the case of the embodiment shown by the solid line, the molar ratio can be increased with the same outlet NH 3 value, and the denitration rate is 91%.
%.

【0013】次に図2は本発明方法を実施する装置の第
2の実施例を示す配置図である。本実施例においては、
ノズル母管(3a),(3b)の配置は前記図1により
説明した第1の実施例と同じであるが、NH3 供給管
(24a),(24b)の長さを図1のものに比べて短
くするために、図の右側のノズル母管には排ガスダクト
(1)の右側から、左側のノズル母管にはダクト(1)
の左側から、それぞれ接続したものである。
FIG. 2 is a layout diagram showing a second embodiment of the apparatus for carrying out the method of the present invention. In this embodiment,
The arrangement of the nozzle mother pipes (3a) and (3b) is the same as that of the first embodiment described with reference to FIG. 1, but the length of the NH 3 supply pipes (24a) and (24b) is changed to that of FIG. In order to make the length shorter, the right side of the exhaust gas duct (1) is connected to the right side of the exhaust gas duct (1) and the duct (1) is connected to the left side of the nozzle mother pipe.
Are connected from the left side.

【0014】次に図3は本発明の構成を一部変更した参
考例であり、ノズル母管(3a),(3b)は4分割し
たものであるが、NH3 供給管(34a),(34b)
の排ガスダクト(1)内の長さを変えたものである。
Next, FIG. 3 shows a modification of the configuration of the present invention .
For example, the nozzle mother pipes (3a) and (3b) are divided into four parts, but the NH 3 supply pipes (34a) and (34b)
The length in the exhaust gas duct (1) is changed.

【0015】本発明方法において、燃焼排ガス中に注入
されるNH3 ガスの温度は、排ガス温度に近いほど望ま
しいが、他方で450℃未満という制限もある。そこ
で、燃焼排ガスの温度に応じて、また他の条件も考慮し
て、排ガスダクト(1)内のNH3 供給管の長さ(すな
わち伝熱面積)が最適になるようにする。伝熱効率を向
上させるためにフィン付管を用いてもよいし、また排ガ
スダクト(1)の外で予め加熱しておくようにしてもよ
い。
In the method of the present invention, the temperature of the NH 3 gas injected into the combustion exhaust gas is preferably as close as possible to the exhaust gas temperature, but on the other hand, there is also a limit of less than 450 ° C. Therefore, the length of the NH 3 supply pipe (that is, the heat transfer area) in the exhaust gas duct (1) is optimized according to the temperature of the combustion exhaust gas and in consideration of other conditions. A finned tube may be used to improve the heat transfer efficiency, or the tube may be heated in advance outside the exhaust gas duct (1).

【0016】[0016]

【発明の効果】本発明方法によれば、乾式排煙脱硝装置
において、各NH3 注入ノズルのNH 3 吹出し流量を均
一化し、脱硝触媒入口でのモル比のばらつきを低減する
ことができるので、従来と同一の出口NH3 値でモル比
を上げることができ、脱硝率が大幅に向上する。
According to the method of the present invention, a dry type flue gas denitration apparatus is provided.
At each NHThreeNH of injection nozzle ThreeEqualize the flow rate
And reduce variation in molar ratio at the denitration catalyst inlet
The same outlet NH as before.ThreeMolar ratio by value
And the denitration rate is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明方法を実施する装置の第1の実施
例を示す配置図である。
FIG. 1 is a layout diagram showing a first embodiment of an apparatus for carrying out the method of the present invention.

【図2】図2は本発明方法を実施する装置の第2の実施
例を示す配置図である。
FIG. 2 is a layout diagram showing a second embodiment of the apparatus for performing the method of the present invention.

【図3】図3は本発明の参考例を示す配置図である。FIG. 3 is a layout diagram showing a reference example of the present invention.

【図4】図4は脱硝性能特性を示す図である。FIG. 4 is a graph showing denitration performance characteristics.

【図5】図5は各NH3 注入ノズルの吹出し温度を示す
図である。
FIG. 5 is a diagram showing the blowing temperature of each NH 3 injection nozzle.

【図6】図6は各NH3 注入ノズルの吹出し流量を示す
図である。
FIG. 6 is a diagram showing the blowout flow rate of each NH 3 injection nozzle.

【図7】図7は従来のNH3 注入ノズルの母管および供
給管の配置の一例を示す図である。
FIG. 7 is a diagram showing an example of an arrangement of a main pipe and a supply pipe of a conventional NH 3 injection nozzle.

【符号の説明】[Explanation of symbols]

(1) 排ガスダクト (2) 脱硝触媒 (3a),(3b) ノズル母管 (14a),(14b) NH3 供給管(1) Exhaust gas duct (2) DeNOx catalyst (3a), (3b) Nozzle mother pipe (14a), (14b) NH 3 supply pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今本 敏彦 長崎市飽の浦町1番1号 三菱重工業株 式会社長崎造船所内 (72)発明者 守井 淳 長崎市飽の浦町1番1号 三菱重工業株 式会社長崎造船所内 (72)発明者 内藤 治 長崎市飽の浦町1番1号 三菱重工業株 式会社長崎造船所内 (72)発明者 倉ケ崎 六夫 長崎市深堀町5丁目717番1号 三菱重 工業株式会社長崎研究所内 (72)発明者 西島 茂行 長崎市深堀町5丁目717番1号 三菱重 工業株式会社長崎研究所内 (56)参考文献 特開 昭60−12120(JP,A) 実開 昭58−107133(JP,U) (58)調査した分野(Int.Cl.7,DB名) B01D 53/56 B01D 53/86 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshihiko Imamoto 1-1, Akunouracho, Nagasaki-shi Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Jun Morii 1-1, Akunouracho, Nagasaki-shi Mitsubishi Heavy Industries, Ltd. (72) Inventor Osamu Naito 1-1, Akunoura-cho, Nagasaki-shi Mitsubishi Heavy Industries, Ltd. Inside Nagasaki Shipyard (72) Inventor Rikuo Kuragasaki 5-717-1 Fukahori-cho, Nagasaki-shi Mitsubishi Heavy Industries Inside Nagasaki Research Institute Co., Ltd. (72) Inventor Shigeyuki Nishijima 5-717-1 Fukahoricho, Nagasaki City Mitsubishi Heavy Industries, Ltd. Nagasaki Research Center Co., Ltd. (56) References -107133 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 53/56 B01D 53/86

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃焼排ガス中にアンモニアガスを注入
し、同燃焼排ガス中の窒素酸化物を還元除去する乾式排
煙脱硝装置のアンモニア注入方法において、排ガスダク
ト内でガス流れ方向と直交する方向に同一長さで4分割
され上記アンモニアガスを注入する注入ノズル母管を配
列し、同4本の注入ノズル母管にはそれぞれ前記排ガス
ダクト内で同一長さの供給管を接続し、同それぞれの供
給管により前記注入ノズル母管に至る前に同アンモニア
ガスを上記燃焼排ガスにより加熱することを特徴とする
脱硝装置のアンモニア注入方法。
In a method for injecting ammonia gas into flue gas and reducing and removing nitrogen oxides in the flue gas, the ammonia is injected into a flue gas denitration apparatus in a direction perpendicular to a gas flow direction in an exhaust gas duct. An injection nozzle mother pipe, which is divided into four parts of the same length and injects the ammonia gas, is arranged, and a supply pipe of the same length is connected to each of the four injection nozzle mother pipes in the exhaust gas duct. An ammonia injection method for a denitration apparatus, wherein the ammonia gas is heated by the combustion exhaust gas before reaching the injection nozzle mother pipe by a supply pipe.
【請求項2】 注入ノズル位置における上記アンモニア
ガスの温度を450℃未満とすることを特徴とする請求
項1記載の脱硝装置のアンモニア注入方法。
2. The method for injecting ammonia in a denitration apparatus according to claim 1, wherein the temperature of the ammonia gas at the position of the injection nozzle is set to less than 450 ° C.
JP28982092A 1992-10-28 1992-10-28 Ammonia injection method for denitration equipment Expired - Lifetime JP3310704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28982092A JP3310704B2 (en) 1992-10-28 1992-10-28 Ammonia injection method for denitration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28982092A JP3310704B2 (en) 1992-10-28 1992-10-28 Ammonia injection method for denitration equipment

Publications (2)

Publication Number Publication Date
JPH06134259A JPH06134259A (en) 1994-05-17
JP3310704B2 true JP3310704B2 (en) 2002-08-05

Family

ID=17748197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28982092A Expired - Lifetime JP3310704B2 (en) 1992-10-28 1992-10-28 Ammonia injection method for denitration equipment

Country Status (1)

Country Link
JP (1) JP3310704B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106422710A (en) * 2016-11-17 2017-02-22 上海华之邦科技股份有限公司 High-capacity denitration apparatus

Also Published As

Publication number Publication date
JPH06134259A (en) 1994-05-17

Similar Documents

Publication Publication Date Title
JP7207810B2 (en) Method and system for improving boiler efficiency
US4353206A (en) Apparatus for removing NOx and for providing better plant efficiency in combined cycle plants
US5555718A (en) Method and apparatus for injecting reactant for catalytic reduction in a gas turbine combined cycle system
US6257155B1 (en) Curved blade by-pass damper with flow control
EP1005894A1 (en) Reheating flue gas for selective catalytic systems
JPH06154552A (en) Method for gasifying aqueous reducing solution by using flue gas energy for reducing nox in flue gas
GB2082085A (en) Apparatus for removing nox and for providing better plant efficiency in simple cycle combustion turbine plants
WO1995007751A1 (en) Exhaust gas boiler
CN110180386A (en) A kind of flue gas spiral diffusion denitrification apparatus and method of denitration
JP3310704B2 (en) Ammonia injection method for denitration equipment
JP7503913B2 (en) Denitrification equipment and boilers
JP3112570B2 (en) Exhaust gas heating device for flue gas denitration equipment
JPS61191803A (en) Boiler
JP2930520B2 (en) Heat recovery unit for boiler with denitration equipment
JP2542003B2 (en) Denitration equipment
JPS61254230A (en) Denitration method and apparatus therefor
CN108452677A (en) It is a kind of using ammonium hydroxide as the SCR denitration method for flue gas and device of denitrification reducing agent
JP4069882B2 (en) boiler
JPH055938Y2 (en)
RU2103607C1 (en) Device for cleaning flue gases of boiler plant from nitric oxides
JP3358862B2 (en) Ammonia water vaporizer
JPH057731A (en) Denitration device of fluidized bed boiler
JPH085077A (en) Gas turbine device having air-cooled tube nest combustion device
RU2056588C1 (en) Boiler plant
JPS592770B2 (en) Ammonia injection device for gas turbine denitrification

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11