JP3309142B2 - Control method and device - Google Patents

Control method and device

Info

Publication number
JP3309142B2
JP3309142B2 JP54029799A JP54029799A JP3309142B2 JP 3309142 B2 JP3309142 B2 JP 3309142B2 JP 54029799 A JP54029799 A JP 54029799A JP 54029799 A JP54029799 A JP 54029799A JP 3309142 B2 JP3309142 B2 JP 3309142B2
Authority
JP
Japan
Prior art keywords
value
difference
control
response function
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54029799A
Other languages
Japanese (ja)
Inventor
剛彦 二木
光晴 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adtex Inc
Original Assignee
Adtex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adtex Inc filed Critical Adtex Inc
Application granted granted Critical
Publication of JP3309142B2 publication Critical patent/JP3309142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B21/00Systems involving sampling of the variable controlled
    • G05B21/02Systems involving sampling of the variable controlled electric

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Complex Calculations (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は制御と同時に応答関数を同定(以下、修正を
含む)する近代制御理論を用いたデジタル制御に発生す
る突発的な破綻(制御不能状態や発振状態に陥ること)
や雑音を増幅した様な制御状態に陥らない制御方法とそ
の制御装置に係わります。測定可能であるか予定により
知り得る外乱(可知的外乱obtainable disturbance Dで
表す)がある場合にはDの悪影響を打ち消すフィードフ
ォワードも実現できます。
Description: TECHNICAL FIELD The present invention relates to a sudden breakdown (a failure to control or an oscillation) occurring in digital control using modern control theory that identifies a response function at the same time as control (including correction). Falling into)
It is related to the control method and the control device that do not fall into the control state that amplified the noise. If there is a disturbance that can be measured or known according to a schedule (expressed as observable disturbance D), feedforward that counteracts the adverse effects of D can also be realized.

背景技術 ≡で定義、⇒で帰結、⇔で同期、∈で要素、 で非要素、∃で存在、 で否定、∀で全て、∧でかつ、∨で又は、Min()で最
少値、Max()で最大値、‖で絶対値、で転置行列、
Σで和を表します。
Background art ≡ Defined, ⇒ consequent, ⇔ synchronized, ∈ element, , Non-element, ∃, existence, Negation with ∀, all with ∀, and with ∨ or Min () with minimum value, Max () with maximum value, ‖ with absolute value, t with transpose matrix,
和 represents the sum.

最近デシタル処理をする演算装置を備えた機器が増え
ています。これらの装置ではカムや歯車等の機械要素の
機能が演算装置内で行われる演算で代替され、演算方法
が様々な形や大きさのカムや歯車の組み合わせに相当し
ています。そのような代替の典型的な装置の一つが制御
装置です。伝達方程式を用いた制御方法は近代制御法と
呼ばれ、従来のPID制御に代わり近代制御法が試行され
ています。近代制御法を用いると高速でかつ正確な制御
が実現します。しかも、従来のPID制御法のPIDの係数に
相当する伝達方程式の係数(応答関数と言う)の推定や
修正(同定と言う)を制御を行いながらできる手軽さが
あります。しかし、理論の難解さに加えて、同定しなが
ら制御していると、突然の制御不能状態(破綻)や、安
定時に雑音を増幅したような不規則な制御状態の継続が
起こりました。
Recently, the number of devices equipped with arithmetic units that perform digital processing has increased. In these devices, the functions of mechanical elements such as cams and gears are replaced by calculations performed in the calculation device, and the calculation methods are equivalent to combinations of cams and gears of various shapes and sizes. One such alternative typical device is a control device. The control method using the transfer equation is called the modern control method, and the modern control method is being tried instead of the conventional PID control. High-speed and accurate control is realized by using modern control methods. Moreover, there is an easy way to estimate and correct (identify) the coefficients of the transfer equation (called response function), which are equivalent to the PID coefficients of the conventional PID control method, while controlling. However, in addition to the difficulty of the theory, when controlling while identifying, sudden control loss (failure) or irregular control state that amplified noise when stable occurred.

演算するにはそのモデル系が必要です。普通は、連続
系ならば微分方程式で、離散系ならば差分方程式で表さ
れる程度の、あまり複雑でない系を考えてます。そし
て、その系にはエネルギー定理、線形性、重ね合わせの
原理が仮定されます。エネルギー産出能の無い系を受動
系と言いますが、制御系が受動系であれば、操作値Cを
一定値に保持すると、やがて制御置Rも一定値に近づき
ます。Cを保持した時に、やがてRが一定値になること
をエネルギー定理が成り立つと言います。火薬に着火し
た場合や倒立振子がエネルギー産出系の例になります。
通常、火薬は着火するとその後の爆発状態をコントロー
ルできません。倒立振子では、放置すると準安定点から
どんどん離れます。エネルギー産出系は能動系と呼ばれ
ますが、制御可能な能動系はエネルギー定理が成り立つ
か、少なくともCの変化でRを自由に変化できる必要が
あります。エネルギー定理はエネルギー発生のない系
で、エネルギーがエントロピーの大きな状態に変化して
平衡状態が実現することを表現したものです。
The model system is required for calculation. Usually, we consider a system that is not very complicated, such as a differential system for a continuous system and a difference equation for a discrete system. The system is then assumed to have the principles of energy theorem, linearity, and superposition. A system that does not have the ability to produce energy is called a passive system. If the control system is a passive system, if the operation value C is maintained at a constant value, the control device R will eventually approach a constant value. It is said that the energy theorem holds when R eventually becomes constant when C is held. An example of an energy-producing system is when an explosive is ignited or an inverted pendulum.
Normally, gunpowder cannot control the subsequent explosion state once ignited. With an inverted pendulum, if left unattended, it will move away from the metastable point. An energy-producing system is called an active system, but an active system that can be controlled must satisfy the energy theorem or at least be able to freely change R by changing C. The energy theorem expresses the fact that energy is transformed into a state with large entropy and an equilibrium state is realized in a system without energy generation.

次に、近代制御理論での伝達方程式の導出過程を説明
します。
Next, the process of deriving the transfer equation in modern control theory is described.

原因C,Dを保持した時に、結果Rが一定値に近づく(エ
ネルギー定理)ことを数値的に実現するため、測定や設
定される生の値(実値と言う)でなく、変化量(時間に
よる微分値や時系列を表す数列の差分)を用います。変
化量を用いると、エネルギー定理を「原因c,dが0にな
れば、やがて結果rも0になる」と表現できます。
In order to numerically realize that the result R approaches a constant value (energy theorem) when the causes C and D are held, not the raw value (called the actual value) to be measured or set, but the amount of change (time (Differential value of the time series and the difference of the series representing the time series). Using the amount of change, the energy theorem can be expressed as "If the causes c and d become zero, the result r eventually becomes zero."

c=∂C,d=∂D,r=∂R ∂:時間微分 連続系(1) c=ΔC,d=ΔD,r=ΔR Δ:差分 離散系 (2A) 連続系で、因果関係を、(3)の様に線形微分方程式で
表します。
c = ∂C, d = ∂D, r = ∂R∂: time derivative continuous system (1) c = ΔC, d = ΔD, r = ΔR Δ: differential discrete system (2A) It is represented by a linear differential equation as in (3).

u(∂)r(t) =v(∂)c(t)+w(∂)d(t) (3A) 考えている全ての原因の発生時点前迄時間の原点をずら
し、t<0での関数の値を0にします。ラプラス変換で
は関数は時間t<0で0です。
u (∂) r (t) = v (∂) c (t) + w (∂) d (t) (3A) Shift the origin of time until just before the point of occurrence of all possible causes, and set the value of the function at t <0 to 0. In the Laplace transform, the function is 0 at time t <0.

r(t<0)=c(t<0)=d(t<0) =f(t<0)=g(t<0)=0 (3A") ラプラス変換したr(t),c(t),d(t),f(t),g
(t)をr(s),c(s),d(s),f(s),g(s)と
します。(3A)をラプラス変換すると、 u(s)r(s)=v(s)c(s)+w(s)d
(s) (3B) となります。有理式f(s),g(s)を用いると、(5
B)となります。
r (t <0) = c (t <0) = d (t <0) = f (t <0) = g (t <0) = 0 (3A ″) Laplace-transformed r (t), c ( t), d (t), f (t), g
Let (t) be r (s), c (s), d (s), f (s), g (s). When Laplace transform of (3A), u (s) r (s) = v (s) c (s) + w (s) d
(S) (3B) It becomes. Using the rational expressions f (s) and g (s), (5
B).

r(s)=f(s)c(s)+g(s)d(s)(5B) f(s)=v(s)/u(s),g(s) ≡w(s)/u(s) (6A) (5B)を逆ラプラス変換すると(5A)となります。r (s) = f (s) c (s) + g (s) d (s) (5B) f (s) = v (s) / u (s), g (s) ≡w (s) / u (S) Reverse Laplace transform of (6A) (5B) gives (5A).

r(t)=∫f(t−x)c(x)dx +∫g(t−x)d(x)dx (5A) (5A)で、f(d),g(t)をラプラス変換できる任意
の関数にすると、(3A)の微分方程式で表し得ないむだ
時間要素等も表現できます。
r (t) = ∫f (t−x) c (x) dx + ∫g (t−x) d (x) dx (5A) (5A), and Laplace transform of f (d) and g (t) Any function that can be used can express dead time elements that cannot be expressed by the differential equation (3A).

連続系を離散系にするには、(3A)で微分を差分にし、
r,c,dを周期Tでサンプリングした(3C')で置き換えて
からラプラス変換し、 Z≡esTで置換します。ラプラス変換できる関数は(3C
゜)の様にZ-1の0次から始まる級数になり、その係数
が時系列になっています。
To make a continuous system a discrete system, the derivative is made a difference by (3A),
Laplace conversion is performed after replacing r, c, d with (3C ′) sampled at period T, Replace with Z≡e sT. Functions that can be Laplace transformed are (3C
It becomes a series starting from the 0th order of Z -1 as shown in ゜), and its coefficients are in time series.

u(Δ)r(Z)=v(Δ)c(Z) +w(Δ)d(Z) (3C) その級数に1−Z-1を掛けると、Z-nの係数が差分になる
ので、差分演算子を(8A)で置き換えます。この一連の
手続をZ変換と言います。
u (Δ) r (Z) = v (Δ) c (Z) + w (Δ) d (Z) (3C) Multiplying the series by 1-Z -1 gives the difference in the coefficient of Z -n , so replace the difference operator with (8A). This series of procedures is called Z transformation.

Δ=1−Z-1 (8A) u(Δ),v(Δ),w(Δ)をZ-1の級数に書き換えると
(4D)になります。
Δ = 1-Z -1 (8A) Rewriting u (Δ), v (Δ), w (Δ) into a series of Z -1 gives (4D).

r(Z)=a(Z)c(Z)+b(Z)d(Z)+q(Z)r(Z) (4D) u(Δ)=u0+u1・(1−Z-1)+u2・(1−Z-1+…+uωq・(1−
Z-1ωq =(u0+u1+u2+…+uωq)+(−u1−2u2−…−ωq・uωq)Z-1+ …+uωq・(−1)ωq・Z−ωq (4D') u≡u0+u1+u2+…+uωq (4D") a(Z),b(Z),q(Z)はv(1−Z-1),w(1−
Z-1),u(1−Z-1)をu(1−Z-1)の定数項uで割
って得られるv(Δ),w(Δ),u(Δ)のΔの次数と同
じZ-1の次数のZ-1の多項式です。他方、(5A)をZ変換
すると、(5D)になります。
r (Z) = a (Z) c (Z) + b (Z) d (Z) + q (Z) r (Z) (4D) u (Δ) = u 0 + u 1 · (1−Z −1 ) + u 2・ (1-Z -1 ) 2 + ... + u ωq・ (1-
Z -1) ωq = (u 0 + u 1 + u 2 + ... + u ωq) + (- u 1 -2u 2 - ... -ωq · u ωq) Z -1 + ... + u ωq · (-1) ωq · Z - ωq (4D ') u * ≡u 0 + u 1 + u 2 + ... + u ωq (4D ") a (Z), b (Z), q (Z) are v (1-Z -1 ), w (1-
Z ( -1 ), u (1-Z- 1 ) divided by the constant term u * of u (1-Z- 1 ), the order of Δ of v (Δ), w (Δ), u (Δ) Is a Z -1 polynomial of the same Z -1 order. On the other hand, when (5A) is Z-converted, it becomes (5D).

r(Z)=f(Z)c(Z)+g(Z)d(Z)(5D) (4D)(5D)がZ変換を用いた制御論の基本方程式で
す。
r (Z) = f (Z) c (Z) + g (Z) d (Z) (5D) (4D) and (5D) are basic equations of control theory using Z-transform.

(4D)(5D)でr(Z)のZ-nの係数を等値すると、(4
E)(5E)が得られます。
If (4D) and (5D) are equivalent to the coefficient of Z- n of r (Z), (4D)
E) (5E) is obtained.

(4E)(5E)の右辺c,dは原因、左辺のrは結果である
ので、結果が原因より遅れることと(4D゜)より(10
A)が成立します。
(4E) Since c and d on the right side of (5E) are the cause and r on the left side is the result, the result is later than the cause and (4D ゜)
A) holds.

f0=g0=a0=b0=q0=0 (10A) 演算子の算法は、一般の代数演算に従うことが仮定さ
れ、g(Z),f(Z)が(6B)(6B')の関係を満たし
ます。
f 0 = g 0 = a 0 = b 0 = q 0 = 0 (10A) The operator algorithm is assumed to follow general algebraic operations, and g (Z) and f (Z) satisfy the relationship of (6B) (6B ').

f(Z)=a(Z)/(1−q(Z)), g(Z)=b(Z)/(1−q(Z)) (6B) f(Z)=v(1−Z-1)/u(1−Z-1), g(Z)=w(1−Z-1)/l(1−Z-1) (6B') 一般の数列を英字で、特殊な役目をする数列でギリシ
ャ大文字や数字で始まる記号で示します。実値を大文字
で、変化量を対応する小文字で表すことに対応させ、差
分和分の関係にある数列は和分を大文字で、差分を対応
する小文字で表します。数列を表す記号(例えばA)や
式(例えばA+B)に下付文字(例えばk)を付し、そ
の数列や式の意味する数列の成分(項)と言い、その番
号を項位と言う)を、“Ak",“(A+B)k"の様に表し
ます。数列の一般的な項(一般項)を第n項とし、A≡
{An}の様に表したり、項を並べたり、条件を書いて表
します。{}内に項を一つだけ書いた場合は、第n項を
意味します。従来法では制御開始時点を第0項にして、
制御周期をTとする時、その後のT,2T,3T,…時点の値を
第1項,第2項,第3項,…とする数列(右無限数列)
で表しました。その代わりに、第−1項,第−2項,第
−3項,…という項位が負になる項もある数列(両無限
数列)を考えます。任意の右無限数列Aに対し、0の値
をとる負の項位の項を付加した両無限数列A'を考え、こ
れをAと同一視します。
f (Z) = a (Z) / (1-q (Z)), g (Z) = b (Z) / (1-q (Z)) (6B) f (Z) = v (1-Z -1 ) / u (1-Z -1 ), g (Z) = w (1-Z -1 ) / l (1-Z -1 ) (6B ') In the sequence of numbers that you want to indicate, using symbols that begin with Greek capital letters or numbers. Corresponds to expressing the actual value in uppercase and the amount of change in the corresponding lowercase letter, and in a sequence related to the sum of differences, the sum is expressed in uppercase and the difference is expressed in the corresponding lowercase letter. A subscript (e.g., k) is attached to a symbol (e.g., A) or an expression (e.g., A + B) representing a sequence, and the number (term) is referred to as a component (term) of the sequence represented by the sequence or the expression. Is represented as “A k ”, “(A + B) k ”. The general term (general term) of the sequence is the n-th term, and A≡
It is expressed as {A n }, arranged terms, and written conditions. If only one item is written in {}, it means the n-th item. In the conventional method, the control start time is set to the 0th term,
When the control cycle is T, a series of values in which the values of the subsequent T, 2T, 3T,... Are the first term, the second term, the third term,.
It was represented by Instead, consider a sequence (both infinite sequences) in which the terms -1, -2, -3, ... also have negative terms. For any right infinity sequence A, consider both infinity sequences A 'with a negative term that takes the value of 0, and equate this to A.

A≡{a0,a1,a2,…},A'={…,0,0,a0,a1,a2,…}A'≡A (11) n未満の項位となる項が全て0であることを“(n,"
で表します。“(−∞,"を“(,"と略記します。
“(n,"でかつ第n項が0でないことを“[n,"で表し、
この様なnが存在することを“[,"と略記します。nを
初位、第n項を初項と言います。“α”の後に数列や式
を“αA",“α(A+BC)”の様に付けて、数列Aや式
A+BCで表される数列の初位を表現します。同様に、n
超の項位の項が全て0であることを“n)”で、
“n)”でかつ第n位が0で無いことを“n]”で表
し、“+∞)”を“)”で、“n]”となるnが存在す
ることを“]”で略記します。このnを終位、第n項を
終項と言い、初位における“α”同様に“ω”を用いて
終位を表します。数列AのX未満とY超の項位の項を0
として、第X項から第Y項迄を算出したり、観測したり
する場合、便宜的にXをαA,YをωAとし、A∈(αA,
ωA)と表現します。0に限らない項の数を項数と言い
ます。
A≡ {a 0 , a 1 , a 2 , ...}, A '= {…, 0,0, a 0 , a 1 , a 2 , ...} A'≡A (11) The order less than n "(N," indicates that all terms are 0
Is represented by “(−∞,” is abbreviated as “(,”.
"[N," and that the n-th term is not 0 is represented by "[n,"
The existence of such n is abbreviated as “[,”. n is the first rank and the n-th term is the first rank. A sequence or expression such as “αA”, “α (A + BC)” is added after “α” to represent the first place of the sequence represented by sequence A or expression A + BC. Similarly, n
"N)" means that all terms in the higher order are 0,
“N)” and the n-th place is not 0 are represented by “n”, “+ ∞)” is abbreviated by “)”, and the existence of n that is “n” is abbreviated by “]”. To do. This n is called the final position, and the n-th term is called the final item. The final position is expressed using "ω" as well as "α" at the initial position. In terms of sequence A, terms less than X and more than Y are set to 0
When calculating or observing the Xth to Yth terms, X is αA, Y is ωA, and A∈ (αA,
ωA). The number of terms that are not limited to zero is called the number of terms.

以上を数列の集合としてまとめると、次の様になりま
す。
The above can be summarized as a set of sequences as follows.

A∈[X,Y]⇔X=αA,Y=ωA (12A) A∈(X,Y)⇔An<X=An>Y=0 (12B) A∈[X,Y)⇔X=αA,Y≧ωA (12C) A∈(X,Y]⇔X≦αA,Y=ωA (12D) (12A)で初位がX,終位がYとなる数列の集合を[X,Y]
と定義し、(12B)で項位がX未満とY超の項が0とな
る数列の集合を(X,Y)と定義しています。(12C)(12
D)も同様です。
A∈ [X, Y] ⇔X = αA, Y = ωA (12A) A∈ (X, Y) ⇔A n <X = A n> Y = 0 (12B) A∈ [X, Y) ⇔X = αA, Y ≧ ωA (12C) A∈ (X, Y) ⇔X ≦ αA, Y = ωA (12D) A set of sequences where X is the first place and Y is the last place in (12A) is [X, Y]
Is defined as (X, Y), and the set of sequences in (12B) where the terms less than X and the terms above Y are 0 is defined as (X, Y). (12C) (12
D) is similar.

右無限数列全体は(0,)で、両無限数列全体は(,)で
表されます。
The entire right infinite sequence is represented by (0,) and both infinite sequences are represented by (,).

{…,0,0,a0,a1,a2,…}∈(0,) (12E) {…,a-1,a0,a1,a2,…}∈(,) (12F) 初項がある数列[,)を左正則数列と言い[)で表し、
終項がある数列(,]を右正則数列と言い(]で表しま
す。項数が1以上の有限個の数列[,]を有限数列と言
い、[]と略記します。(]と[)との積集合は[]で
す。(8G)の0と、[),(],[]との和集合(合併
集合)を左正則的数列,右正則的数列,有限的数列と言
い、[)+0,(]+0,[]+0で表します。(0,)を拡
張して加減乗除が自由に計算ができるのは(]+0で
す。[]を拡張して加減乗除が自由に計算できる集合を
有理数列と言います。本発明の説明は主に左正則的数列
又は有理数列を用います。第X項から第Y項の間で関係
(例えばA=B,C≠D)が成立することをA=B,C≠D
[X,Y]の様に表します。
{…, 0,0, a 0 , a 1 , a 2 ,…} ∈ (0,) (12E) {…, a −1 , a 0 , a 1 , a 2 ,…} ∈ (,) (12F A sequence with the first term [,) is called a left regular sequence and is denoted by [].
A sequence (,] with a final term is called a right regular sequence ([]). A finite sequence [,] with one or more terms is called a finite sequence, and is abbreviated as []. The intersection of [8G] and [], (], [] is called the left regular sequence, the right regular sequence, and the finite sequence. It is expressed as [) +0, (] + 0, [] + 0. Addition, subtraction, multiplication and division can be calculated freely by expanding (0,). (] +0. Addition, subtraction, multiplication and division can be calculated freely by expanding []. The set that can be called is called a rational number sequence.The description of the present invention mainly uses a left regular sequence or a rational number sequence.A relationship (for example, A = B, C, D) is established between the Xth and Yth terms A = B, C ≠ D
Expressed as [X, Y].

[,(,),]の使い方は数列の初位、終位の表現や省
略法に準じます。
The usage of [, (,),] is based on the expression and abbreviation of the first and last place of the sequence.

特殊な数列を定義しておきます。You have defined a special sequence.

Λ≡{Λn≠1=0,Λ=1}∈[1,1] (8B) Λ≡{Λn≠m=0,Λ=1}∈[m,m] m=0,±1,±2,… (8C) Δ≡{…,0,0,0,Δ=1,Δ=−1,0,0,0,…} (8D) Σ≡{Σn<0=0,Σn≧1=1}={…0,0,Σ=1,1,1,…} (8E) N≡{…,0,0,N0=N,0,0,…} N:数字 (8F) 0={…,0,0,0,…},1={…,0,0,10=1,0,0,…} (8G) Φ(k)={k}={…,k,k,k,k,k,…} (8H) 数列0には初項も終項もありません。特殊な数列の定義
で、数列が重複して定義されていますが、この重複(1
3)は、後述のべき乗の定義に従っています。左正則的
数列Λ-1がZ演算子の働きをします。
Λ≡ {Λ n ≠ 1 = 0 , Λ 1 = 1} ∈ [1,1] (8B) Λ m ≡ {Λ n ≠ m = 0, Λ m = 1} ∈ [m, m] m = 0, ± 1, ± 2, ... (8C) Δ≡ {…, 0,0,0, Δ 0 = 1, Δ 1 = −1,0,0,0, ...} (8D) Σ≡ {Σn <0 = 0, Σ n ≧ 1 = 1} = {... 0,0, Σ 0 = 1,1,1, ...} (8E) N≡ {…, 0,0, N 0 = N, 0,0, ... } N: Number (8F) 0 = {…, 0,0,0,…}, 1 = {…, 0,0,1 0 = 1,0,0,…} (8G) Φ (k) = { k} = {…, k, k, k, k, k,…} (8H) Sequence 0 has no first and last terms. In the definition of a special sequence, the sequence is defined more than once.
3) follows the definition of exponentiation below. The left regular sequence Λ -1 acts as a Z operator.

Λ=1,Λ=Λ (13) z≡Λ-1 (8I) 二つの数列がある時、数列の和や差を項毎の和や差で
定義します。
0 0 = 1, Λ = Λ 1 (13) z≡Λ -1 (8I) When there are two sequences, the sum or difference of the sequences is defined as the sum or difference of each term.

A±B≡{An±Bn} (14A) また、数(スカラー)kとの積を全項をk倍することで
定義します。
A ± B≡ {A n ± B n } (14A) Also, the product with the number (scalar) k is defined by multiplying all terms by k.

kA≡{kAn},−A≡(−1)A (14B) この定義により、次の諸関係が成り立ちます。kA≡ {kA n }, −A≡ (-1) A (14B) According to this definition, the following relationships hold.

A±0=A (15A) A−A=A+(−A)=0 (15B) A+B=B+A (16A) A+(B+C)=(A+B)+C (17A) A±B∈(Min(αA,αB),Max(ωA,ωB)) (18A) {An}=…+A-2Λ-2+A-1Λ-1+A0+A1Λ+A2Λ+… (19) (15A)(15B)は0が加法の単位元であること、(16
A)(17A)は交換法則と結合法則が成立つことを表しま
す。(18A)は[)+0同士の和や差が[)+0になる
ことを表します。(19)は数列がΛのLaurent級数で表
わせることを示します。右無限数列がΛ=Z-1の第0次
から始まる級数になることの拡張です。
A ± 0 = A (15A) A−A = A + (− A) = 0 (15B) A + B = B + A (16A) A + (B + C) = (A + B) + C (17A) A ± B∈ (Min (αA, αB ), Max (ωA, ωB) ) (18A) {A n} = ... + A -2 Λ -2 + A -1 Λ -1 + A 0 + A 1 Λ + A 2 Λ 2 + ... (19) (15A) (15B) is That 0 is an additive identity, (16
A) (17A) indicates that the exchange law and the combination law are satisfied. (18A) indicates that the sum or difference between [) +0 is [) +0. (19) shows that a sequence can be represented by a Laurent series of Λ. This is an extension of the right infinite series becoming a series starting from the 0th order of Λ = Z -1 .

数列の値を決める方法に、漸化式があります。これ
は、一般項を、より小さな項位の項のみで表す方法で
す。この漸化式(20B)(20A)の様に積で表すことにす
ると任意の数列A,Bの積の定義が(14C)の様に、 r=q・r q∈(1,] (20A) rn=q1・rn-1+q2・rn-2+q3・rn-3+…+qωq・r
n−ωq (20B) 畳み込みconvolutionとかCauchy積とか呼ばれる式にな
ります。{}内は約束に従い第n項を表します。q,r∈
[)+0であれば、qi又はrn-iが0になる項を除くと、
任意のnについてΣが有限和になります。積の定義によ
り、次の諸関係が成り立ちます。
One way to determine the value of a sequence is a recurrence formula. This is a way to represent a general term with only smaller terms. If the recurrence formulas (20B) and (20A) are expressed by products, the product of arbitrary sequences A and B is defined as (14C) as follows: r = q · rq∈ (1,) (20A ) R n = q 1 · r n-1 + q 2 · r n-2 + q 3 · r n-3 + ... + q ωq · r
n-ωq (20B) It is an expression called convolution or Cauchy product. The numbers in parentheses indicate the n-th term according to the promise. q, r∈
If [) +0, excluding the term where q i or r ni becomes 0,
Σ is a finite sum for any n. By the definition of the product, the following relationships hold.

0・A=0・A=0,1・A=A・1=A (15C) A・B=B・A (16B) (A・B)・C=A・(B・C) (17B) A・(B±C)=(A・B)±(A・C) (21A) A∈[),B∈[)⇒α(A・B)=αA+αB (18B) A∈(],B∈(]⇒ω(A・B)=ωA+ωB (18C) A・B=0,A∈[)+0,B∈[)+0⇒(A=0)∨(B=0) (22) 積の記号・は省略しても良いことにします。結合法則
(17A)(17B)が成立つので、括弧が無い時は積を和差
より優先して演算します。
0 · A = 0 · A = 0, 1 · A = A · 1 = A (15C) A · B = B · A (16B) (A · B) · C = A · (B · C) (17B) A ・ (B ± C) = (A ・ B) ・ (A ・ C) (21A) A∈ [), B∈ [) ⇒α (AB) = αA + αB (18B) A∈ (], B∈ () ⇒ω (AB) = ωA + ωB (18C) AB = 0, A0 [) + 0, B∈ [) + 0⇒ (A = 0) ∨ (B = 0) (22) Symbol of product May be omitted. Since the associative rules (17A) and (17B) are satisfied, when there is no parenthesis, the product is calculated with priority over the sum and difference.

例:A+BCD+EF=(A+((B・C)・D))+(E・
F) q,r∈[)+0の場合は、還元則(22)により、r=qr,
(1−q)r=0から1−q≠0なので、r=0となっ
てしまい、r≠0の時は(20B)で表現できません。そ
こで、(20B)を満たさない項X〜Yで(20C')を満た
し、(20B)を満たす項では0となるc'を用いて、(20
C)で表現します。
Example: A + BCD + EF = (A + ((B · C) · D)) + (E ·
F) When q, r q [) + 0, according to the reduction rule (22), r = qr,
(1-q) Since r = 0 and 1-q ≠ 0, r = 0, and when r ≠ 0, it cannot be expressed by (20B). Therefore, (20C ′) is satisfied with terms X to Y that do not satisfy (20B), and c ′ that is 0 is used for terms that satisfy (20B), and
C).

c'=r−qr c'∈(X,Y) (20C') r=qr+c' q∈(1,) (20C) 結果r≠0には、原因c'≠0が必要です。(20B)のqr
の代わりにfcで置き換えると、第n時点よりi時点前の
原因cn-iのi時点後の効果fiが第n時点rnに現れると解
釈できます。
c '= r-qr c'∈ (X, Y) (20C') r = qr + c'q∈ (1,) (20C) The result c ≠ 0 is required for the result r ≠ 0. (20B) qr
When replaced by fc instead of, it can be interpreted as the effect f i after i the time of the cause c ni of i point in time earlier than the n-th point in time appears to the n-th time r n.

r=fc f∈(1,) (20D) rn=f1・cn-1+f2・cn-2+f3・cn-3 +…+fi・cn-i+… (20D') (20D)は原因cと結果rとを動的に結ぶ関係です。r = fc f∈ (1,) (20D) r n = f 1 · c n−1 + f 2 · c n−2 + f 3 · c n−3 + ... + f i · c ni + ... (20D ′) ( 20D) is a dynamic connection between cause c and result r.

この様に、漸化式や因果関係を数列で表すと、その係数
f,qが(1,)になります。これが、(10A)で説明したこ
との数列での表現です。
Thus, when the recurrence formula and the causal relationship are represented by a sequence, the coefficient
f and q become (1,). Here is a sequence representation of what was described in (10A).

f,q∈(1,) (10B) (20C)の右辺のc'をacで置換すると、(20E)が得られ
ます。
Substituting ac for the right-hand side of f, qc (1,) (10B) (20C) yields (20E).

r=qr+ac a,q∈(1,) r,c∈[) (20E) 原因をc以外にdも考えると、(4F)(5F)を得ます。r = qr + ac a, q∈ (1,) r, c∈ [) (20E) If we consider d as well as c, we get (4F) (5F).

r=qr+ac+bd a,b,q∈(1,) (4F) r=fc+gd f,g∈(1,) (5F) (4F)(5F)は(4E')(5E')になっています。これら
の因果関係を表す関係式が伝達方程式と呼ばれる制御の
基本方程式です。これらは、漸化式になっており、任意
の項が初項側から順次計算できます。
r = qr + ac + bd a, b, q∈ (1,) (4F) r = fc + gdf, g∈ (1,) (5F) (4F) (5F) is (4E ') (5E'). The relational expressions that express these causal relationships are the basic control equations called transfer equations. These are recurrence formulas, and arbitrary terms can be calculated sequentially from the first term side.

数列Aに対して初項と終項を除いた数列αAとωAを
定義します。
For the sequence A, define the sequences α A and ω A excluding the first and last terms.

A={An}∈[)⇒αA≡A−AαAΛαA (23A) A={An}∈(]⇒ωA≡A−AωAΛωA (23B) 上付の“α",“ω”は初項,終項を除く数列を定義する
記号です。
A = {A n} ∈ of [) ⇒ α A≡A-A αA Λ αA (23A) A = {A n} ∈ (] ⇒ ω A≡A-A ωA Λ ωA (23B) superscript "alpha" , “Ω” is a symbol that defines a sequence excluding the first and last terms.

αA,AωAはAの初項と終項、Λのべき乗は(8C)で
定義した配列です。
A αA , A ωA are the first and last terms of A, and the power of Λ is an array defined by (8C).

AB=Cの時は、次の諸式が成り立ちます。When AB = C, the following equations hold.

C=AB=AαAΛαAB+αAB B(AαA-1Λ−αAC−αA(AαA-1Λ−αA
B (14D) B={…,0,0,0,BαB=αC−αA=CαC/AαA, (CαC+1−BαB・AαA+1)/AαA, (CαC+2−BαB・AαA+2−BαB+1 ・AαA+1)/AαA,…} (14D') (AαA-1Λ−αAC∈[αC−αA,) (14E)α A(AαA-1Λ−αA∈(1,) (10C) (14D)はBについての漸化式形(20C)になっており初
項側から計算できます。(14D)を書き下すと(14D')
になります。左正則的数列と左正則数列とによる(14
D)の計算で除算を定義し、算出される数列を商と言い
(14F)で表します。
C = AB = A αA Λ αA B + α AB B (A αA) -1 Λ -αA C- α A (A αA) -1 Λ -αA
B (14D) B = {, 0,0,0, B αB = αC−αA = CαC / AαA , ( CαC + 1BαB · AαA + 1 ) / AαA , ( CαC + 2BαB · A) αA + 2 -B αB + 1 · A αA + 1) / A αA, ...} (14D ') (A αA) -1 Λ -αA C∈ [αC-αA,) (14E) α A (A αA) -1 Λ -αA ∈ (1,) (10C) (14D) is a recurrence formula for B (20C) and can be calculated from the first term side. If you write down (14D) (14D ')
It becomes. By the left regular sequence and the left regular sequence (14
The division in the calculation of D) is defined, and the calculated sequence is called quotient (14F).

B=C/A C∈[)+0,A∈[) (14F) 0の左正則数列による商を0と定義します。左正則的数
列は、0による 0/B≡B B≠0 (14H) 除算を除き、常に除算が可能で、その商は左正則的数列
になります。
B = C / A C∈ [) + 0, A∈ [) (14F) Define the quotient of 0's left regular sequence as 0. The left regular sequence can always be divided except for 0 / B≡B B≡0 (14H) division by 0, and the quotient is a left regular sequence.

この除算の定義により、次の諸関係が成り立ちます。By the definition of this division, the following relationships hold.

A/1=A (15D) B≠0⇒α(A/B)=αA−αB (18D) B≠0⇒(A+B)/C=(A/C)+(B/C) (21B) 乗除算が定義されたので、べき乗を定義します。A / 1 = A (15D) B ≠ 0⇒α (A / B) = αA−αB (18D) B ≠ 0⇒ (A + B) / C = (A / C) + (B / C) (21B) Now that the operation is defined, we define the power.

A∈[)⇒A0≡1,An+1≡A・An,An-1≡An/A (14I) 01≡0,0n+1≡0・0n>0=0 (14I') 代数式は()で括らない限り、除算と乗算と共に加減算
に優先させます。
A∈ [) ⇒A 0 ≡1, A n + 1 ≡A · A n , A n-1 ≡A n / A (14I) 0 1 ≡0,0 n + 1 ≡0.0 n> 0 = 0 (14I ') Prior to addition and subtraction along with division and multiplication, algebraic expressions are not enclosed in parentheses.

この様に、左正則的数列の加減乗除に成り立つ法則は、
実数や複素数と全く同じです。行列のような制限が無
く、気楽に計算できます。
Thus, the law that holds for addition, subtraction, multiplication, and division of a left regular sequence is
Just like real or complex numbers. There is no restriction like a matrix, so you can calculate easily.

左正則数列で成立つことは、初項と終項を入れ替える
と、右正則数列でも成立ちます。(23B)より左正則的
数列の除算と逆に、終位側からの計算できる漸化式(14
K)(逆漸化式と言う)が得られます。この計算を右除
算と言い、得られる数列を右商と言い、(14M)で表し
ます。
What holds for a left regular sequence can also hold for a right regular sequence by exchanging the first and last terms. (23B) Contrary to the division of the left regular sequence, the recurrence formula (14
K) (called the inverse recurrence equation). This calculation is called right division, and the resulting sequence is called right quotient and is expressed as (14M).

(AωA-1Λ−ωAC∈(αC−ωA,ωC−ωA)
(14J)ω A(AωA-1Λ−ωA∈(,−1) (10D) B=(AωA-1Λ−ωAC −ωA(AωA-1Λ−ωAB (14K) B={…,(CωC−2−BωB・AωA−2 −BωB−1・AωA−1)/AωA, (CωC−1−BωB・AωA−1)/AωA,B
ωB=ωC−ωA =CωC/AωA,0,0,…} (14K') 右正則的数列の右正則数列による右商は、右正則的数列
になりますが、左正則的数列になるとは限りません。右
商が有限数列になる時に限り、左正則数列の商(区別す
る時は左商と言う)と一致します。従って、右除算は終
項側から有限数列になる商を求める場合の道具です。
(A ωA ) -1 Λ −ωA C∈ (αC−ωA, ωC−ωA)
(14J) ω A (A ωA ) -1 Λ -ωA ∈ (, - 1) (10D) B = (A ωA) -1 Λ -ωA C - ω A (A ωA) -1 Λ -ωA B (14K ) B = {..., ( CωC −2BωB · AωA−2BωB−1 · AωA−1 ) / AωA , ( CωC −1BωB · AωA−1 ) / A ωA , B
ωB = ωC-ωA = C ωC / A ωA, 0,0, ...} (14K ') The right quotient of a right-regular sequence by a right-regular sequence is a right-regular sequence, but not necessarily a left-regular sequence. Only when the right quotient becomes a finite sequence, it matches the quotient of the left regular sequence (called left quotient when distinguishing). Therefore, right division is a tool for finding the quotient that becomes a finite sequence from the last term side.

四則演算が定義されたので、特別な数列の性質を説明
します。
Now that the four arithmetic operations have been defined, let's explain the properties of a special sequence.

Λは、任意の数列Aをm項だけ項を右にずらす働きを
します。
Λ m will serve to shift to the right section of any of the sequence A by m term.

ΛmA={An-m} (8J) 従って、時系列で考える時は、ΛmAはm時点前のAを意
味します。
Λ m A = {A nm } (8J) Therefore, when considering in time series, Λ m A means A before m time point.

Δは、Λで1−Λと表現でき、任意の数列Aとの積を差
分にします。
Δ can be expressed as 1-Λ with Λ, and the product with an arbitrary sequence A is made a difference.

Δ=1−Λ (8A') ΔA={An−An-1}=A−ΛA (8K) Σは、ΔでΔ-1と表現でき、任意の数列Aとの積を和分
にします。
Δ = 1−Λ (8A ′) ΔA = {A n −A n−1 } = A− {A (8K)} can be expressed as Δ −1 by Δ, and the product with an arbitrary sequence A is integrated. You.

Σ=Δ-1 (8L) Σ=A={AαA+AαA+1+…+An} (8M) 和分、差分の関係は左正則的数列の中では一意的です
が、両無限数列に拡張すると、和分に任意の定数数列 が付加します。
Σ = Δ -1 (8L) Σ = A = {A αA + A αA + 1 +... + A n ) (8M) The relationship between summation and difference is unique in the left regular sequence, but when extended to both infinite sequences , Any constant sequence in summation Is added.

a=ΔA⇔A=Σa+Φ(k) A∈(,) (2B) a=ΔA⇔A=Σa A∈[)+0 (2C) 左正則的数列にならない実値を表現する場合には、この
点に注意が必要です。特定時点以前で同じ値になる実値
同士の差として導入される実値や差分表現を分離するこ
とで導入される実値(例:(2D)(2E)のS,R)は、左
正則的数列である必要はありません。
a = ΔA⇔A = Σa + Φ (k) A∈ (,) (2B) a = ΔA⇔A = ΣaA∈ [) + 0 (2C) When expressing a real value that is not a left regular sequence, this point You need to be careful. A real value introduced as a difference between real values that are the same value before a specific point in time or a real value introduced by separating a differential expression (eg, S, R in (2D) (2E)) is a left regular rule It doesn't have to be a sequence.

e=s−r⇒E=Σe=Σs−Σr=S−R (2D) r=ΔR=R−ΛR R=ΛR+r (2E) 整数同士の和、差、積は整数になりますが、商は1/3
の様に整数にならない場合があり、自由に実行できませ
ん。0以外での除去を自由にしようとすると、有理数を
用いなければなりません。しかし、円周率や2の平方根
等は、整数同士の除算で得られないので、無理数と呼ば
れます。整数を拡大して除法が自由にできる様にした最
小の集合が有理数です。この様に、加減乗法が自由にで
きる集合に、0以外での除去を自由にできる様にした最
小の集合を商体field quatientsと言います。整数の商
体が有理数で、(0,)の商体が[)+0で、[]+0の
商体が有理数列です。有理数列は[)+0の稠密dense
(ほぼ連続的)な部分集合です。
e = sr⇒E = Σe = Σs-Σr = SR (2D) r = ΔR = R-ΛR R = ΛR + r (2E) The sum, difference and product of integers are integers, but the quotient is 1/3
May not be an integer as in, and cannot be executed freely. If you want to be free from non-zero removal, you have to use rational numbers. However, since pi and the square root of 2 cannot be obtained by dividing integers, they are called irrational numbers. The smallest set that can be divided freely by expanding integers is a rational number. In this way, the smallest set in which the addition / subtraction method can be freely set and the removal other than zero can be set freely is called a merchandise field quatients. The quotient of integers is a rational number, the quotient of (0,) is [) +0, and the quotient of [] +0 is a rational sequence. The rational sequence is dense dense of [) + 0
(Almost continuous) subset.

因果関係を表す(20D)の両辺にΣを乗じると、(20
D")が得られます。
Multiplying both sides of (20D) representing causality by Σ gives (20D)
D ").

f=fc r≡{rn},f≡{fn},c≡{cn} (20D) Σr=Σfc=fΣc,R=Σr,C=Σc R=fC (20D") R,CはR∈[),C∈[)を満たす様に単位の原点を調整
した実値です。(22D")でパルス状に原因を変化(C=
1)させるとR=fとなります。即ち、fはパルス応答
関数です。階段状に原因を変化(C=Σ)させると、R
=Σfですので、Fが階段応答関数になります。
f = fc r≡ {r n} , f≡ {f n}, c≡ {c n} (20D) Σr = Σfc = fΣc, R = Σr, C = Σc R = fC (20D ") R, C is This is the actual value obtained by adjusting the origin of the unit so that R∈ [) and C。 [) are satisfied.
1) Then, R = f. That is, f is the pulse response function. When the cause is changed stepwise (C = Σ), R
= Σf, F becomes the step response function.

F≡Σf=ΛF+f (20F) f,g等がパルス応答関数で、F,G等が階段応答関数になり
ます。パルス応答関数と階段応答関数とは差分和分の関
係になります。
F≡Σf = ΛF + f (20F) f, g etc. are pulse response functions, F, G etc. are step response functions. The pulse response function and the step response function have a relationship of the sum of the differences.

制御手段の能力は、通常、時間的な変化を無視して表
現されます。例えば、この調整弁は、開度1度当たり流
量50mm3/secの調節ができるといった具合です。これは
開度を1度変化させた瞬間に50mm3/secだけ流量が変化
するのでなく、時間をかけてこの量の変化をします。即
ち操作手段の静的特性は、階段応答関数の極限値に他な
りません。
The ability of the control means is usually expressed ignoring temporal changes. For example, this regulating valve can adjust the flow rate 50mm 3 / sec per degree of opening. This means that the flow rate does not change by 50 mm 3 / sec at the moment the opening degree is changed once, but this amount changes over time. In other words, the static characteristics of the operating means are nothing more than the extreme values of the step response function.

形式的な第∞項で極限を表します。The formal second term represents the limit.

lim(n→+∞)Fn (14N) 数列の極限値について、次式が成り立ちます。About F ∞ lim (n → + ∞ ) limit value of F n (14N) sequence, the following expression is holds.

有限数列aの極限値については、(14P)が成り立ちま
す。
(14P) holds for the limit of the finite sequence a.

(Σa)=(Σa)ωa=Aωa a∈[](14
P) 左正則的数列の固有値問題は、少し変則的な形になり
ます。固有値問題は、作用素Aに対し、(A−λ)B=
0を満たすスカラーλと数列B≠0を求めることです。
λを固有値、Bを固有元と言います。還元則が成り立つ
ので左正則的数列では、条件を(A−λ)B=0[N,
M]とある項位で成り立つ関係にします。両無限数列で
は[N,M]の制限は不要です。Aとして、Z演算子(数
列Z)を採ると次の結果を得ます。
A (Σa) = (Σa) ωa = A ωa a∈ [] (14
P) The eigenvalue problem of a left regular sequence has a slightly irregular shape. The eigenvalue problem is expressed as follows: For an operator A, (A-λ) B =
To find a scalar λ satisfying 0 and a sequence B ≠ 0.
λ is called the eigenvalue and B is called the eigenelement. Since the reduction rule holds, in the left regular sequence, the condition is (A−λ) B = 0 [N,
M] and a relationship that holds for a certain term. There is no restriction on [N, M] for both infinite sequences. If we take the Z operator (sequence Z) as A, we get the following result.

(Z−λ)B=0 ⇒B={BN・λn-N} [N,M (25
A) (Z−λ)m+1・B=0 ⇒B={fm(n)・λ} [N,M] (25B) fm(n)で項位nの任意のm次多項式を表します。
(Z−λ) B = 0 ⇒B = {B N · λ nN } [N, M (25
A) (Z−λ) m + 1 · B = 0 ⇒B = {f m (n) · λ n } [N, M] (25B) f m (n) represents an arbitrary m-th order polynomial of term n.

さて、(4F)で(26A)が成り立つ時点(第N時点〜第
M時点)を考えます。
Now, let's consider the time (Nth to Mth) when (26A) holds in (4F).

ac=0,bd=0 [N,M] (26A) (27A)(27B)が成立しますので、両辺にZωqを乗じ
ると(27C)になります。
ac = 0, bd = 0 [N, M] (26A) (27A) (27B) holds, so multiplying both sides by Zωq results in (27C).

r=qr,(1−q)r=0 [N,M] (27A) 1−q=1−q1Z-1−q2Z-2… −qωq−ωq∈[0,) (27B) (Zωq−q1Zωq−1−q2Zωq−2−… −qωq)r=0 [N+ωq,M+ωq] (27C) Zについて因数分解し、(25C)を用いると、変化の止
み方が、(27E)のように、指数関数的になると言う結
果が得られます。
r = qr, (1−q) r = 0 [N, M] (27A) 1−q = 1−q 1 Z −1 −q 2 Z −2−qωqZ− ωqq [0,) ( 27B) (Z ωq -q 1 Z ωq-1 -q 2 Z ωq-2 - ... -q ωq) r = 0 [N + ωq, M + ωq] (27C) factorized for Z, the use of (25C), changed The result is that the way of stopping becomes exponential like (27E).

(Z−λm1…(Z−λmkr=0 m1+m2+…mk=ωq (27D) 応答関数の有理式の分母1−qの固有値λを極poleと
呼びます。
(Z-λ 1) m1 ... (Z-λ k) mk r = 0 m 1 + m 2 + ... m k = ωq (27D) The eigenvalue λ i of the denominator 1-q of the rational expression of the response function is called the pole pole.

極の中に、絶対値が1以上のものがあると、永久に変化
が止まないか、増大し続けることになります。これはエ
ネルギー定理に反します。エネルギー定理の成り立つ制
御系では全ての極の絶対値が1未満になり、指数関数的
に減少することになります。
If some poles have an absolute value of 1 or more, the change will never stop or continue to increase. This violates the energy theorem. In a control system where the energy theorem holds, the absolute values of all poles are less than 1 and decrease exponentially.

振動要素がある時には、極が一対以上の複素数で表さ
れ、これらの極の間でエネルギー交換が起こっていると
考えられます。音の圧力と運動エネルギー、振り子の位
置のエネルギーと運動エネルギー、電磁波の磁場と電場
等、皆その例です。従って、共役複素数対をセットで考
えれば、その合計エネルギーは単調減衰すると考えられ
ます。つまり、振動要素は、エネルギーをセット(和)
で考えることで振動の効果を除けますので極が1未満の
正の実数になります。温度制御をモデルに考えると、温
度制御をする点の周りを、空気や断熱材等の熱伝達の小
さな隔壁で多重に包まれています。露出していたとして
も、実験台周辺、実験室、研究棟・・・と多重な環境に
なっていることに変わりありません。これらの多重な環
境の隔壁内での熱平衡は内側から外側に向かって、時定
数が大きくなります。つまり、極の配列が、多重な空間
を表していることになります。当座の制御は、最小の空
間で充分な筈ですが、安定した状態になると、次々に外
の空気の効果が観測されてくることになります。絶対値
の最小の極のみで、他の極は考えなくとも良い場合が多
々あります。必要に応じて極の数を増やし、負の複素数
の極を考慮すれば良いのです。
When there is an oscillating element, the poles are represented by more than one pair of complex numbers, and it is considered that energy exchange occurs between these poles. Sound pressure and kinetic energy, pendulum position energy and kinetic energy, electromagnetic wave magnetic and electric fields, etc. are all examples. Therefore, if we consider a conjugate complex number pair as a set, the total energy is considered to decay monotonically. In other words, the vibration element sets the energy (sum)
By considering the above, the effect of vibration can be eliminated, so the pole becomes a positive real number less than 1. Considering temperature control as a model, the area around the temperature control point is wrapped in multiple layers with small heat transfer walls such as air and heat insulation. Even if it is exposed, there is still a multi-environment around the experimental bench, the laboratory, the research building ... The thermal equilibrium inside the bulkhead in these multiple environments increases in time constant from inside to outside. In other words, the array of poles represents multiple spaces. For the time being, the minimum control should be sufficient, but once it is stable, the effects of outside air will be observed one after another. In many cases, only the pole with the smallest absolute value does not need to be considered. You can increase the number of poles as needed and consider negative complex poles.

yとx≡(x1,x2,…,xm)を測定して、一次式(観
測方程式と言う)を仮定/推定/期待してkを求めま
す。
y and x≡ t (x 1, x 2 , ..., x m) to measure and determine the k assumed / estimated / expected to the first-order equation (referred to as the observation equation).

(4F)を観測方程式として有限数列a,b,qを求めるな
ら、(28B)です。
If (4F) is used as an observation equation to obtain a finite sequence a, b, q, then (28B).

r=qr+ac+ba a,b,q∈(1,] (4F) サンプリング時を第0項として表しました。r = qr + ac + ba a, b, q∈ (1,) (4F) The sampling time is shown as the 0th term.

データ(y,x)がn組あり、kが真値k゜に対する誤差
ηがあるため、誤差εが増したと考えます。
Since there are n sets of data (y, x) and k has an error η with respect to the true value k ゜, it is considered that the error ε has increased.

(y1,x1),(y2,x2),…,(yn,xn この連立方程式を構造方程式と言います。k゜の推定値
に誤差εの二乗和を最小にするkを選ぶのが最小自乗法
でその手法は広く知られ、その推定値は最尤推定量(最
適推定量)になります。xjによって誤差εが増減する
向きを考えて、誤差ηを減少させる方向にkjを修正す
る方法が逐次同定法と呼ばれ、推定量は一致推定量(不
偏推定量)になります。
(Y 1 , x 1 ), (y 2 , x 2 ), ..., (y n , x n ) These simultaneous equations are called structural equations. Selecting k that minimizes the sum of squares of the error ε to the estimated value of k ゜ is the least squares method, and the method is widely known, and the estimated value is the maximum likelihood estimator (optimal estimator). Considering the direction in which the error ε i increases and decreases according to x j , a method of correcting k j in a direction to reduce the error η j is called a sequential identification method, and the estimator is a coincidence estimator (unbiased estimator) .

最小自乗法では、n行m列、n行1列の構造行列X,yか
ら(30A)で作られるm行m列,m行1列の正規行列M,uを
用いた正規方程式(31A)を満たすkを求めます。
In the least squares method, a normal equation (31A) using a normal matrix M, u of m rows and m columns and m rows and 1 column formed by (30A) from a structure matrix X, y of n rows and m columns and n rows and 1 column Find k that satisfies

M≡(Mi,j)=tXX;u≡(ui)=tXy i,j=1〜m (30A) 一般には、(31A)を掃出し法で解きます。M≡ t (M i, j ) = t XX; u≡ (u i ) = t Xy i, j = 1 to m (30A) In general, (31A) is solved by the sweeping method.

Mk=u (31A) 掃出し法はM,uのコピーについてMの1行目から始めて
第i−1行目迄の掃出し操作によって変形したM,uにつ
いて、第i行目の掃出し操作を次の様にし、最終行(第
m行)迄実行します。
Mk = u (31A) For the M, u sweeping method, for the copy of M, u, starting with the first row of M and deforming by the sweeping operation up to the i-1st row, the sweeping operation of the i-th row is performed as follows. And execute to the last line (m-th line).

対角成分Mi,iが0であれば、i+1行からn行迄の
行(第j行)を調べ、Mj,iが0でなければ、M,uの第j
行と第i行とを交換して、対角成分が0でない場合の処
理に移る。
If the diagonal component M i, i is 0, the rows from the (i + 1) th row to the n-th row (the j-th row) are checked. If M j, i is not 0 , the j-th row of the M, u is checked.
The row and the i-th row are exchanged, and the process proceeds to a case where the diagonal component is not 0.

※ 全てのMj,iが0であれば、第1行からi−1行迄
の対角成分が0の行 ※ (第j行)を調べ、Mj,iが0でなければ、M,uの第
j行と第i行とを ※ 交換して、対角成分が0でない場合の処理に移る。
全てのMj,iが ※ 0であれば、第i行目の操作を終了する。
* If all M j, i are 0, check the row where the diagonal components from the first row to the i-1 row are 0 * (the j-th row). If M j, i is not 0 , check M , u, the j-th row and the i-th row are exchanged, and the process proceeds to a case where the diagonal component is not 0.
If all M j, i are * 0, the operation on the i-th row is terminated.

対角成分Mi,iが0でない場合、M,uの対角行(第i行)
の全成分をMi,iで割って、対角成分を1にする。続い
て、M,uの対角行以外の全行(第j行)について、対角
行のMj,i倍を引く。対角成分が1になっているので、
対角行を除く全ての対角列が0になる。第i行目の操作
を終了する。
If the diagonal component M i, i is not 0, the diagonal row of M, u (the i-th row)
Is divided by M i, i to make the diagonal component one. Subsequently, for all rows (j-th row) other than the diagonal rows of M and u, M j, i times the diagonal rows are subtracted. Since the diagonal component is 1,
All the diagonal columns except the diagonal rows become 0. The operation on the i-th row ends.

m=4で掃出した結果の例は(32D)の様になります。An example of the result of sweeping out at m = 4 is like (32D).

掃出し法の操作をM-で表すと、結果としてM-MとM-uが得
られます。
Expressed in, as a result M - - The operation of the sweep-out method M M and M - u can be obtained.

M-Mk=M-u (32A) M-Mの対角成分は1又は0で、対角成分が0である対角
列の対角成分より上(*の部分)は0であるとは限りま
せん。対角成分が0の行は全列0になります。M-Mの第
i行の対角成分が0の場合、kiが一次従属で、独立に決
めることができません。対角成分が0になる行のk成分
kiを0にした場合の解がM-uで与えられます。Mが正則
の場合、M-Mの対角成分が全て1になり※を付した4行
が実行されません。
M Mk = M u (32A) The diagonal component of M M is 1 or 0, and 0 above the diagonal component of the diagonal sequence where the diagonal component is 0 is 0 Not necessarily. Rows with a diagonal component of 0 have all columns 0. If the diagonal component of the i-th row of M - M is 0, k i is linearly dependent and cannot be determined independently. K component of the row where the diagonal component is 0
The solution when k i is 0 is given by M - u. If M is regular, the diagonal components of M - M are all 1 and 4 lines marked with * are not executed.

k=M-u (32B) Mが正則でない場合、※を無視して、対角成分が0でな
い場合の操作をすると、0除算エラーになります。Mが
正則な場合、M-が逆行列M-1になります。
k = M - u (32B) If M is not regular, ignoring * and performing an operation when the diagonal component is not 0 will result in a division by zero error. If M is nonsingular, M - becomes the inverse matrix M -1 .

k=M-1u (32C) (30A)で、n−1組のデータにn組目のデータを加え
ることを、データの更新と言い左向きの矢印で示し、組
番号nを省くと(30B)になります。
When k = M -1 u (32C) (30A), adding the n-th set of data to the (n-1) -th set of data is referred to as data update, and is indicated by a left-pointing arrow. ).

M←M+txx;u←u+y・tx (30B) (30B)で、同じデータ組wI個を一度に追加更新するな
らば、(30C)となります。(30C)はこのデータ組がwI
個分の価値があると解釈できます。
M ← M + t xx; u ← u + y · t x (30B) (30B) If the same data group w I is additionally updated at once, (30C). (30C) shows that this data set is w I
Can be interpreted as worthy of an individual.

M←M+wItxx;u←u+wI・y・tx (30C) wIを加重と言い、(30C)の方法を加重型と言います。
(30C)でwIが実効組数を示すなら、更新前のM,uはn−
1個の、更新後のM,uはn個のデータ組を含んでいま
す。1組当たりのM,uで表すと(30D)になり、1/nをpr
・wIとすると更新型(30E)が得られます。
M ← M + w It xx; u ← u + w I・ y ・t x (30C) w I is called weighting, and the method of (30C) is called weighting type.
If w I indicates the number of effective sets in (30C), M and u before updating are n−
One updated M, u contains n data sets. Expressed as M, u per set is (30D), and 1 / n is p r
・ If w I is used, an updated type (30E) can be obtained.

nM←(n−1)M+txx; nu←(n−1)u+y・tx (30D) M←(1−1/n)M+(1/n)・txx; u←(1−1/n)u−(1/n)・y・tx M←(1−pr・wI)M+pr・wItxx; u←(1−pr・wI)u+pr・wI・y・tx (30E) (30B)でデータ組数が増えると、M,uの成分が大きくな
り、数値オーバーフローを起こしますが、(30E)はこ
れがないので好まれます。pr・wIは、nに無関係な0に
近い正数も用いられます。データの組数がmで一次独立
な場合、最小自乗法で計算することと、(28C)の連立
一次方程式を解くことは同値ですので、連立一次方程式
を解くことは最小自乗法の特殊型とみします。一次式
(28A)のデータxiの発生頻度が極端に異なる場合、(3
0C)(30D)を用いると、頻度の低い部分が桁落ちを起
こして情報を失います。これを避けるのに、データの発
生頻度の異なるグループに分け、別々の観測方程式にす
ることがあります。2つの場合を例示すると、(28D)
の様に、k1,k2のそれぞれについて観測方程式を立てて
解きます。
nM ← (n-1) M + t xx; nu ← (n-1) u + y · t x (30D) M ← (1-1 / n) M + (1 / n) · t xx; u ← (1-1 / n) u- (1 / n ) · y · t x M ← (1-p r · w I) M + p r · w I · t xx; u ← (1-p r · w I) u + p r · w If the number of data sets increases in I・ y ・t x (30E) (30B), the components of M and u increase, causing numerical overflow, but (30E) is preferred because it does not have this. For p r · w I , a positive number close to 0 independent of n is also used. When the number of data sets is m and linearly independent, calculating by the least squares method and solving the simultaneous linear equations of (28C) are equivalent, so solving the simultaneous linear equations is considered to be a special form of the least squares method. To do. When the occurrence frequency of the data x i of the primary equation (28A) is extremely different, (3
If you use (0C) (30D), the infrequent parts will lose digit and lose information. To avoid this, the data may be divided into groups with different frequency of occurrence and separated into different observation equations. To illustrate the two cases, (28D)
And solve the observation equation for each of k1 and k2.

y1=x1k1;y1≡y−x2k2 y2=x2k2;y2≡y−x1k1 (28D) 能く知られている様に、最小自乗法は、不偏推定量を与
えません。
y1 = x1k1; y1≡y−x2k2 y2 = x2k2; y2≡y−x1k1 (28D) As is well known, the least squares method does not give an unbiased estimator.

未知数kの数を1個とします(y〜kx)。σxyを共分
散、σx 2をxの分散、σy 2をyの分散、rxy=σxy
σを相関係数とすると、|rxy|≦が成立ちます。xを
独立変数、yは従属変数に採った最小自乗法の回帰関数
はy=kxx,kx=σxyx 2となり、xを従属変数,yの独
立変数に採った最小自乗法の回帰関数はy=kyx,ky=σ
y 2xyとなります。独立変数、従属変数とは、従属変
数にのみ誤差があり、独立変数に誤差がないとする立場
を表します。実際にはx,yともに誤差がありますので、
真のkはkxとkyの間の筈です。kxとkyの相乗平均k゜を
真値と仮定すると、kx/k゜=|rxy|≦1になります。即
ち、通常の最小自乗法で推定した値kxの絶対値は真値の
絶対値より小さくなります。|rxy|は推定に用いたデー
タに含まれる雑音(誤差)が大きい程小さくなります。
不一致度1−|rxy|は雑音が大きい程大きくなります。
この事情は未知数が2以上の場合でも同じです。
Let the number of unknowns be one (y to kx). σ xy is the covariance, σ x 2 is the variance of x, σ y 2 is the variance of y, r xy = σ xy / σ x
Assuming that σ y is the correlation coefficient, | r xy | ≦ holds. x is an independent variable, y is a dependent variable, and the least squares regression function is y = k x x, k x = σ xy / σ x 2 . multiplicative regression function y = k y x, k y = σ
y 2 / σ xy . An independent variable and a dependent variable represent a position where only the dependent variable has an error and the independent variable has no error. Actually, there is an error in both x and y, so
True of k should be between the k x and k y. Assuming that the geometric mean k゜Wo true value of k x and k y, k x / k ° = | will be ≦ 1 | r xy. That is, the absolute value of the value k x estimated by the ordinary least squares method is smaller than the absolute value of the true value. | r xy | decreases as the noise (error) included in the data used for estimation increases.
The degree of mismatch 1- | r xy | increases as the noise increases.
This situation is the same even when the unknown is 2 or more.

逐次同定法で(28A)の観測方程式のkを求めるに
は、ki,xiの単位を揃える必要があります。それには、
同じ性質を持つxiの係数kiの代表値k (平均値、期
待値、近似値、和、最大範囲の逆数等)を用いて、xi,k
iをk ixi,ki/k として、単位を換算します。最大
範囲は数値範囲を統一するので換算係数に転用できま
す。x'i,k'iは換算前の値です。
The sequential in the identification method determine the k of the observation equation of (28A), k i, there is a need to align the unit of x i. To do that,
Using the representative value k * i (mean value, expected value, approximate value, sum, reciprocal of the maximum range, etc.) of the coefficient k i of x i having the same property, x i , k
a i k * i x i, as k i / k * i, and in terms of the unit. Since the maximum range unifies the numerical range, it can be used for the conversion factor. x ' i and k' i are values before conversion.

x≡(x1,x2,…,xm =(k 1x'1,k 2x'2,…,k mx'mt k≡(k1,k2,…,km) =(k'1/k 1,k'2/k 2,…,k'm/k ) (45A) 任意のデータ組で、y−xk゜=0を仮定し、特定のη
に注目します。
x≡ (x 1, x 2, ..., x m = (k * 1 x '1, k * 2 x' 2, ..., k * m x 'm) t k≡ (k 1, k 2, ..., k m ) = (k ′ 1 / k * 1 , k ′ 2 / k * 2 ,..., k ′ m / k * m ) (45A) Assuming that y−xk ゜ = 0 in an arbitrary data set, Specific η i
Pay attention to.

ε=y−xk=y−x(k゜+η)=xη y−xk゜=0 (29B) ε=x1η+x2η+…+xiη +…+xmη (29B') η≡(η123,…,η) (29C) (ηi,xi)の符号(+,+);(+,−);(−,
+);(−,−)によってεは+;−;−;+に偏り、
ηの符号は、xiとεとの積の符号と一致します。εの
偏りはηが大きい程大きい筈なので(33)として、
(29B)に代入することにより(34A)を得ます。
ε = y−xk = y−x (k ゜ + η) = xη y−xk ゜ = 0 (29B) ε = x 1 η 1 + x 2 η 2 + ... + x i η i + ... + x m η m (29B ′) ) Η≡ (η 1 , η 2 , η 3 ,..., Η m ) (29C) The sign of (η i , x i ) (+, +); (+, −); (−,
+); (−, −) Causes ε to be biased to +; −; −; +,
The sign of η i matches the sign of the product of x i and ε. Since the deviation of ε should be larger as η i is larger, (33)
(34A) is obtained by substituting for (29B).

η=x・ε/Sg (33) Sg≡x1 2+x2 2+…+xm 2=xtx (34A) (33)をそのまま修正量としたのが基本形(35A)で、1
/pr回に分けて修正することで雑音の影響を減らすのが
更新型(更新率pr)(35B)、加重を付けて動的にした
のが加重型(加重wI)(35C)です。
In η = x · ε / Sg ( 33) Sg≡x 1 2 + x 2 2 + ... + x m 2 = x t x (34A) (33) directly correction amount and the the the basic form (35A), 1
The update type (update rate p r ) (35B) reduces the effect of noise by modifying it in / pr times, and the dynamic type with weighting (weight w I ) (35C) is.

k←k+η (35A) k←(1−pr)k+pr・η 0≦pn≦1 (35B) k←(1−pr・wI)k+pr・wI・η 0≦wI≦1 (35C) 単位を揃えておかないと、(34A)で温度,高さ,電力
等々が混ざった二乗和を計算することになります。単位
の取り方で小さな数値になったxiに対応するkiは殆ど同
定されなくなり、逆に大きくなったxjに対応するkjは他
のki≠jが不正確なために生じるεにより大きな修正
を受け続けます。
k ← k + η (35A) k ← (1- pr ) k + pr · η 0 ≤ pn ≤ 1 (35B) k ← (1- pr · w I ) k + p r · w I · η 0 ≤ w I ≤ 1 (35C) If the units are not aligned, (34A) will calculate the sum of squares in which temperature, height, power, etc. are mixed. K i almost no longer identified corresponding to x i became small numbers in-taking unit, the k j which corresponds to x j which increases in the inverse occurs for inaccurate other k i ≠ j epsilon Will continue to receive major fixes.

以上、本発明を説明するために必要な、左正則的数列
の説明と、標準的な近代制御理論、制御に用いる計算手
法を説明しました。各種学問の結果を羅列した形になり
ましたが、数学的な説明を厳密にしたり、制御論を詳述
するといくら紙面があっても足りませんし、理解が困難
になります。浅深を別にすると、制御論についてはどの
デジタル制御論にも書いてあると思われることを左正則
的数列を用いた表現に合わせて記述し直したものです。
In the above, the description of the left regular sequence necessary for explaining the present invention, the standard modern control theory, and the calculation method used for the control have been described. Although the results of various academic studies are listed, it is difficult to understand strictly mathematical explanations and detailed control theory, no matter how much space is available. Aside from shallow depth, control theory is a restatement of what seems to be written in any digital control theory, in accordance with the expression using left regular sequences.

高橋安人著 システムと制御 岩波書店 1978年 数学セミナー vol.21,No.07,1982 pp.38〜44 早原四郎・春木茂 新しい演算子法と離散解析関数論
槙書店 岩波数学辞典 日本数学会編集 岩波書店 齋藤正彦 線形代数入門 東京大学出版会 明石 一・今井弘之 制御工学演習 共立出版株式会
社 制御工学ハンドバック 朝倉書店 小島紀男・篠崎寿夫 z変換入門 東海大学出版会 発明の開示 FIG.1に示す様に、制御において、ある値(制御値と言
い、Rで表す)を目標値(設定値とも言い、Sで表す)
に一致させる(整定と言う)ための値(操作値と言い、
Cで表す)を変化させます。従って、制御装置とは、少
なくともRとSの入力装置Cの出力装置と、周期的に処
理するためのタイマーと、RとSとの差に応じたCの決
定装置(演算装置と言い、Uで表す)とを有していま
す。Uには記憶装置Mを必要とします。必要に応じて表
示装置,警報装置,安定装置の入力装置等が付属しま
す。本発明では、この他に、異常時を知る為の入力装置
(装置の場所で検知できる場合は、その検知装置を含
む)と、入手可能な可知的外乱Dの入力装置が必要とな
ります。Mには、プログラムと、制御に必要な初期値デ
ータが納められています。通信手段を用いて、外部から
これらのプログラムやデータありはタイマーの信号を入
手することもできます。通信手段で外部から入手するも
のは装置に付属したものとみなします。
Yasutaka Takahashi Systems and Control Iwanami Shoten 1978 Mathematics Seminar vol.21, No.07,1982 pp.38-44 Shiro Hayahara, Shigeru Haruki New Operator Method and Discrete Analysis Function Theory Maki Shoten Iwanami Mathematics Dictionary The Mathematical Society of Japan The Mathematical Society of Japan Editing Iwanami Shoten Masahiko Saito Introduction to Linear Algebra The University of Tokyo Press Akashi Ichi, Hiroyuki Imai Control Engineering Exercise Kyoritsu Publishing Co., Ltd.Control Engineering Handbag Asakura Shoten Norio Kojima, Hisao Shinozaki z Transformation Introduction Tokai University Press Disclosure of Invention FIG. 1 In the control, a certain value (referred to as a control value and represented by R) is a target value (also referred to as a set value and represented by S).
Value (called an operation value)
(Represented by C). Therefore, the control device includes at least an output device of the input device C for R and S, a timer for performing periodic processing, and a device for determining C according to the difference between R and S (hereinafter referred to as an arithmetic device, and ). U requires storage device M. A display device, alarm device, input device for stabilizer, etc. are attached as necessary. In addition to the above, the present invention requires an input device for knowing the time of abnormality (including the detection device if it can be detected at the location of the device), and an input device for the available disturbance D that can be obtained. M contains the program and the initial value data required for control. These programs, data, and timer signals can also be obtained externally using communication means. Items obtained from outside through communication means are considered to be attached to the device.

デジタル制御装置においてはUで行う入出力値間の演算
が機械のカムや歯車の役をしています。制御される対象
(制御系)は、制御装置から出力されたCや観測される
Dを原因とし、Rを結果とする因果関係を持っていま
す。因果関係を記述する方程式を伝達方程式と言い、伝
達方程式を線形方程式で記述した時の係数を応答関数と
言います。
In a digital controller, the calculation between input and output values performed by U plays the role of the cam and gear of the machine. The object to be controlled (control system) has a causal relationship with R as a result, due to C and D observed from the control device. The equation describing the causal relationship is called the transfer equation, and the coefficient when the transfer equation is described by a linear equation is called the response function.

近代制御法は応答関数を求め、応答関数に基づいて出力
値Cを決定することに特徴があります。しかし、従来の
方法では理論が複雑で、応答関数を求めながら制御をし
ていると、突然に制御不能状態に陥ったり、雑音を増幅
したような状態になりました。また、高速な計算を要求
されて演算回数の制限があるため、データを保存してお
いて制御の終了時、休止時間、次回の制御開始時等に応
答関数を同定すると、この後の制御が不可能になること
がありました。左正則的数列を用いた理論を使って、実
動作を解析しているうちに、これらの原因がわかりまし
た。
The modern control method is characterized by finding a response function and determining the output value C based on the response function. However, with the conventional method, the theory was complicated, and when controlling while obtaining the response function, it suddenly fell into an uncontrollable state or a state where noise was amplified. Also, since high-speed calculation is required and the number of calculations is limited, if the data is saved and the response function is identified at the end of control, pause time, next control start, etc. Sometimes it became impossible. While analyzing the actual behavior using the theory using left-regular sequences, we found these causes.

入力について極端な例を考えてみます。制御ではRを
入力装置より入手し、Cを出力装置から出力します。デ
ジタル式計算機を演算装置に用いる場合、これらの数値
は離散化された整数値又は整数値を換算した値となって
います。応答関数はこれらの離散化した数値間の関係を
表し、Rは測定によって得られます。身長1.65mの人の
身長を、誤差の標準偏差0.05mで測定し1m未満を四捨五
入したとします。正規分布を仮定すると、100,000回に1
35回程度は1mとなり、残りの99,865回は2mとなることが
期待されます。この平均値は1.99865mで1.65mにはなり
ません。測定を10億回にしても、1兆回にしてもこの事
態は改善しません。身長を測定して記録する場合にこの
様な四捨五入をする人は殆どいないでしょう。しかし、
一般の測定ではありふれた現象なのです。デジタル表示
された測定値は、数値のふらつきがあるとアナログ表示
よりも視認が困難です。そこで通常表示が安定する様に
測定雑音よりもデジタル化(量子化)の最小単位(量
子,デジット)をかなり大きく採ります。表示が安定し
ていると測定者は安心します。それでもふらつきが気に
なると、ヒステリシスをかけます。身長測定の例では、
一度2mと測定されたら、1.40m未満でない限り1mとせ
ず、逆に1mと測定されたら、1.60m以上でない限り2mと
しないのです。1mと測定された後に2mと測定され得ます
が、一度2mと測定されると、1mと測定される見込みが殆
ど無くなります。即ち、デジット変化の少ないデータを
統計処理しても信号雑音比S/Nの改善が期待できませ
ん。このような統計処理の効果がないデジタル化の効果
を量子現象と言います。近代制御法では速やかに整定状
態に入り安定します。当然、RもCもデジット変動幅が
小さくなります。その状態は、応答関数では記述できな
い雑音と量子現象に支配された世界です。この状態で応
答関数の修正を繰り返しているとやがて全くでたらめな
応答関数になってしまいます。これが破綻の主な原因で
した。この様に、応答関数を同定する近代制御では、量
子現象を含めた雑音問題を解決できなければ、ただの理
論であり、実用価値がありません。制御しながら同定す
るからこそ学習効果が生じ、予備測定や装置立ち上げの
負担が減少するのです。量子現象を考えると、信号雑音
比S/Nが5以上もあるから測定回数を増やせば更にS/Nが
改善できると期待できません。
Consider an extreme example of input. In control, R is obtained from the input device and C is output from the output device. When a digital calculator is used as a computing device, these values are discrete integer values or converted integer values. The response function describes the relationship between these discretized numbers, and R is obtained by measurement. Assume that the height of a person with a height of 1.65 m is measured with a standard deviation of error of 0.05 m and rounded to less than 1 m. Assuming a normal distribution, 1 in 100,000
It is expected that 35 times will be 1m and the remaining 99,865 times will be 2m. This average is 1.99865m, not 1.65m. One billion or one trillion measurements will not improve this situation. Few people will do such rounding when measuring and recording their height. But,
This is a common phenomenon in general measurement. Measured values displayed digitally are more difficult to see than analog displays if there are fluctuations in the numerical values. Therefore, the minimum unit (quantum, digit) of digitization (quantization) is considerably larger than the measurement noise so that the normal display is stable. The operator is reassured that the display is stable. If wandering is a concern, hysteresis is applied. In the height measurement example,
Once measured 2m, it is not 1m unless it is less than 1.40m. Conversely, once measured 1m, it is not 2m unless it is 1.60m or more. After being measured as 1m, it can be measured as 2m, but once measured as 2m, there is almost no chance of being measured as 1m. In other words, even if statistical processing is performed on data with little digit change, improvement in the signal-to-noise ratio S / N cannot be expected. The effect of digitization without the effect of such statistical processing is called quantum phenomena. In the modern control method, it enters the settling state quickly and becomes stable. Naturally, both R and C have a small digit fluctuation range. The state is a world dominated by noise and quantum phenomena that cannot be described by the response function. If you repeatedly modify the response function in this state, it will eventually become a completely random response function. This was the main cause of the bankruptcy. Thus, modern control that identifies response functions is only a theory and has no practical value unless it can solve noise problems including quantum phenomena. The identification effect while controlling has a learning effect and reduces the burden of preliminary measurement and equipment startup. Considering quantum phenomena, since the signal-to-noise ratio S / N is 5 or more, it cannot be expected that the S / N can be further improved by increasing the number of measurements.

S/Nが10で応答関数を同定しても、1桁の精度もないの
です。
Even if you identify the response function with S / N of 10, there is no single digit accuracy.

この様に、デジット変化の小さい時には応答関数の同定
を避けなければなりません。S/Nを統計処理で改善でき
るのは、5〜10デジット以上の大きさの白色雑音があ
り、かつ、デジットの大きさのばらつきやヒステリシス
等が均され得る場合に限ります。デジタル化の性質が悪
いと、多数のデジットにわたる白色雑音でも、測定値の
平均値と真値との関係が非直線的になり、S/Nが向上し
ません。応答関数は、原因と結果とを結ぶ係数ですか
ら、結果Rの測定だけでなく、原因C,Dの測定や設定に
ついても同様なことが言えます。Cの1デジット幅のば
らつき、ヒステリシス、不安定性等は、Cの変動幅が数
デジット程度になった時には大きく影響してきます。
As such, when the digit change is small, the identification of the response function must be avoided. S / N can be improved by statistical processing only when there is white noise with a magnitude of 5 to 10 digits or more, and variations in digit size and hysteresis can be evened out. If the nature of digitization is poor, the relationship between the average value of the measured values and the true value will be non-linear even with white noise over a large number of digits, and the S / N will not improve. Since the response function is a coefficient that connects the cause and the result, the same can be said for the measurement and setting of the causes C and D as well as the measurement of the result R. The variation of one digit width of C, hysteresis, instability, etc. have a great influence when the variation width of C becomes about several digits.

皮肉にも近代制御法で、高速にかつ正確な制御が実現す
るため、大半の時間が信号の大きさが0〜2デジットに
雑音が加わった状態になります。
Ironically, modern control methods achieve high-speed and accurate control, so most of the time the signal magnitude is between 0 and 2 digits plus noise.

量子効果が働き、統計的な手法でS/Nが改善されます。
この状態で応答関数の修正を続ける結果、応答関数が破
壊されます。近代制御法は雑音に極めて弱いのです。そ
こで、次の三つの方針を立てました。
Quantum effect works and S / N is improved by statistical method.
If you continue to modify the response function in this state, the response function will be destroyed. Modern control methods are extremely sensitive to noise. Therefore, we have established the following three policies.

I) 応答関数を、雑音や外乱から保護する。I) Protect the response function from noise and disturbance.

II) 不要な雑音に対する操作値の変動を制限して、雑
音を増幅しない。
II) Do not amplify the noise by limiting the fluctuation of the operation value against unnecessary noise.

III) 雑音となる外乱を減らす。外乱の中でも、情報
を入手できる可知的外乱Dは制御に組み込み、外乱の影
響を減殺する。但し、Dが入手できない場合は、この限
りでない。(Dが入手できない場合は、以下の説明でD,
d,bに関する項を略すか、d=0とする。) 制御には、過去の情報が不可欠であるので、負の項位
のある数列で、右無限数列の商体となる左正則的数列で
表すことにし、(5F)(4F)を制御系の記述する対等な
基本方程式と考えます。
III) Reduce disturbances that cause noise. Among the disturbances, an intelligent disturbance D from which information can be obtained is incorporated in the control to reduce the influence of the disturbance. However, this does not apply if D is not available. (If D is not available, use D,
The terms relating to d and b are omitted or d = 0. The past information is indispensable for control, so we will use a sequence with negative terms and express it as a left regular sequence, which is a quotient of the right infinite sequence, and use (5F) and (4F) for the control system. Think of it as an equivalent basic equation to describe.

r=ac+bd+qr (4F) r=fc+gd (5F) 重ね合わせの原理が成り立つ制御系を考えているので、
可知的外乱がN個の時、(4F)(5F)は次の様になりま
すが、簡単のため1つとして説明します。
r = ac + bd + qr (4F) r = fc + gd (5F) Since we are thinking of a control system where the principle of superposition holds,
When there are N intellectual disturbances, (4F) and (5F) are as follows, but they are described as one for simplicity.

r=qr+ac+b1・d1+b2・d2+b3・d3 +…+bN・dN (4G) r=fc+g1・d1+g2・d2+g3・d3 +…+gN・dN (5G) 応答関数f,g;p,a,bの関係は、以下の様になり、a,b,qを
既知とする時、f,gが漸化式(6G)で第1項から順次計
算できます。
r = qr + ac + b1 · d1 + b2 · d2 + b3 · d3 + ... + bN · dN (4G) r = fc + g1 · d1 + g2 · d2 + g3 · d3 + ... + gN · dN (5G) The relationship between the response functions f, g; p, a, and b is as follows: When a, b, and q are known, f and g can be calculated sequentially from the first term using the recurrence formula (6G).

r−qr=ac+bd,(1−q)r=ac+bd (6C) r=ac/(1−q)+bd/(1−q)=fc+gd ∴ f=a/(1−q),g=b/(1−q) (6D) a=(1−q)f,b=(1−q)g (6E) a=f−qf,b=g−qg (6F) f=a+qf,g=b+qg (6G) 逆にf,gよりa,b,qを求めるには、(6F)の第ωa+1項
以降をqについての連立方程式(27F)と見てqを算出
し、漸化式(6F)で、第1項から順に、a,bを算出しま
す。
r-qr = ac + bd, (1-q) r = ac + bd (6C) r = ac / (1-q) + bd / (1-q) = fc + gd f = a / (1-q), g = b / (1-q) (6D) a = (1-q) f, b = (1-q) g (6E) a = f-qf, b = g-qg (6F) f = a + qf, g = b + qg ( 6G) Conversely, to obtain a, b, and q from f and g, q is calculated by considering the ωa + 1-th and subsequent terms of (6F) as a simultaneous equation (27F) for q, and then using recurrence equation (6F) Calculate a and b in order from the first term.

f=qf [ωa+1,ωa+ωq] (27F) a,b,qが有限数列(7G)ですから、f,gが有理数列となり
ます。有理数列は、左正則数列の稠密な部分集合ですか
ら工学上左正則数列と考えて支障ありません。即ち、任
意の左正則数列に対して、いくらでも差のない有理数列
があります。有理数は実数の稠密な部分集合です。円周
率を有理数で表しても工学上問題ありません。即ち工学
的な意味で(4F)と(5F)とは等価な表現で、どちらが
基本方程式であるとの議論は不要です。
f = qf [ωa + 1, ωa + ωq] (27F) Since a, b, and q are finite sequences (7G), f and g are rational sequences. Since rational sequences are dense subsets of left regular sequences, there is no problem in engineering them as left regular sequences. That is, for any left regular sequence, there is a rational sequence with no difference. Rational numbers are dense subsets of real numbers. There is no problem in engineering even if pi is expressed as a rational number. In other words, in terms of engineering, (4F) and (5F) are equivalent expressions, and it is unnecessary to discuss which is the basic equation.

r,c,dを制御値、操作値、可知的外乱として、(4F)を
次の様に解釈します。Z変換理論でr,c,dはインパルス
応答でした。しかし、Z演算子は、左正則数列ですから
他の数列と区別して特別扱いする理由がありません。
(4F)(5F)で制御系が過不足無く表現できれば良く、
r,c,dを単に時系列を表す数列と考えます。インパルス
応答とは考え難い二重積分ADコンバータの出力値や統計
処理した値でも、測定や設定のタイミングが異なるr,c,
dでも、一向に構いません。q,a,bの項数も記述に十分で
あればそれで良しとします。機械設計に、素粒子の場の
理論や太陽やアンドロメダ星雲の効果を考慮しないのと
同じです。必要な時に考慮すれば良いのです。何が観測
でき、何が観測できないかという可観測性と、何が制御
でき、何が制御できないと言う可制御性を、予め確認
し、制御系が可観測性と可制御性を満たしていれば、連
続系との関連を無視しても良いことになります。従来強
調されてきた、陰の応答で代表されるサンプリング定理
も、可観測性を満たさない制御周期を選んではならない
と言うだけのことです。
(4F) is interpreted as follows, where r, c, and d are control values, operation values, and intellectual disturbances. In the Z-transform theory, r, c, d were impulse responses. However, since the Z operator is a left-regular sequence, there is no reason to treat it specially in distinction from other sequences.
(4F) (5F) should just be able to express the control system without excess or shortage,
Think of r, c, d as simply a sequence representing a time series. Even when the output value of double-integral AD converter or statistically processed value, which is hard to imagine as impulse response, the timing of measurement and setting differs,
Even d is fine. If the number of terms in q, a, and b is sufficient for the description, that is fine. It is the same as not considering the field theory of elementary particles and the effects of the sun and the Andromeda nebula in mechanical design. Just take it into account when you need it. Confirm in advance the observability of what can be observed and what cannot be observed and the controllability of what can be controlled and what cannot be controlled, and make sure that the control system satisfies the observability and controllability. In other words, the relation to the continuous system can be ignored. The sampling theorem represented by the implicit response, which has been emphasized in the past, simply says that a control cycle that does not satisfy observability must be selected.

従来解釈がされていないq,a,bを次の様に解釈しま
す。
Interpret q, a, b, which has not been interpreted conventionally, as follows.

q,a,bは、初位が1以上であり、応答関数としての資格
を備えているので、応答関数であると認めます。する
と、qは、結果であるrを原因とする応答関数です。即
ち、結果の中に蓄積された、未来に影響を与える要素に
対しての応答関数です。ベルを鳴らす場合を考えます。
ベルに瞬時の衝撃を与えたとしても、ベルは暫く鳴り響
きます。瞬時の衝撃(c,d)はベルに変形(r=ac+b
d)を与えます。この変形(r)は、歪みエネルギーと
運動エネルギーで、新たな変形(r=qr)をもたらしま
す。変形はこの総合効果(r=ac+bd+qr)です。変形
は周囲の空気に振動を与え続けて音になります。同じ変
形であれば、その後の効果は、ベルに依存し、衝撃を与
える手段には依りません。ただ、多くの場合、手段c,d
が違えば、異なった変形ac,bdを与えます。この様に、
qは結果rの内部に蓄積される効果を示し、記憶効果や
共鳴効果等の現象を記述する応答関数です。a,bを記憶
効果を考慮した正味関数net function、f,gを総体関数g
ross functionと考えます。
Since q, a, and b have a rank of 1 or more and are qualified as a response function, they are recognized as response functions. Then q is the response function due to the result r. That is, the response function for the elements that affect the future, accumulated in the results. Imagine ringing a bell.
Even if you give the bell a momentary impact, the bell will ring for a while. Instantaneous impact (c, d) is transformed into a bell (r = ac + b
d) give. This deformation (r) is a new deformation (r = qr) with distortion energy and kinetic energy. Deformation is the total effect (r = ac + bd + qr). Deformation continues to vibrate the surrounding air and becomes sound. For the same deformation, the subsequent effect depends on the bell and not on the means of impact. However, in many cases, means c and d
If different, give different variants ac, bd. Like this
q indicates the effect accumulated inside the result r, and is a response function describing phenomena such as a memory effect and a resonance effect. a, b is a net function net function considering memory effect, f, g is a gross function g
Think ross function.

初期値についても(20C)で述べた左正則的数列の表
現の通則に従い、「結果には、原因がある」と考えま
す。伝達方程式(4F)(5F)が制御開始以前、開始後に
拘わらず、常に成り立ち、初期値は、制御開始直前の初
期原因によって発生した結果であると考えます。(4F)
をc,dについて解いた次の諸式で、初期原因をcに担わ
せることも、dに担わせることもできます。
Regarding the initial value, we also follow the general rule of the expression of the left regular sequence described in (20C), and consider that the result has a cause. The transfer equations (4F) and (5F) always hold regardless of before or after the start of control, and the initial value is considered to be the result of the initial cause immediately before the start of control. (4F)
By solving the following for c and d, the initial cause can be assigned to c or d.

c=(r−qr+bd)/a (36A) d=(r−qr−ac)/b (36B) 必要であれば、観測値を元に推定すれば良いのです。原
因が無ければ、結果が生じないと考えるだけです。この
様にして、全ての時点で伝達方程式の成立が仮定できる
ので、制御開始時点を第0項にする理由が無くなりま
す。注目する時点、例えば現時点を第0時点にできま
す。
c = (r-qr + bd) / a (36A) d = (r-qr-ac) / b (36B) If necessary, estimate based on observations. If there is no cause, you just think that there is no result. In this way, the establishment of the transfer equation can be assumed at all times, and there is no reason to set the control start time to the 0th term. The time of interest, for example, the current time, can be the 0th time.

制御の手順を説明します。 This section describes the control procedure.

(4F)を観測方程式として有限個の既知のデータr,c,d
を用い、a,b,qを求めます。算出方法は、最小自乗法で
も逐次同定法でも結構です。a,b,qが求められれば(6
G)によってf,gを算出します。操作量cを過去の実績値
及び今後について適当に仮定(例えば0)とした値c゜
と制御値を目標値に一致させる修正値c'とに分けて考
え、(4I)〜(5L)を得ます。
Finite number of known data r, c, d using (4F) as the observation equation
Use to find a, b, q. The calculation method can be either the least squares method or the sequential identification method. If a, b, q are obtained, (6
Calculate f and g by G). The operation amount c is divided into a past actual value and a value c ゜ appropriately assumed (for example, 0) for the future and a correction value c ′ for matching the control value to the target value, and (4I) to (5L) are considered. I get

(4I)(2F)によって、予測値r゜,R゜を必要な項数
(1〜Y)計算します。
(4I) Calculate the required number of terms (1 to Y) for the predicted values r ゜ and R ゜ using (2F).

c=c゜+c' c'∈(0,ωc') (37) r゜=ac゜+bd+qr゜ (4I) R゜=ΛR゜+r゜ (2F) (38),(5L)で、SとRを一致させる未来の時点X〜
YでRをSに置き換えて、c'を求めます。
c = c ゜ + c ′ c′∈ (0, ωc ′) (37) r ゜ = ac ゜ + bd + qr ゜ (4I) R ゜ = ΛR ゜ + r ゜ (2F) (38), (5L), and S and R To match future time X ~
Replace c with Y by replacing R with S.

c'r=f(c゜+c')+gd=r゜+fc', r゜=fc゜+gd (5I) fc'=e e≡r−r゜=ΔE∈(1,) (5K) R=S,r=s [X,Y] (38) Fc'=E E≡Σe=R−R゜≡(1,) (5L) c'が求まったらC=ΛC+c=ΛC+c゜+c'の第0項
を本発明ではさらに修正係数kcで修正(39B)して出力
します。
c′r = f (c ゜ + c ′) + gd = r ゜ + fc ′, r ゜ = fc ゜ + gd (5I) fc ′ = e e≡r−r ゜ = ΔE∈ (1,) (5K) R = S , r = s [X, Y] (38) Fc ′ = EE E = RR− (1,) (5L) When c ′ is obtained, the 0th term of C = {C + c = {C + c} + c ′ is obtained. and output further modified fixed in the coefficient k c (39B) to the present invention.

C0=C-1+c゜+c'0 (39A) C0=C-1+c0,c0←kc・(c゜+c'0) (39B) (4I)(2F)を一緒にして、(4J)でr゜を使わずにR
゜を計算できます。
C 0 = C -1 + c ゜0 + c ' 0 (39A) C 0 = C -1 + c 0 , c 0 ← k c · (c ゜0 + c' 0 ) (39B) (4I) (2F) , Without using r ゜ in (4J)
゜ can be calculated.

q'≡Δg+Λ (6H) R゜=ac゜+bd+q'R゜ (4J) 漸近式の計算が煩わしければ、同定の時に(6I)を求め
ておいて(4L)によってN時点後の実値の制御値Λ-NR
゜を推定できます。
q′≡Δg + Λ (6H) R ゜ = ac ゜ + bd + q'R ゜ (4J) If it is troublesome to calculate the asymptotic equation, find (6I) at the time of identification and use (4L) to calculate the actual value after N times. Control value Λ -N R
゜ can be estimated.

式は複雑ですが、応答関数を頻繁に同定しない場合は便
利です。
The formula is complicated, but it is useful if you do not frequently identify the response function.

r゜=ac゜+bd+qr゜=ac゜+bd+q(ac゜+bd+qr゜)=… =(1+q+q2+…+qN-1)(ac゜+bd)+qNr゜ (4K) Λ-Nr゜=(1+q+q2+…+qN-1)Λ-N(ac゜+bd)+Λ-NqNr゜ Λ-NR゜−R゜=Σ(1,M)r゜=a(N)c゜+b(N)d+(q(N)−1)R゜ Λ-NR゜=a(N)c゜+b(N)d+q(N)R゜ (4L) (4I)(4J)(4L)で可知的外乱dは、過去と現在の値
だけでなく、未来の予定値が入手できる場合は、その予
定値も利用します。R゜の推定に可知的外乱dを用い、
フィードフォワードを実現しています。この方法で可知
的外乱をR゜の推定に用いる方法を可知的外乱取込法と
言います。
r ° = ac ° + bd + qr ° = ac ° + bd + q (ac ° + bd + qr DEG) = ... = (1 + q + q 2 + ... + q N-1) (ac ° + bd) + q N r ° (4K) lambda -N r ° = (1 + q + q 2 + ... + q N-1 ) Λ -N (ac ゜ + bd) + Λ -N q N r ゜ Λ -N R ゜ -R ゜ = Σ (1, M) r ゜ = a (N) c ゜ + b (N ) d + (q (N) -1) R ゜ Λ -N R ゜ = a (N) c ゜ + b (N) d + q (N) R ゜ (4L) In (4I), (4J), and (4L), the intellectual disturbance d uses not only past and present values, but also future scheduled values, if available. Using the intelligent disturbance d to estimate R ゜,
Achieve feed forward. The method of using intellectual disturbance in this method to estimate R ゜ is called intellectual disturbance capture method.

これらの式でR,S,R゜は左正則的数列である必要はあり
ません。
In these equations, R, S, R ゜ does not need to be a left-regular sequence.

東京にいる時、ニューヨークから10分以内に来て欲し
いと言われたとします。しかし切符の手配、空港迄の所
要時間、飛行時間、ニューヨークの空港から現地迄の時
間等を要します。10分後は、確かに未来ですが、少なく
とも現在の交通事情では不可能です。短時間で行こうと
すればする程無理が生じます。制御でも同じで、整定の
準備を開始してから整定する迄にある程度の時間が必要
です。この様子を調べてみます。
Suppose you are in Tokyo and want to come from New York within 10 minutes. However, it may take time to arrange tickets, time to get to the airport, flight time, time from the airport to New York. Ten minutes later is certainly the future, but at least in the current traffic situation. The more you try in a short time, the harder it gets. The same applies to control, and it takes some time from the start of preparation for setting to the setting. Let's examine this.

(5K)の初位に注目すると(5N)になっています。即
ち、むだ時間であるαf時点以後でなければ一致させる
ことができません。
Looking at the first place of (5K), it is (5N). That is, they cannot be matched until after the time αf, which is a dead time.

αe=αf+αc'=αf e∈(αf,) (5N) (5K)や(5L)をc'について直接解くとすれば、(5M)
になります。
αe = αf + αc ′ = αfe (αf,) (5N) If (5K) or (5L) is directly solved for c ′, then (5M)
It becomes.

c'=F-1E=f-1e (5M) f-1を計算する除法に倣って、fを初項を元に展開して
逆数列を求めてみると(6J")となり、c'が(5M)を使
って(43A)と求まります。
c ′ = F −1 E = f −1 e (5M) Following the division of calculating f −1 , f is expanded based on the first term to find the reciprocal sequence, which gives (6J ″). 'Is obtained as (43A) using (5M).

f=fαfΛαf+(f−fαfΛαf)=fαfΛαfαf (6J) f=fαfΛαf(1+f'),f'≡αfΛ−αf/fαf∈(1,) (6J') f-1=fαf -1Λ−αf(1−f'+f'2−f'3+…)∈[−αf,) (6J") c'=fαf -1Λ−αf(1−f'+f'2−f'3+…)e (43A) 1−f'+f'2−f'3+…のf'kに注目すると、f'kの中に、
αf<jとなる全てのjについて(fj/fαfΛ
(j−αf)kとなる項が含まれます。もし、1≦|fj/
fαf| であれば、ある時点で生じたeが、c'の未来に減衰せず
に影響を与え続けます。このような操作は好ましくあり
ません。
f = f αf Λ αf + ( f-f αf Λ αf) = f αf Λ αf + α f (6J) f = f αf Λ αf (1 + f '), f'≡ α fΛ -αf / f αf ∈ (1 ,) (6J ') f -1 = f αf -1 Λ -αf (1-f' + f '2 -f' 3 + ...) ∈ [-αf,) (6J ") c '= f αf -1 Λ -αf (1-f '+ f ' 2 -f '3 + ...) e (43A) 1-f'' when attention is paid to k, f' + f '2 -f' 3 + ... of f in the k,
For all j where αf <j, (f j / f αf ) k Λ
The term that becomes (j-αf) k is included. If 1 ≦ | f j /
If f αf |, then the e generated at some point will continue to affect the future of c 'without decay. Such operations are not desirable.

即ち、(43A)のc'を用いて制御するならば、(40A)が
必要です。
That is, if control is performed using c 'of (43A), (40A) is required.

|fj/fαf|<1 ∀j>αf (40A) 一般的には(40A)が成立しません。このため、各種の
方法が工夫される必要があるのです。一つの方法は、
(40B)を満たすZをさがします。
| f j / f αf | <1 ∀j> αf (40A) Generally, (40A) does not hold. For this reason, various methods need to be devised. One way is
Find the Z that satisfies (40B).

|fj/FZ|<1,∀j>Z (40B) そして、応答関数をこのZを初項とする(41A)の応答
関数で近似し、乖離も第Z項から0でなくなる(42A)
と仮定します。この近似応答関数なら、(40)を満たす
ので、(6J")が収束します。
| f j / F Z | <1, ∀j> Z (40B) Then, the response function is approximated by the response function of (41A) with Z as the first term, and the deviation is not zero from the Z term (42A). )
Assume that This approximate response function satisfies (40), so (6J ") converges.

(41A)の近似は、連続系でZieglerとNicholsの限界感
度法に用いたもので、PID制御のチューニングに用いら
れています。
The approximation of (41A) is a continuous system used for the Ziegler and Nichols marginal sensitivity method, and is used for tuning PID control.

fZ←f1+f2+f3+…+fz=Fz,fn<Z←0,Fn<Z←0,αf←Z (41A) eZ←e1+e3+e2+…+eZ=EZ,en<Z←0,En<Z←0 (42A) この近似でc'0を求めると(6J")より(43B)が得られ
ます。
f Z ← f 1 + f 2 + f 3 + ... + f z = F z , f n <Z ← 0, F n <Z ← 0, αf ← Z (41A) e Z ← e 1 + e 3 + e 2 + ... + e Z = E Z , en <Z ← 0, En <Z ← 0 (42A) When c ' 0 is obtained by this approximation, (43B) is obtained from (6J ").

c'=(1−f'+f'2+f'3+…)(EZ+eZ+1Λ+eZ+2Λ+…)/AZ (43B) c'0=EZ/AZ (43B') (5K)(5L)に(1−q)を掛けると(4M)になりま
す。この(4M)で強い収束条件が得られます。a-1を初
項を元に展開すると(6P")となります。
c ′ = (1−f ′ + f ′ 2 + f ′ 3 +...) (E Z + e Z + 1 Λ + e Z + 2 Λ 2 +...) / A Z (43B) c ′ 0 = E Z / A Z (43B ') Multiply (5K) (5L) by (1-q) to get (4M). This (4M) gives a strong convergence condition. Expanding a- 1 based on the first term gives (6P ").

ac'=(1−q)e=(1−g)fc';Ac'=(1−q)E=Σac' (4M) a=aαaΛαa+(a+aαaΛαa)=aαaΛαaαa (6P) a=aαaΛαa(1+a'),a'≡αaΛ−αa/aαa∈(1,) (6P') a-1=aαa -1Λ−αa(1−a'+a'2−a'3+…)∈[−αa,) (6P") もし、αa=ωaであれば、(27H)(6P゜)となりま
す。
ac '= (1-q) e = (1-g) fc'; Ac '= (1-q) E = Σac' (4M) a = a αa Λ αa + (a + a αa Λ αa) = a αa Λ αa + α a (6P) a = a αa Λ αa (1 + a '), a'≡ α aΛ -αa / a αa ∈ (1,) (6P') a -1 = a αa -1 Λ -αa (1 -a '+ a' 2 -a ' 3 + ...) ∈ [-αa,) (6P ") if, if αa = ωa, will be (27H) (6P °).

a'=a'2=a'3=…=0 (27H) a-1=aαa -1Λ−αa αa=ωa (6P゜) そこで、aを(41B)で近似して(42B)の条件で解くと
(43C)となります。
a '= a' 2 = a '3 = ... = 0 (27H) a -1 = a αa -1 Λ -αa αa = ωa (6P °) Therefore, by approximating a by (41B) of (42B) Solving under the condition gives (43C).

ωa←Aωa,an<ωa←0 (41B) eωa←Eωa,en<ωa←0,en>ωa:不変 e∈(ωa,) (42B) c'=Aωa -1Λ−ωae(1−q), c'0=Eωa/Aωa (43C) この収束条件は完全です。第ωa時点以降が間に合う未
来になります。
aωaAωa , an <ωa ← 0 (41B) eωaEωa , en <ωa ← 0, en > ωa : Invariant e∈ (ωa,) (42B) c ′ = Aωa- 1 Λ −ωa e (1-q), c ' 0 = Eωa / Aωa (43C) This convergence condition is perfect. The future after the ωa point will be in time.

(43B')(43C)のc'0が初点(EZ,Eωa)だけで決まる
ので、初点整定法と言います。(4M)の第ωa+ωc'+
1項以降を調べてみます。すると、(27G) ac'=0=e−qe [ωa+ωc'+1,) (26B) e=qe [ωa+ωc'+1,) (27G) となり、ωa+ωc'+1時点以降のeの値はそれ以前の
eの値で決まります。この時点以降で一致させようとす
ると、それ以前の時点での一致の少なくとも一部を諦め
なければなりません。第ωa+ωc'+1時点以降は遠い
未来です。まとめると、αa時点より前の整定は不可能
で、Z時点以降で整定しないと拡大基調の操作になる危
険があり、ωa時点以降で整定させれば操作は安定で
す。しかし、ωa+ωc'+1時点以降の整定は、この時
点以前の整定に犠牲を要求します。
(43B ') Since c' 0 of (43C) is determined only by the starting point (E Z , E ωa ), it is called the starting point settling method. (4M) ωa + ωc '+
Let's look at the following section. Then, (27G) ac '= 0 = e−qe [ωa + ωc ′ + 1], (26B) e = qe [ωa + ωc ′ + 1], (27G), and the value of e after the time ωa + ωc ′ + 1 is e before e Is determined by the value of If you try to match after this point, you must give up at least part of the match before that point. It is a distant future after ωa + ωc '+ 1. In summary, it is impossible to settle before the time point αa, and there is a risk that the operation will be based on the enlarged tone unless settled after the time point Z, and the operation will be stable if settled after the time point ωa. However, setting after ωa + ωc '+ 1 requires a sacrifice for setting before this point.

目標値が普段は一定で希に変化させる制御系と、目標
値を時々刻々とプログラム的に変化させる制御系とがあ
ります。前者の場合、可知的外乱の変化も散発的な変化
に留まれば、Y+1時点以降を不変、即ちeを有限数列
と仮定します。
There are two types of control systems, one in which the target value is usually constant and rarely changed, and the other in which the target value changes programmatically every moment. In the former case, if the change of the intellectual disturbance is also a sporadic change, it is assumed that the point after Y + 1 is invariant, that is, e is a finite sequence.

e=0[Y+1,) e∈(1,Y) (42C) (5K)(5L)は(4M)となりますが、uを(5P)を満た
す有限数列とすれば(4M)は(43D)の解を持ちます。
e = 0 [Y + 1] e∈ (1, Y) (42C) (5K) (5L) is (4M), but if u is a finite sequence that satisfies (5P), (4M) is (43D) With a solution of

au=e u∈(0,ωu),Y=ωa+ωu (5P) c'=u(1−q),c'∈(0,ωu+ωq) (43D) (5P)で、u,eの項数はωu+1,ωu+ωaですので、
ωa≠1であれば、uは(5P)で表される任意のeにつ
いて解くことができません。そこで(5P)の方程式数を
(5P')の様にωu+1に減らします。
au = e u∈ (0, ωu), Y = ωa + ωu (5P) c ′ = u (1-q), c′∈ (0, ωu + ωq) (43D) (5P), and the number of terms of u and e is ωu + 1, ωu + ωa, so
If ωa ≠ 1, u cannot be solved for any e expressed by (5P). Therefore, the number of equations in (5P) is reduced to ωu + 1 as in (5P ').

(Au)ωa=Eωa;au=e [ωa+1,ωa+ωu]
(5P') この方程式は、解(5Q)を与えます。
(Au) ωa = Eωa ; au = e [ωa + 1, ωa + ωu]
(5P ') This equation gives the solution (5Q).

特に、ωu=0とした時の解は、(5Q')(43E)となり
ます。
In particular, the solution when ωu = 0 is (5Q ') (43E).

u=u0=(Σe)/(Σa)=Eωa/Aωa (5Q') c'=(Eωa/Aωa)(1−q), c'0=Eωa/Aωa (43E) この方法は、ωa時点以降制御値が目標値に一致したま
ま固定されるので、有限整定法と言います。しかし、こ
の方法では、eが有限数列であることを前提しなければ
なりません。今後の操作値を一定に保つと仮定すると、
eが有限数列になりません。雑音や追加される可知的雑
音の効果を除くと、前制御周期で求めたCの未来分を用
いた推定値は新しく追加されるeωa+ωu以外は0の
筈です。これは、eを有限数列とするには良い条件です
ので、前制御周期で求めたCを用いてR゜を推定しま
す。
u = u 0 = (Σe) ∞ / (Σa) ∞ = E ωa / A ωa (5Q ') c' = (E ωa / A ωa) (1-q), c '0 = E ωa / A ωa ( 43E) This method is called the finite settling method since the control value is fixed at the same value as the target value after ωa. However, this method must assume that e is a finite sequence. Assuming that future manipulated variables remain constant,
e does not become a finite sequence. Excluding the effects of noise and added intellectual noise, the estimated value using the future value of C obtained in the previous control cycle should be 0 except for newly added eωa + ωu . This is a good condition for e to be a finite sequence, so R ゜ is estimated using C obtained in the previous control cycle.

次に目標値がプログラム的に変化する場合を考えま
す。
Next, consider the case where the target value changes programmatically.

むだ時間以前の制御は不可能なので、αf≦Xとしま
す。そして、多少の無理があっても第X時点〜第Y時点
で加重wiを調整することで最小自乗法でc'を求める方法
を、最適制御法と言います。
Since control before the dead time is impossible, αf ≦ X is set. Then, a method of obtaining a c 'in the least square method, even a slight force by adjusting the weights w i in the X point, second Y point, called the optimum control method.

(4o)を(4o')とは、加重の掛かり方を除くと同じ条
件になります。
(4o) is the same as (4o ') except for how the weight is applied.

Fc'=E[X,Y] c'∈(0,ωc') (4o) (Fc')=EX;fc'=e [X+1,Y] c'∈(0,ωc) (4o') c'=(c'0,c'1,…,c'ωc’) (4o゜) E=(wXEX,wX+1EX+1,…,wYEY) (4o+) c'=(tFF)-1tFE (43F) (tFF)-1tFを、q,aの同定時に算出しておくと便利で
す。
Fc '= E [X, Y ] c'∈ (0, ωc') (4o) (Fc ') X = E X; fc' = e [X + 1, Y] c'∈ (0, ωc) (4o ' ) c '= t (c' 0 , c '1, ..., c' ωc ') (4o °) E = t (w X E X, w X + 1 E X + 1, ..., w Y E Y) ( 4o + ) It is convenient to calculate c '= ( t FF) -1t FE (43F) ( t FF) -1t F when identifying q and a.

但し、c'0の算出に必要なのは、(tFF)-1tFの第1行目
だけです。
However, what is needed for the calculation of the c '0 is only the first line of the (t FF) -1t F.

間に合う未来以降の遠くない未来でのみ整定すること
にし、c'の項数を方程式の数と同じにすると、(5R)よ
り、c'∈(0,ωq)となります。
If we decide to settle only in the not-so-distant future after the future in time, and make the number of terms of c 'the same as the number of equations, then from (5R), c'c (0, ωq).

Fc'=E (ωa,ωa+ωq] (5R) (Fc')ωa=Eωa;fc'=e [ωa+1,ωa+ω
q] (5R') c'=(c'0,c'1,…,c'ωq) (5R゜) E=(Eωa,Eωa+1,…,Eωa+ωq) (5R+) c'=F-1E (43G) F-1を、q,aの同定時に算出しておくと便利です。但し、
c'0の算出に必要なのはF-1の第1行目だけなので、ωq
=1又は2の時は行列式の公式で容易に求めることがで
きます。(5R)は(5R')と表すこともできます。
Fc ′ = E (ωa, ωa + ωq) (5R) (Fc ′) ωa = Eωa ; fc ′ = e [ωa + 1, ωa + ω
q] (5R ') c ′ = t (c ′ 0 , c ′ 1 , ..., c′ωq ) (5R ゜) E = t ( Eωa , Eωa + 1 , ..., Eωa + ωq ) (5R + ) c ′ = F −1 E ( 43G) It is convenient to calculate F- 1 when identifying q and a. However,
Since only the first line of F -1 is necessary for calculating c ′ 0 , ωq
When = 1 or 2, it can be easily obtained by the determinant formula. (5R) can also be expressed as (5R ').

ωq=1の場合の(5R)を解いてみると、(43G')が得
られます。
Solving (5R) for ωq = 1 gives (43G ').

この方法を多点整定法と言います。 This method is called multipoint settling.

(5R')で(42D)とすると(5S)になりますが、(27
G)より(27I)になります。
If (42D) is set to (5R '), it becomes (5S), but (27
G) is (27I).

(Fc')ωa=Eωa,fc'=0 [ωa+1,ωa+ωq] (5S) e=0 [ωa+1,ωa+ωq] (42D) e=0 [ωa+1,) (27I) 従って、(5S)も有限整定解を与えます。(42D)の連
立する方程式があるので、c'の条件を任意に設定できま
す。有限整定法は(5Q)(5Q')よりも(5S)の形が一
般的に知られています。(但し表現法が異なります) 以上述べた様に、操作値は(43H)(43H')の形の解
になります。
(Fc ′) ωa = Eωa , fc ′ = 0 [ωa + 1, ωa + ωq] (5S) e = 0 [ωa + 1, ωa + ωq] (42D) e = 0 [ωa + 1, (27I) Therefore, (5S) is also finitely settled. Give a solution. Since there is a simultaneous equation of (42D), the condition of c 'can be set arbitrarily. The finite settling method is generally known as (5S) rather than (5Q) (5Q '). (However, the expression method is different.) As described above, the operation value is a solution of the form (43H) (43H ').

c'n=Hn,ZEZ+Hn,z+1Ez+1+Hn,z+2+…+Hn,YEY (43H) c'n=hn,ZEZ+hn,z+1ez+1+hn,z+2ez+2+…+hn,YeY (43H') Hn,i,hn,iはF,fがk倍になれば、Hn,i,hn,iは1/k倍に
なります。最小自乗法で推定した応答関数の絶対値は真
値の絶対値より小さいのでこの応答関数を用いると操作
値の変動が過大になります。しかし、逐次同定法は同定
に至る迄の時間が長い欠点があります。
c ′ n = H n, Z E Z + H n, z + 1 E z + 1 + H n, z + 2 +... + H n, Y E Y (43H) c ′ n = h n, Z E Z + h n, z + 1 e z + 1 + h n, z + 2 e z + 2 + ... + h n, Y e Y (43H ') H n, i, h n, i is F, if f is k times, H n, i, h n , i Is 1 / k times. Since the absolute value of the response function estimated by the least-squares method is smaller than the absolute value of the true value, using this response function causes excessive fluctuations in the operation value. However, the sequential identification method has the disadvantage that the time to identification is long.

cに対する静的特性はFですが、(43C)(43E)(43
G')のEωaに対する係数は1/Aωaです。
static characteristics with respect to c is F but, (43C) (43E) ( 43
The coefficient of G ') for E ωa is 1 / A ωa .

=A/(1−Q)=Aωa/(1−Qωq
(44A) 0<1−Qωq<1 (44B) 操作値の変動がEをF"で除す係数を持つ場合、静的特性
で、必要なF/F"倍の出力をしていることになりま
す。従って、1/Fよりも1/(1−Qωq)倍大きな出
力になっています。これは短時間で制御値を目標値に近
づけるために当然のことですが同時に雑音もF/F"倍
に増幅する効果を持っています。制御値と目標値との乖
離は逆位相になり相殺されますが、白色雑音は無位相な
ので、増幅された雑音状態になります。
F ∞ = A ∞ / (1 -Q ∞) = A ωa / (1-Q ωq)
"When having coefficients divided by, in the static characteristics, the necessary F ∞ / F" (44A) 0 < variations of 1-Q ωq <1 (44B ) operating value of E F is a multiple of the output It will be. Therefore, it has become a large output 1 / (1-Q ωq) times than 1 / F ∞. This is a matter of course to bring the control value closer to the target value in a short time, but at the same time, it has the effect of amplifying the noise by F∞ / F "times. The difference between the control value and the target value becomes the opposite phase. Although they cancel each other out, the white noise is phaseless, resulting in an amplified noise state.

最小自乗法が逐次同定法より同定速度が速いので、初
期の同定には好まれます。未知数の相互干渉を除くに
は、q,aとbに分けるよりも、q,a,bを一組として最小自
乗法を用いるのが望ましいことです。しかし、可知的外
乱は、時には長時間全く発生しない場合もあります。更
新型最小自乗法を用いていると、可知的外乱の応答関数
が突如狂う場合があります。極めて希にしか0以外の値
にならない成分に関与した部分が桁落ちを起こすことが
原因です。最小自乗法では(32B)の計算をします。M-
が正則なので(31A)と(31C)とは同値ですがM-Mは対
称行列とは限りません。そこで、(31C)を構造方程式
とみなします。
Least squares are preferred for early identification because they are faster than sequential identification. In order to eliminate the unknown mutual interference, it is preferable to use the least squares method with q, a, b as a set, rather than dividing into q, a, and b. However, intellectual disturbances sometimes do not occur at all for a long time. When the updated least squares method is used, the response function of the intellectual disturbance may suddenly go wrong. This is due to the fact that the part related to the component that is very rarely a value other than 0 causes digit cancellation. The least square method calculates (32B). M -
Is regular, (31A) and (31C) are equivalent, but M - M is not necessarily a symmetric matrix. Therefore, (31C) is regarded as a structural equation.

M-Mk=M-u (31C) そこへ更新データ組が加わったとすると、(30G)とな
ります。
M - Mk = M - u (31C) If the update data group is added to that, it will be (30G).

X←M-M,y←M-u (31D) M←tXX+p・wItxx,u←tXy+p・wI・ytx (30G) この方法を三角型最小自乗法と言います。pは更新率で
す。
X ← M - M, y ← M - u (31D) M ← t XX + p · w I · t xx, u ← t Xy + p · w I · y t x (30G) This method is called triangular least square method. . p is the update rate.

xi 2の代表値で1に規格化しておくと、wIが加重になり
ます。
If normalized to 1 with the representative value of x i 2 , w I will be weighted.

代表値として、最大範囲を採用すると、次の様になりま
す。
When the maximum range is adopted as a representative value, it becomes as follows.

ka ≡CMAX−CMIN>0,kb ≡DMAX−DMIN>0,kq ≡RMAX−RMIN>0 (45B) CMAXとCMIN;DMAXとDMINは原因の最大値と最小値で、R
MAXとRMINは制御値の最大値と最小値で、いずれも装置
として安全域、出力可能域、入力範囲等の内の最小幅の
最大値と最小値に採り、c,r,dを(45C)にすると、最大
振幅が±1になります。
k a * ≡C MAX -C MIN > 0, k b * ≡D MAX -D MIN > 0, k q * ≡R MAX -R MIN > 0 (45B) C MAX and C MIN ; D MAX and D MIN The maximum and minimum value of the cause, R
MAX and R MIN are the maximum and minimum values of the control value. Both are taken as the maximum and minimum values of the minimum width of the safety range, output possible range, input range, etc., and c, r, d are ( 45C), the maximum amplitude will be ± 1.

c←c/ka ,r←r/kq ,d←d/kb (45C) 次のa)〜d)場合には、(31D)でX=1(単位行
列)にできます。
c ← c / k a * , r ← r / k q * , d ← d / k b * (45C) In the following cases a) to d), X = 1 (unit matrix) can be obtained by (31D). You.

M←1+P・wItxx,u←u+p・wI・y・tx (30H) (30H)を単位型最小自乗法と言います。M ← 1 + P ・ w It xx, u ← u + p ・ w I・ y ・t x (30H) (30H) is called the unit type least squares method.

a) 一度X=1となった後 b) d-1 2が初めて大きな絶対値となった時から、ωb
時点経過する迄のの間に限り、p・wI・d-1 2を1より充
分に大きするp・wIを用いる時。こうすれば、dの初め
ての有効データを、対角成分の1を誤差と見ることがで
きます。
a) After X = 1 once, b) From the time when d- 1 2 first becomes a large absolute value, ωb
Only during until the the elapsed time, when using the p · w I to the p · w I · d -1 2 sufficiently greater than 1. In this way, the first valid data of d can be seen as the diagonal component of 1 as an error.

c) 前回の制御で得たq,a,bを初期値として用いる
時。
c) When q, a, and b obtained in the previous control are used as initial values.

対角成分が0のk成分を0としても良い実績があるこ
とになります。この場合、(32D)の*を0にした対角
行列を使うこともできます。
This means that there is a good track record in which the diagonal component is 0 and the k component is 0. In this case, you can use a diagonal matrix with (*) set to 0 in (32D).

d) とりあえず、可知的外乱の影響を無視しても良い
と考える時。
d) When you think you can ignore the effects of intellectual disturbance.

b=0を初期値として用いて、差し支えがないことで
あるので。
This is because there is no problem using b = 0 as the initial value.

近代制御は、高速で正確な制御を実現するので、大半
の時間が雑音に埋もれた状態であることを、逆に利用す
ると、雑音の程度を測定することができます。(4F)の
左辺のac+bd+qrを前時点迄に測定したデータで現時点
のrを予測した値、左辺のrを現時点で測定したばかり
の値とすると、両辺の乖離εは応答関数の不正確さ込み
の測定誤差です。
Modern control provides fast and accurate control, so that most of the time is buried in noise, and conversely, the degree of noise can be measured. If ac + bd + qr on the left-hand side of (4F) is a value predicted from the data measured up to the previous time, and r on the left-hand side is a value just measured at the present time, the difference ε between the two sides includes the inaccuracy of the response function. Is the measurement error.

ε=r−ac−bd−qr [0,0] (29H) この二乗の長時間平均を雑音の大きさνの推定値に利
用します。
ε = r-ac-bd- qr [0,0] (29H) makes use of the long-term average of the square of the estimated value of the magnitude ν 2 of the noise.

ν=<ε+dgt2> (46A) dgtは1デジット大きさです。単純に平均を求めても良
いが、経時変化を考えた長時間平均を求めるならば、
(46B)が使えます。
ν 2 = <ε 2 + dgt 2 > (46A) dgt is one digit size. You can simply calculate the average, but if you want to calculate the long-term average considering changes over time,
(46B) can be used.

ν←(1−pν)ν+pν・(ε+dgt2) (46B) n回の制御時点数相当にするならば、pν=1/nにし
て、(46B)の更新の度にpνを変えるか、nを一定に
して、2n回以上測定します。通常εの大きい場合のデー
タを除きn=1,000〜10,000程度にします。この様に、
雑音は時機を得た測定はできませんが、その大きさはあ
る程度推定できます。
ν 2 ← (1−p ν ) ν 2 + p ν · (ε 2 + dgt 2 ) (46B) If it corresponds to the number of control times of n times, set p ν = 1 / n and update (46B) Change p ν each time, or keep n constant, and measure 2n times or more. Normally, except for data when ε is large, set n to about 1,000 to 10,000. Like this
Noise cannot be measured in a timely manner, but its magnitude can be estimated to some extent.

伝達方程式で、雑音nも原因と考え、雑音の応答関数
hとし、逐次同定法を利用すると、(34A)のSgが、(3
4B)の様になります。
In the transfer equation, the noise n is also considered to be the cause, and the response function h of the noise is used. Using the sequential identification method, Sg of (34A) becomes (3
4B).

r=qr+ac+bd+hn (4o) Sg=Sgs+Nz (34B) Sgr≡kq *2(r-1 2+…+r−ωq ), Sgc≡ka *2(c-1 2+…+c−ωa ), Sgd≡kb *2(d-1 2+…+d−ωb ), Sgf≡Sgr+Sgc (34C) Nz≡n-1 2+…+n−ωh ≒ν (46C) Sgs≡Sgr+Sgc+Sgd=Sgf+Sgd (34D) ka ,kb は単位の換算係数で、ai,bjの代表値に和を用
いれば(45D)に、平均値を用いれば(45E)になりま
す。
r = qr + ac + bd + hn (4o) Sg = Sgs + Nz (34B) Sgr≡k q * 2 (r -1 2 + ... + r -ωq 2), Sgc≡k a * 2 (c -1 2 + ... + c -ωa 2), Sgd≡k b * 2 (d -1 2 + ... + d -ωb 2), Sgf≡Sgr + Sgc (34C) Nz≡n -1 2 + ... + n -ωh 2 ≒ ν 2 (46C) Sgs≡Sgr + Sgc + Sgd = Sgf + Sgd (34D ) K a * and k b * are conversion factors of the unit. If the sum is used for the representative values of a i and b j , it will be (45D), and if the average value is used, it will be (45E).

ka =Aωa,kb =Bωb (45D) ka =Aωa/ωa,kb =Bωb/ωb (45E) (45D)(45E)の場合普通(45F)にします。最大範囲
(45B)も利用できます。
k a * = A ωa, k b * = B ωb (45D) k a * = A ωa / ωa, k b * = In the case of B ωb / ωb (45E) ( 45D) (45E) and the ordinary (45F) . Maximum range (45B) is also available.

kq =1 (45F) Nzは、雑音成分の二乗和なので、その期待値がνにな
ります。
k q * = 1 (45F) Nz is, because it is the sum of the squares of the noise component, the expected value will be the ν 2.

伝達方程式に限らない、一般の場合では次の通りです。The general case, not limited to the transfer equation, is as follows.

Sgs=x1 2+x2 2…+xm 2,Sg=Sgs+ν (34E) (33)で、特定のηに注目すると、(33B)になりま
す。
In Sgs = x 1 2 + x 2 2 ... + x m 2, Sg = Sgs + ν 2 (34E) (33), when attention is paid to a particular η i, will be (33B).

η=xi・ε/Sg=wi・(ε/xi) (33B) Sgi=xi 2 (34C) wi≡Sgi/Sg (47A) 振幅の二乗は、パワーと呼ばれエネルギーの概念で把握
されます。電磁波、音波、振り子、電圧等がこの例で
す。xi 2を信号パワーと言うことにすると、Sgは雑音を
含んだ全信号パワー、Sgi=xi 2が注目した信号のパワ
ー、wiがSgiの割合(信号率)ということになります。
未知数の推定に用いる信号振幅xiの全体で考えると(47
B)のwが全体としての信号率です。
η i = x i · ε / Sg = w i · (ε / x i ) (33B) Sgi = x i 2 (34C) w i ≡Sg i / Sg (47A) The square of the amplitude is called power, and energy Is grasped by the concept of Electromagnetic waves, sound waves, pendulums, voltages, etc. are examples. If x i 2 is called signal power, Sg is the total signal power including noise, Sg i = x i 2 is the power of the signal of interest, and w i is the ratio of Sg i (signal ratio). You.
Considering the entire signal amplitude x i used for estimating unknowns, (47
W in B) is the signal rate as a whole.

w=Sgs/Sg (47B) a,b,qに対する信号率は(47C)で定義できます。w = Sgs / Sg (47B) The signal rate for a, b, q can be defined by (47C).

wa=Sgc/Sg,wb=Sgd/Sg,wq=Sgr/Sg (47C) ±に振れる振幅xiを元に計算される数値に対し一般に信
号率が定義できます。雑音は時々刻々の時系列として観
測することができず、原因も複雑で応答関数の形には表
せきれません。逐次同定法で、(29B)のy−xk゜は0
でなく、測定誤差や雑音となるべきで、これを省くなら
雑音項Nzが必要です。従来の逐次同定法では、この点が
無視されています。
w a = Sgc / Sg, w b = Sgd / Sg, w q = Sgr / Sg (47C) In general, the signal rate can be defined for the numerical value calculated based on the amplitude x i swinging to ±. Noise cannot be observed as a time series every moment, and its cause is complicated and cannot be expressed in the form of a response function. In the sequential identification method, y-xk ゜ of (29B) is 0
Instead, it should be a measurement error and noise, and if this is omitted, the noise term Nz is needed. This is ignored by conventional sequential identification methods.

(31A)が、真のr,c,d;f,gで成り立つ時、r,dに測定誤
差r',d'があり、f,gにf',g'に推定誤差があるために、
cにc'の狂いが生じたとします。r',c',d';f',g'はr,c,
d;f,gに比べて小さいとし、二次の微小量を省きます。
When (31A) holds true r, c, d; f, g, r and d have measurement errors r 'and d', and f and g have estimation errors in f 'and g'. ,
Assume that c's disorder has occurred in c. r ', c', d ';f', g 'is r, c,
It is assumed to be smaller than d; f, g, and the second minute amount is omitted.

r=fc+gd (5F) r+r'=(f+f')(c+c')+(g+g')(d+d') ≒fc+gd+fc'+gd'+f'c+g'd (48A) c'≒(r'+gd')/f−(g'/f)d−(f'/f)c (48B) (48B)は、測定誤差と可知的外乱の応答関数誤差は操
作値の変動に加算的に働くが、操作値の応答関数の誤差
は操作値の変動に比例することを表しています。よっ
て、現時点での操作値の変動c0を加算的な誤差による修
正率(雑音圧縮率)weと比例的な誤差による修正率(誤
差分配率)pcで修正してから、出力することにします。
但し、効果が小さいと考えられる場合は修正係数pc,we
を1にすることができます。
r = fc + gd (5F) r + r ′ = (f + f ′) (c + c ′) + (g + g ′) (d + d ′) ≒ fc + gd + fc ′ + gd ′ + f′c + g′d (48A) c ′ ≒ (r ′ + gd ′) / f − (G ′ / f) d− (f ′ / f) c (48B) (48B) indicates that the measurement error and the response function error of the intellectual disturbance act in addition to the fluctuation of the operation value, but the response of the operation value The error of the function indicates that it is proportional to the change of the operation value. Thus, additive error due to the correction factor variations c 0 of the operation value at the current time (noise compression ratio) w e and proportional error due correction factor (error distribution ratio) Fix with p c, the output to To
However, if the effect is considered to be small, the correction coefficients p c , w e
Can be set to 1.

C0=C゜+c0,c0←kc・c0,c0 =c'0+c゜0,kc=pcwe (39C) 今後の操作値を一定にすると言う仮定で予測値R゜を計
算する場合は、(39D)に簡略化できます。
C 0 = C ° 0 + c 0, c 0 ← k c · c 0, c 0 = c '0 + c ° 0, k c = p c w e (39C) predicted by the assumption that a constant in the future of the operation value When calculating the value R ゜, it can be simplified to (39D).

C0=C゜+c0,c0←kc・c'0,kc=pcwe, c゜=0[0,) (39D) pr|f'/f| (49A) 応答関数の不正確さprと同様に、操作値の変動に比例
すると考えられる雑音に、最小自乗法による推定量の非
不偏性、a,b,qの項数の妥当性、制御系の非線形性等が
あります。これらの雑音pnをモデルの不適性と言うこと
にして、pnをprから分離します。応答関数を最小自乗法
で求めてある程度精度が高くなってから逐次同定法に切
り替えるとか、統計論を駆使して最小自乗法による推定
量を不偏推定量に近づける等の工夫をしなくとも、pn
その是正ができます。雑音が大きくなる程、最小自乗法
での不一致度が大きくなります。逐次同定法でも、雑音
が大きければ値が不安定になります。この意味で、モデ
ルの不適性を雑音に対する分配率と言うこともできま
す。
C 0 = C ° 0 + c 0, c 0 ← k c · c '0, k c = p c w e, c ° = 0 [0,) (39D ) p r | f' / f | (49A) response Similar to the function inaccuracy p r , the noise considered to be proportional to the fluctuation of the manipulated value includes the unbiasedness of the estimator by the method of least squares, the validity of the number of terms a, b, q, and the nonlinearity of the control system. There are sex etc. And to say these noise p n non-suitability of the model, to separate the p n from p r. Even if the response function is determined by the least squares method and the accuracy is improved to some extent, the method is switched to the sequential identification method, or if the least squares estimator approaches the unbiased estimator using statistical theory, p n can correct it. The higher the noise, the greater the degree of mismatch in the least squares method. Even in the sequential identification method, the value becomes unstable if the noise is large. In this sense, the inadequacy of the model can be called the distribution ratio to noise.

pc=1−pr−pn pc+pr+pn=1 0<pc,pr,pn (49B) 操作値の変動c0に、1から応答関数の不正確さprと、モ
デル不適性pnを引いた分配率pcを乗じる方法を誤差分配
法と言います。pn=0.01〜0.05にすると、応答速度の低
下は認められなかったが、オーバーシュートが消えて滑
らかな整定になった経験があります。
the p c = 1-p r -p n p c + p r + p n = 1 0 <p c, p r, variation c 0 of p n (49B) operational values, and inaccuracies p r of the response function from 1 , a method of multiplying the distribution ratio p c minus the model unsuitable properties p n is called the error distribution method. When pn = 0.01 to 0.05, no decrease in response speed was observed, but there is experience that the overshoot disappeared and a smooth settling was achieved.

近代制御は応答関数を頼りに制御する方法です。その肝
心な応答関数が不正確であることが分かっている場合
は、出力変動を抑えるのが賢明でしょう。通常、過剰な
出力の連発で振動状態を繰り返すよりも、多少の遅れが
あっても滑らかな状態の方が好まれます。更新型最小自
乗法の原形(31F)はn番目の有効データ組で元のデー
タを1/nだけ修正します。これの実効データ量n組のデ
ータより得た応答関数は1/nだけ修正されるべき誤差が
あると解釈します。
Modern control is a method that relies on a response function. If the key response function turns out to be inaccurate, it may be wise to reduce the power fluctuations. Normally, a smooth state with some delay is preferred to repeating the vibration state due to excessive output. The original form of the updated least squares method (31F) modifies the original data by 1 / n in the nth valid data set. The response function obtained from the n sets of effective data amounts is interpreted as having an error to be corrected by 1 / n.

pr=1/n n=ΣwI (49C) nは、実効組数であるので加重wIの和になります。しか
し、(49C)では、やがてnが数値オーバーフローを起
こします。制御系は、環境温度変化や劣化等様々な要因
で、応答関数が微妙に経時変化します。経時変化に追随
できることが応答関数を同定しながら制御する醍醐味で
す。応答関数の経時変化を考え、prに最小値を設けま
す。
p r = 1 / n n = Σw I (49C) Since n is the effective number of sets, it is the sum of weights w I. However, in (49C), n eventually overflows the numerical value. In the control system, the response function slightly changes over time due to various factors such as environmental temperature change and deterioration. The ability to follow changes over time is the real pleasure of controlling while identifying the response function. I thought the time course of response function, you provide a minimum value to p r.

pr=if(pr MIN<pr;pr/(wI・pr+1)) (49D) Z=if(X;Y)で「Xの場合Z=Y,Xでない場合Zが不
変」を表します。
p r = if (p r MIN <p r; p r / (w I · p r +1)) (49D) Z = if; if in the (X Y) of "X Z = Y, if it is not X Z is invariant ”.

(49D)の代わりに適切なqDを用いた(49E)で類似の効
果が得られます。
A similar effect can be obtained by using a suitable q D (49E) in place of (49D).

pr=if(pr MIN<pr;qD・pr) 0<qD<1 (49E) prは、逐次同定法の更新率に使用できます。p r = if (p r MIN <p r ; q D · p r ) 0 <q D <1 (49E) p r can be used for the update rate of the sequential identification method.

(48B)でc'の代わりにfc'で考え、cに比例しない部
分分を取り出すと(48C)になります。
In (48B), think of fc 'instead of c', and take out the part that is not proportional to c, and it becomes (48C).

fc'≒r'−gd'−g'd (48C) r'−gd'−g'dはdの応答関数の不正確さを含んだrの
誤差です。c'はrの差であるeを用いて(5K)で算出さ
れるので、予備値の乖離の信号パワーが(34F)と表せ
ます。
fc '≒ r'-gd'-g'd (48C) r'-gd'-g'd is the error of r including the inaccuracy of the response function of d. Since c 'is calculated at (5K) using e, which is the difference between r, the signal power of the deviation of the preliminary value can be expressed as (34F).

fc'=e [X,Y] (5K) Sge=EX 2+eX+1 2+eX+2 2+…+eY 2 (34F) we=Sge/(Sge+ν) (47B) 即ち、EX,eX+1,eX+2,…,eYを用いて算出されるからcか
ら雑音による影響を除くと、wecになります。信号Sgeが
小さい時に、cの絶対値が小さくなります。制御は雑音
成分をF/F"倍に増幅します。Sgeが小さい時cが雑音
によって誘起され易いことを、(47B)が示していま
す。Sgeが小さい時、操作値をF"/F倍以下にし、雑音
の帰還増幅率を1以下にしたい所です。しかし、これは
同時に信号を制御に反映できなくし、不感帯を発生させ
ます。仕方がないのでF"/F倍以上の適当な値κにしま
す。多点整定法の場合、κを1−Qωqの1.5〜5倍程
度にします。Sge/νを横座標にweを縦座標にとったグ
ラフをFIG.2に示します。(47D)に依らずκを0.01〜0.
3にしても雑音抑制効果があることを経験しました。
fc '= e [X, Y ] (5K) Sge = E X 2 + e X + 1 2 + e X + 2 2 + ... + e Y 2 (34F) w e = Sge / (Sge + ν 2) (47B) that is, E X, e X + 1, e X + 2, ..., excluding the impact of noise from c since is calculated using the e Y, it will be w e c. When the signal Sge is small, the absolute value of c becomes small. "When it tends to be induced c when amplifies double .sge is small due to noise, .sge is small shows that (47B), the operation value F" control the noise component F / F / F I want to make it less than に し times and make the feedback gain of noise less than 1. However, this at the same time renders the signal invisible to the control and creates a dead zone. Since there is no way you to F "/ F times or more suitable value κ. In the case of multi-point integer conventional method, the .Sge / ν 2 to make the κ to 1.5 to 5 times that of the 1-Q ωq the abscissa w Fig. 2 shows a graph with e as the ordinate, and κ is 0.01 to 0, regardless of (47D).
I experienced that there was a noise suppression effect even with 3.

we=κ+(1−κ)Sge/(Sge+ν) (47C) (κ≒F"/F)∧(F"/F<κ) (47D) (47E)でも(47C)と同様に整定時の雑音振動が減少し
ました。
w e = κ + (1-κ) Sge / (Sge + ν 2 ) (47C) (κ ≒ F "/ F∞ ) ∧ (F" / F∞ <κ) (47D) (47E) as well as (47C) Noise vibration during settling has been reduced.

この経験によると、κも厳格である必要が無く、(47
C)(47E)に似た形の関数を用いれば、雑音抑制効果が
期待できると言えそうです。近代制御法による制御状態
を観測したり、シミュレーションをすると、かなり不正
確な応答関数でも良好な制御をしています。しかし、応
答関数が不正確な状態では、小発振状態に陥り易く、安
定状態から破綻が起き易くなります。誤差分配法は応答
関数が不正確な状態で小発振状態を抑え、応答関数の精
度向上を待つ上で大きな効果を持ちます。単に応答関数
の修正率prを小さくするだけでは、応答関数の精度が向
上する速度が遅くなり、破綻に陥る可能性が増します。
修正率を大きくし過ぎると、応答関数が破壊され易くな
ります。この精度の低い状態では、操作値の変動を小さ
めすることで、制御系が暴走する操作値変化を起こさな
くなりますが、反面、r,cの変化幅も小さくなりS/Nの良
好なデータが得られなくなります。誤差分配法でこの調
和が得られます。
According to this experience, κ does not need to be strict,
C) It seems that noise suppression can be expected by using a function similar to (47E). Observing and simulating the state of control by modern control methods shows that even a fairly inaccurate response function performs well. However, when the response function is inaccurate, it is easy to fall into a small oscillation state and break down from a stable state. The error distribution method has a great effect in suppressing the small oscillation state when the response function is inaccurate and waiting for the accuracy improvement of the response function. Simply reducing the response function modification rate p r slows the rate at which the accuracy of the response function improves and increases the possibility of failure.
If the correction rate is set too high, the response function is likely to be destroyed. In this low-accuracy state, by reducing the change in the operation value, the control system will not cause a runaway change in the operation value, but on the other hand, the change width of r and c will be small, and good S / N data will not be obtained. You won't get it. This harmonization is obtained by the error distribution method.

同定は、制御と同時に進行するのが望ましいが、演算
速度の制限等でやむを得ない場合は同定用のデータを保
存しておき、時分割処理で同定したり、制御の休止期
間,制御終了後次回の制御開始時に同定します。同定用
のデータ組の信号率は(47B)になり、これは逐次同定
法では、従来法の補正量をw倍すべきであり、最小自乗
法では加重wとして用いるべきであることを示していま
す。しかし、w=0.5の時は、信号パワーと雑音パワー
とが等しい時です。量子現象は、平均をとっても白色雑
音の様に雑音率を軽減できません。1デジット程度の白
色雑音が小さい状態で10デジットの信号振幅であったと
すると、w≒0.99です。10デジットの信号振幅で5個の
未知数を推定するとしたら、1未知数当たり2デジット
です。多数のデータ組を集めたとしても精度の向上が望
めません。量子現象が支配的でない場合は雑音が大きく
なり応答関数の同定精度が悪くなります。同定用の情報
力として、kdデジットを基準にするのであればw又は
w゜を同定用の加重wIにすべきです。
It is desirable that the identification proceed at the same time as the control. However, if the calculation speed is unavoidable, the identification data should be saved and identified by time-division processing, or the control should be stopped for the next time after the control is stopped. Identify at the start of control. The signal rate of the data set for identification is (47B), which indicates that in the sequential identification method, the correction amount of the conventional method should be multiplied by w, and in the least square method, it should be used as the weight w. You. However, when w = 0.5, the signal power is equal to the noise power. Quantum phenomena cannot reduce the noise rate like white noise even when averaged. If the signal amplitude is 10 digits while the white noise of about 1 digit is small, w 小 さ い 0.99. Assuming 5 unknowns with 10 digit signal amplitude, 2 digits per unknown. Even if a large number of data sets are collected, improvement in accuracy cannot be expected. If quantum phenomena are not dominant, noise will increase and the identification accuracy of the response function will deteriorate. If the information power for identification is based on k d digits, w * or w ゜ should be the weight for identification w I.

=Sgs/(Sgs+(kd・dgt)) (47F) w゜=Sgs/(sgs+νI 2) ν1 2≡<ε+(kd・dgt)> (47G) FIG.3の実線がwIのグラフです。νI 2はkdデジットを下
限とした雑音の二乗の長時間平均です。即ち、操作に用
いる信号率と同定に用いる信号率とを区別して考える必
要があります。但し、wやw゜にも問題があります。
wIが小さい時は元になるxiの絶対値も小さく、大数に加
減算される時に桁落ちを起こします。kdを大きくする
と、wIが小さくなるだけでなく、wIが大きなデータの発
生頻度が急激に低下し、この桁落ちを起こす追加データ
の割合が支配的になります。チリも積もれば山となるの
諺の通り応答関数の破壊に至ります。wIに基準を設け、
wI<wI LIM又はwI≦wI LIMの場合はwI=0にして、同定を
しない様にしなければなりません。kdは、目標値の変更
幅等の装置設計時の仕様や、稼働時の観測で制御中に発
生する最大デジット数よりも小さい数値、例えばその最
大デジット数の0.7倍にします。wI LIMは有効数字で1〜
2桁が確保できずに桁落ちする数値にします。通常、安
全動作範囲が設定され、制御値や操作値が危険域に入る
と、リミット回路、リミットスイッチ、機械的手段、安
全装置等でそれ以上の変化を阻止します。この様な状態
は正常な操作値と制御値との関係でありません。操作値
が出力制限回路等やデジタル値化等で変更された時に
は、変更され、実際に操作した値を元に応答関数を同定
しなければなりませ。修正値を用いずに同定すると応答
関数を破壊するのは当然です。修正値が入手できない限
り制御環境が異常な間のデータを同定に用いません。制
御装置に、これらの異常時を認識する為の信号(異常信
号)の入力装置が必要です。wやw゜で連続的に加重
を変化させても、同定する,同定しないの二値化をしな
ければなりません。二値化するのなら、FIG.3の破線で
示すwI=0,1でも良いはずです。そこで応答関数の同定
用指標にxiとνより作られる非負の指標w;w;w゜;Sg
s;Sgf,Sgd;Sgs/ν2;Sgf/ν2,Sgd/ν2;|c-1|,|r-1|,|d-1
|を用います。これらの指標の一つを、同定用の信号の
大きさKとし、Kに対する基準値をKLIM、期間をKPRD
します。異常時でない、KLIM<K又はKLIM≦Kとなった
以後のKPRDの間のデータを同定に用います。KLIMは、制
御中に確実にKLIM<KとなるKが発生しそのKが充分に
S/Nが大きくなる様に選びます。次の手法(選択更新
法)でKLIMを自動設定できます。
w * = Sgs / (Sgs + (kd · dgt) 2) (47F) w ° = Sgs / (sgs + ν I 2) ν 1 2 ≡ <ε 2 + (k d · dgt) 2> (47G) FIG.3 of the solid line is the graph of w I. ν I 2 is the long-term average of the square of the noise with a lower limit of k d digits. That is, it is necessary to consider the signal rate used for operation and the signal rate used for identification separately. However, w * and w ゜ also have problems.
When w I is small, the absolute value of the original x i is also small, causing loss of digits when adding or subtracting to a large number. When the k d to increase, not only w I is reduced, the frequency of occurrence of w I is a large data decreases rapidly, the proportion of the additional data that causes the loss of significant digits will be dominant. As the saying goes, Chile will pile up, leading to the destruction of the response function. w Set criteria for I ,
If w I <w I LIM or w I ≤ w I LIM , w I = 0 must be set so that no identification is performed. Set k d to a value smaller than the maximum design digit such as the target value change range and the maximum number of digits that occur during control during operation observation, for example, 0.7 times the maximum digit number. w I LIM is a significant digit from 1 to
The number is dropped because two digits cannot be secured. Normally, if a safe operation range is set and the control value or operation value enters the danger zone, further changes are prevented by limit circuits, limit switches, mechanical means, safety devices, etc. Such a state is not the relation between the normal operation value and the control value. When the manipulated value is changed by an output limiting circuit or digital value conversion, the response function must be identified based on the changed and actually operated value. It is natural to destroy the response function if it is identified without using the correction value. Unless a corrected value is available, data during abnormal control environment is not used for identification. The control unit needs an input device for a signal (abnormal signal) for recognizing these abnormalities. Even if the weight is continuously changed with w * or w ゜, binarization must be performed to identify and not identify. For binarization, w I = 0, 1 shown by the broken line in FIG. 3 should be fine. Therefore, a non-negative index w; w * ; w ゜; Sg, which is created from x i and ν 2 as an index for response function identification
s; Sgf, Sgd; Sgs / ν 2 ; Sgf / ν 2 , Sgd / ν 2 ; | c -1 |, | r -1 |, | d -1
Use |. One of these indices is the signal magnitude K for identification, the reference value for K is K LIM , and the period is K PRD . The data during K PRD after K LIM <K or K LIM ≤ K, which is not abnormal, is used for identification. During control, K LIM is such that K that satisfies K LIM <K is generated, and that K is sufficient.
Choose so that S / N is large. K LIM can be automatically set by the following method (selective update method).

−−適当な値をKLIMの初期値にし、1以上の値kM(例え
ば1.3)を用い、kMKLIM<K又はkMKLIM≦KとなるKが
観測されたら、KLIM=Kとする。
- After the appropriate value to the initial value of K LIM, using one or more values k M (e.g. 1.3), k M K LIM < K or k M K LIM ≦ K and becomes K is observed, K LIM = Let it be K.

KLIMの初期値には、20デジット程度の値が使えます。
但し、ビット数が少なく連続量的に扱えない場合は注意
が必要です。可知的外乱は、バイパス弁の開閉等の様に
1ビットの情報や数ビットの情報の場合もあります。こ
の様な場合は、KLIM=0としなければなりません。この
ような場合を除くと、必ず大きいと判断されるKが観測
され、やがて最も信頼度の高いデータのみでq,a,bが同
定される様になります。kMは時間と共にq,a,bが変化す
ることが予測される場合は大きくし、q,a,bが不変であ
ると予測される場合は1に近い値を選びます。
A value of about 20 digits can be used as the initial value of K LIM .
However, care must be taken when the number of bits is small and cannot be handled continuously. The intellectual disturbance may be 1-bit information or several-bit information such as the opening and closing of a bypass valve. In such a case, K LIM = 0. Excluding such cases, K, which is always judged to be large, is observed, and q, a, b will be identified only with the most reliable data. k M is increased if q with time, a, b that changes are expected to select a value close to 1 if q, a, b are predicted to be unchanged.

q,a,bをセットで同定する場合はKとしてw;w;w゜;Sg
s;Sgs/ν2;(|c-1|,|r-1|,|d-1|)の内の一つ(一組)
を用います。
If q, a, and b are identified as a set, K is w; w * ; w ゜; Sg
s; Sgs / ν 2 ; (| c -1 |, | r -1 |, | d -1 |) (one set)
Is used.

(q,a)とbとに分けて同定する場合は(q,a)用のKと
してSgf;Sgf/ν2;(|c-1|,|r-1|)の内の一つ(一組)
を用い、b用のKとしてSgd;Sgd/ν2;|d-1|の内の一つ
を用います。
In the case of separately identifying (q, a) and b, as K for (q, a), one of Sgf; Sgf / ν 2 ; (| c -1 |, | r -1 |) ( One set)
And use one of Sgd; Sgd / ν 2 ; | d -1 | as K for b.

w;w;w゜;Sgs;Sgf,Sgd;Sgs/ν2;Sgf/ν2,Sgd/νのK
PRDは1に、|c-1|,|r-1|,|d-1|のKPRDはωa+ωq,ωq,
ωbに、m以下の非負の任意付加値α(Kによって異な
っても良い)を加えた値になります。
w; w * ; w ゜; Sgs; Sgf, Sgd; Sgs / ν 2 ; K of Sgf / ν 2 , Sgd / ν 2
The PRD is 1, and the K PRD of | c -1 |, | r -1 |, | d -1 | is ωa + ωq, ωq,
It is a value obtained by adding a non-negative additional value α less than m (may differ depending on K) to ωb.

一組をKにするには、その構成員各々についてKLIM,K
PRDを決めます。(|c-1|,|r-1|,|d-1|)のKLIMならば、
(rLIM,cLIM,dLIM)を決めます。|c-1|,|r-1|,|d-1|のK
PRDはSgf,Sgr,Sgdの成分数で、f,q,bを決めるのに必要
な最短時間です。これは大きな|r-1|,|d-1|が生じた
後、Sgr,Sgdが大きな値として継続する時間になりま
す。
To make a set K, K LIM , K
Decide PRD . (| C -1 |, | r -1 |, | d -1 |) If K LIM of
(R LIM , c LIM , d LIM ). | c -1 |, | r -1 |, | d -1 | K
PRD is the number of components of Sgf, Sgr, Sgd, and is the minimum time required to determine f, q, b. This is the time that Sgr and Sgd continue as large values after a large | r -1 |, | d -1 |

一般的に、大きな信号Kが発生した時、その後も暫くや
や大きな信号になるだけでなく、適切な操作値によりK
が小さくなったとしても、小さくなったと言うことが、
a,b,qの決定には必要な情報です。そこにαを加える効
果があります。しかし、αを0にしてはならないと言う
ことではありませんので、任意とします。
In general, when a large signal K is generated, the signal does not only become a little large for a while after that, but also K
Even if it became smaller, saying that it became smaller,
Information required for determining a, b, and q. This has the effect of adding α. However, it does not mean that α must not be 0, so it is optional.

この様にすれば、後から追加されるデータほど信頼性の
高いデータになり、かつ、ある頻度で応答関数の同定が
続けられます。最小自乗法、逐次同定法を問いません
し、wIに連続量を用いる用いないを問いません。操作
値,制御値,可知的外乱の差分の過去値又はこれらと雑
音の大きさを用いて、同定用信号の大きさKを算定し、
異常時やKの小さなデータを同定に用いない様にする方
法を同定維持法と言います。応答関数が破壊された場合
操作値の算出に直接影響を与える操作値と制御値(記憶
効果)の応答関数f;q,aが破壊されると致命的な破綻に
なりますが、可知的外乱の応答関数g;bの場合、可知的
外乱の悪影響が大きくなるだけで、致命的にならないで
済みます。g;bが破壊されたと判断できる場合にはg=
0;b=0とすれば、フィードフォワードが無い状態での
制御状態に戻せます。
In this way, the data added later will be more reliable, and the identification of the response function will continue at a certain frequency. It doesn't matter whether you use the least squares method or the sequential identification method, or whether you use a continuous quantity for w I. The magnitude K of the identification signal is calculated by using the past value of the difference between the operation value, the control value, the intellectual disturbance or the magnitude of the noise with the past value,
The method of not using abnormal data or small K data for identification is called the identification maintenance method. If the response function is destroyed, the response function f; q, a of the operation value and the control value (memory effect) that directly affects the calculation of the operation value will be catastrophically destroyed if the response function is destroyed. In the case of the response function g; b, only the adverse effect of the intellectual disturbance increases, and it does not become fatal. If g; b can be determined to be destroyed, g =
By setting 0; b = 0, it is possible to return to the control state without feed forward.

以上をまとめると、 a:同定維持法で、安定動作時の応答関数の破壊を防ぎま
す。
To summarize the above, a: Identification maintenance method prevents the response function from being destroyed during stable operation.

b:誤差分配法で、操作と応答関数の修正の調和をとり、
応答関数の精度が低い時期の破綻を防ぎます。
b: Harmonize the operation and the correction of the response function by the error distribution method,
Prevents failure when response function accuracy is low.

c:雑音圧縮法で、雑音の増幅を抑えることができます。c: Noise amplification method can suppress noise amplification.

d;可知的外乱取込法で、可知的外乱の分、雑音/外乱を
減らします。応答関数を同定する近代制御法の最大の欠
点は、突如の破綻です。同定維持法と誤差分配法で、こ
の破綻を避けるのが肝要です。これに、雑音圧縮法を組
み合わせることで、破綻に至りそうな状態を避け、より
安定した制御を実現します。可知的外乱は常に入手が可
能とは限りませんが、入手できる時には、可知的外乱取
込法で、その外乱の悪影響を除き破綻に導く外乱を減ら
すことができます。
d; Intelligent disturbance capture method reduces noise / disturbance by intelligent disturbance. The biggest drawback of modern control methods for identifying response functions is sudden breakdown. It is important to avoid this failure with the identification maintenance method and the error distribution method. By combining this with the noise compression method, it is possible to avoid a state that may lead to failure and realize more stable control. The intellectual disturbance is not always available, but when it is available, the intellectual disturbance capture method can reduce the disturbance leading to bankruptcy except for its negative effects.

これらの対策は、破綻という絶悪な状態の予防策となる
だけでなく、増幅雑音状態、最小自乗法による過操作、
外乱による制御精度の低下等のの質の低下も防いでいま
す。制御装置に、可知的外乱と目標値と制御値と異常信
号(異常時を検知する信号)の入力装置を設け、演算装
置で応答関数を同定しながら、予測値を元に操作値を算
出し、修正して出力装置より操作値を出力する際に、同
定維持法と誤差分配法を不可欠な手段とし、必要に応じ
て、雑音圧縮法、可知的外乱取込法を実施することによ
り、破綻の起きず、雑音を増幅した状態にならない制御
装置が実現します。動作としては、操作値Cの出力装
置,演算装置U,記憶装置M及び制御値Rと目標値Sと可
知的外乱Dの入力装置を備え、Uを用いた演算により、
C,R,Dの差分の過去値又はこれらと雑音の大きさを元に
信号の大きさを求め、信号が大きく、異常時で無い場合
のCとRとDの値を応答関数の同定用のデータとし、同
定した応答関数又は応答関数の同定用のデータをMに保
存し、RとCと過去、現在、未来の利用できる範囲のD
を用いて推定したRの予測値を修正してRをSに一致さ
せるCの値を求め、その現時点で出力すべきCの差分
を、1より応答関数の不正確さとモデル不適性を差し引
いた数値と雑音圧縮率とを乗じて補正した値をCの差分
の現在値として出力します。但し、可知的外乱が得られ
ない場合は、可知的外乱の入力装置は不要であり可知的
外乱取込法を実行しません。また、量子効果が大きく、
白色雑音が小さい場合は、雑音圧縮率を乗じる必要があ
りません。応答関数又は応答関数の同定用のデータを不
揮発性記憶装置に保存して、次回に役立てると次回の応
答関数の初期値の精度を向上でき、制御の破綻防止に役
立ちます。
These countermeasures are not only preventive measures against the evil state of failure, but also amplified noise state, over-operation by least square method,
It also prevents quality deterioration such as deterioration of control accuracy due to disturbance. The control device is provided with input devices for intelligent disturbances, target values, control values, and abnormal signals (signals for detecting abnormal conditions). The operation values are calculated based on the predicted values while the response function is identified by the arithmetic unit. When the output value is corrected and the output value is output from the output device, the identification maintenance method and the error distribution method are indispensable means, and if necessary, the noise compression method and the intelligent disturbance capture method are used. A control device that does not cause noise and does not become amplified is realized. The operation includes an output device for the operation value C, a calculation device U, a storage device M, and an input device for the control value R, the target value S, and the intelligent disturbance D.
Determine the magnitude of the signal based on the past values of the differences between C, R, and D or the magnitude of the noise, and use the values of C, R, and D when the signal is large and not abnormal to identify the response function. And the identified response function or the data for identifying the response function is stored in M, and R and C and D in the past, present, and future usable range are stored.
Is used to correct the estimated value of R estimated to obtain the value of C that matches R to S, and the difference of C to be output at this time is obtained by subtracting the inaccuracy of the response function and the model inadequacy from 1 The value corrected by multiplying the numerical value and the noise compression ratio is output as the current value of the difference of C. However, if no intellectual disturbance is obtained, no intelligible disturbance input device is required and the intellectual disturbance capture method is not executed. In addition, the quantum effect is large,
If the white noise is small, there is no need to multiply the noise compression ratio. When the response function or response function identification data is stored in a non-volatile storage device and used next time, the accuracy of the initial value of the next response function can be improved, which helps to prevent control failure.

図面の簡単な説明 FIG.1は、本発明を構成する制御装置の構成図に制御用
プログラムの流れを示す概念図です。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram showing a control program flow in a configuration diagram of a control device constituting the present invention.

符号の説明 S 目標値の入力装置 R 制御値の入力装置 D 可知的外乱の入力装置 C 操作値の出力装置 U 演算装置 M 記憶装置 T タイマー W 異常信号の入力装置 I〜X 1制御周期の処理 I S,R,Dを入力し、差分をとる II 同定用信号の大きさKを計算する III Kが大きく、異常時でなければ、応答関数a,b,q
を同定し、応答関数の不確かさprを修正する IV 可知的外乱dを利用して、Rの予測値R゜を求め
る。
DESCRIPTION OF SYMBOLS Input device of target value R Input device of control value D Input device of intellectual disturbance C Output device of operation value U Computing device M Storage device T Timer W Input device of abnormal signal IX Processing of 1 control cycle Input I S, R, D and take the difference II Calculate the magnitude K of the signal for identification III If K is large and not abnormal, the response function a, b, q
Identify, using the IV-friendly intellectual disturbance d to modify the uncertainty p r of the response function to determine the predicted value R ° of R.

V 目標値Sと予測値R゜との乖離Eを元に、操作値
の修正量c'を算出する VI 乖離を元に、雑音圧縮率weを算出する VII 分配率pcを計算する VIII 分配率と雑音圧縮率で操作値の差分(変動)c0
を修正する IX 操作値を出力可能な数値に直して、出力する X 制御周期を更新する FIG.2は、雑音圧縮法に用いる関数を示します。横座標
は信号パワーで、縦軸が関数の値です。
Based on the deviation E of the prediction value R ° and V target value S, based on VI deviation for calculating the correction amount c 'of operation values, calculates the VII distribution ratio p c of calculating the noise compression ratio w e VIII Difference (variation) of the operation value between the distribution rate and the noise compression rate c 0
Modify the IX operation value to a numerical value that can be output and update the output X control cycle FIG. 2 shows the function used for the noise compression method. The abscissa is the signal power and the ordinate is the function value.

FIG.3は、応答関数を同定するデータ組の同定信号率を
実線で示します。破線で、同定信号率を二値化した場合
の関数の概念を示します。横軸が同定信号の大きさK
で、縦軸が同定用の加重wIです。
FIG. 3 shows by solid line the identification signal rate of the data set that identifies the response function. The broken line shows the concept of the function when the identification signal rate is binarized. The horizontal axis is the magnitude K of the identification signal.
And the vertical axis is the weight for identification w I.

発明を実施する場合の最良の形態 制御と同時に行う同定する手段に、最小自乗法を用い
るか、逐次同定法を用いるか、適宜切り替えて併用する
かは、選択の問題です。どの操作値の算出方法を用いる
かも自由です。そこで三角型最小自乗法を用いて同定
し、多点整定法で操作値を決定し、同定維持法にr-1,c
-1,d-1を用いる方法とその装置を例にして説明します。
(45C)で、r,c,dの数値範囲を±1にしておきます。こ
の数値を採用すると、1未満となる|F|が、全出力C
=±1にしても、整定が不能なRの領域が発生すること
を意味します。Rの全範囲にわたって充分に速く整定で
きるためには、操作値の静特性の絶対値|F|が3以
上、30以下が望ましい条件です。100以上なると階段応
答で制御値が飽和してしまったり、操作値の分解能が16
ビット程度かそれ以上ないと操作手段のデジタル性が顕
在化し、制御精度が低下します。
Best Mode for Carrying Out the Invention It is a matter of choice whether to use the least squares method, the sequential identification method, or switch appropriately as the means for identification performed simultaneously with control. It is up to you how to calculate the manipulated value. Therefore, identification was performed using the triangular least squares method, the operation value was determined using the multipoint settling method, and r −1 , c
The method using -1 and d -1 and its device are described as examples.
(45C), set the numerical range of r, c, d to ± 1. When this numerical value is adopted, | F∞ |
Even if it is ± 1, it means that the area of R which cannot be settled occurs. In order to settle sufficiently quickly over the entire range of R, it is desirable that the absolute value | F 特性 | of the static characteristic of the operation value be 3 or more and 30 or less. If it exceeds 100, the control value will saturate due to the stair response, or the resolution of the
If it is not more than a bit or more, the digital nature of the operation means becomes apparent and the control accuracy is reduced.

制御系を解析して、制御周期と応答関数a,b,qの項数を
決めます。解析ができない場合は山勘でもしかたがあり
ません。例えば、qの項数を1、a,bの項数を4としま
す。この設定でq1=0.9〜0.999,a2=0.001〜0.008程度
になるような制御周期の場合、従来のPIDでは得られな
かった高速で高精度の精度になった経験があります。q1
が0.2以下になる制御周期にすると、PID制御とほぼ同じ
制御速度でした。
Analyze the control system and determine the control period and the number of terms in the response functions a, b, and q. If you can't do the analysis, you can't help but think. For example, the number of terms in q is 1, and the number of terms in a and b is 4. In the case of a control cycle in which q 1 = 0.9 to 0.999 and a 2 = 0.001 to 0.008 with this setting, we have experienced high-speed, high-precision accuracy that could not be obtained with conventional PID. q 1
When the control cycle became less than 0.2, the control speed was almost the same as PID control.

r=fc+gd (5F) =qr+ac+bd (4F) r=ΔR,d=ΔD,c=ΔC (2A) 解析だけで、a,b,qを完全確定できれば、制御中に同定
する必要がありません。制御装置で、制御周期に合わせ
てタイマー割り込みにすることも、随時タイマーをチェ
ックして処理することもできます。
r = fc + gd (5F) = qr + ac + bd (4F) r = RR, d =, D, c = CC (2A) If a, b, q can be completely determined only by analysis, there is no need to identify during control. The control unit can set a timer interrupt according to the control cycle or check and process the timer at any time.

rについて1デジットの大きさや雑音の程度は、制御装
置を製造した時の試験値や代表的な製品の値を元に、或
いは前回の制御での保存値として(46A)で算出した、
雑音νの大きさとして用意しておきます。
For r, the magnitude of one digit and the degree of noise were calculated based on test values and typical product values when the control device was manufactured, or as (46A) as stored values in the previous control,
We have to prepare as the magnitude of the noise ν 2.

同様に、|r-1|,|c-1|,|d-1|用のKLIM(rLIM,cLIM,
dLIM)とkM,pr MIN,pn,κを用意しておきます。
Similarly, K LIM for | r -1 |, | c -1 |, | d -1 | (r LIM , c LIM ,
d LIM ) and k M , pr MIN , p n , κ are prepared.

制御開始時点から、応答試験の終了迄の間は現時点を第
n時点、制御開始時を第−α−1時点とします。三角
型最小自乗法ではM-MがX、M-uがyでかつkとなるので
x,yを使わずに表現します。
From the control starting point, until the end of the response studies will first n time the present time, the first-.alpha. 1 -1 point a at the start of control. In the triangular least squares method, since M - M is X and M - u is y and k,
Express without using x and y.

α≡MAX(ωa,ωb,ωq) (50) 応答関数a,b,qについて全く情報が無い場合は応答試験
をします。応答試験終了時点を第m時点、この期間の各
値を(51A)とします。
α 1 ≡MAX (ωa, ωb, ωq) (50) If there is no information about the response functions a, b, and q, perform a response test. The end point of the response test is the m-th point, and each value in this period is (51A).

c0は通常1にしますが、過剰操作を避けるため、応答試
験中に雑音より十分に大きなrを惹起する値にする場合
もあります。
c 0 is usually set to 1, but it may be set to a value that causes r larger than noise during response test to avoid excessive operation.

M=(Mi,j=0),k=(ki=0)を初期値にしたq,a,b
に対する正規行列M,kにデータを追加します。
M = (M i, j = 0), k = (k i = 0) was the initial value q, a, b
Append data to the normal matrix M, k for.

M←M+prtxx,k←k+pr・y・tx (30I) 第m−1時点迄は正規方程式を解かず、第m時点で解き
ます。
M ← M + p r · t xx, k ← k + p r · y · t x (30I) up to (m-1) th point in time without solving the normal equations, solve on the m-th time.

k←M-k,M←(M-M)(M-M) (32E) Qωq=q1+q2+…+qωq (6Q) κ=2(1−Qωq) (47F) 0≦n≦ωa+ωqでdn=0の場合と、d=d0(Λ
Λωa+ωq)等で、cやd自身の変化と一次従属の場
合のb又はbの一部が同定できません。
k ← M - k, M ← t (M - M) (M - M) (32E) Q ωq = q 1 + q 2 + ... + q ωq (6Q) κ = 2 (1-Q ωq) (47F) 0 ≦ When n ≦ ωa + ωq and d n = 0, and d = d 00
Λ ωa + ωq ), etc., cannot identify b or a part of b in the case of first order dependence with changes in c and d itself.

pr=1/m,Icount=ωb (51B) にし、応答試験を終了します。Set p r = 1 / m, Icount = ωb (51B), and end the response test.

応答試験をしない場合は初期値を(51C)し、第0時点
迄、観測するだけにします。pnは0.05を初期値にして適
宜調整します。
When the response test is not performed, the initial value is set to (51C), and only the observation is performed until the 0th point. pn is adjusted appropriately with 0.05 as the initial value.

Icount=0,M=1, q,a,b;pr;κ=前制御で得た値 (51C) 第m+1時点以降、現時点を第0時点として説明しま
す。
Icount = 0, M = 1, q, a, b; p r ; κ = value obtained in the previous control (51C) From the (m + 1) th point onwards, the current point is described as the 0th point.

r,c,dの過去の値と、測定されたr0とを用い、同定維持
条件と異常時(W=1:正常時W=0)をチェックし、乖
離εを計算します。
Using the past values of r, c, and d and the measured r 0 , check the identification maintenance conditions and abnormal conditions (W = 1: normal W = 0) and calculate the deviation ε.

ε=r0−a1c-1−…−aωa−ωa−b1d-1−… −bωb−ωb−q1r-1−…−qωq−ωq Icountが正値の時のみ(52B)〜(20H)で応答関数を修
正しF-1を求める。
ε = r 0 -a 1 c -1 - ... -a ωa c -ωa -b 1 d -1 - ... -b ωb d -ωb -q 1 r -1 - ... -q ωq r -ωq Icount is positive Only in the case of (52B) to (20H), the response function is corrected to obtain F- 1 .

Icount=Icount−1 (52B) pr=if(pr MIN<pr;pr/(pr+1)) (49F) M←M+prtxx,k←k+pr・y・tx (30I) k←M-k,M←(M-M)(M-M) (32E) F=Σa+qF (20H) 同定した応答関数等は、適時不揮発性記憶装置に保存
し、次回の制御に役立てます。次に、今後の操作値を不
変と仮定して、ωa〜ωa+ωq時点の予測値を計算し
ます。第1時点より漸化式(4J)で算出します。
Icount = Icount-1 (52B) p r = if (p r MIN <p r; p r / (p r +1)) (49F) M ← M + p r · t xx, k ← k + p r · y · t x ( 30I) k ← M k, M ← t (M M) (M M) (32E) F = Σa + qF (20H) The identified response functions, etc., are saved in a non-volatile storage device as needed, and are useful for the next control. Next, assuming that the manipulated values in the future are unchanged, the predicted values at ωa to ωa + ωq are calculated. Calculate from the first time point using the recurrence formula (4J).

R゜=ac゜+bd+q'R゜ c゜∈[,−1) (4J) R゜=an+1c-1+an+2c-2+…+aωan−ωa +b1dn-1+b2dn-2+… +bωbn−ωb+(1+q1)R゜n-1 +(q2−q1)R゜n-2+… +(qωq−qωq−1)R゜n−ωq−qωqR゜
n−ωq−1 (4J') 可知的外乱は、過去の値に限らず、未来の予定値も入手
可能であれば利用します。可知的外乱が入手できない場
合は、d=0とするか、計算プログラムからbdに関する
部分を削除します。予測値が求まったら、設定値Sと予
測値R゜との差Eを用いて、(43G)でc'0を得ます。
R ° = ac ° + bd + q'R ° c ° ∈ [, - 1) (4J ) R ° n = a n + 1 c -1 + a n + 2 c -2 + ... + a ωa c n-ωa + b 1 d n -1 + b 2 d n-2 + ... + b ωb d n-ωb + (1 + q 1) R ° n-1 + (q 2 -q 1) R ° n-2 + ... + (q ωq -q ωq-1 ) R {n-ωq -q ωq R }
n-ωq-1 (4J ') The intellectual disturbance is used not only in the past but also in the future if it is available. If no intellectual disturbance is available, set d = 0 or delete the part related to bd from the calculation program. When the predicted value is obtained, c ′ 0 is obtained by (43G) using the difference E between the set value S and the predicted value R ゜.

c'=F-1E (43G) 次に、誤差分配法の分配率pcと、雑音圧縮係数weを計算
し、(39E)で修正してC0を出力します。
c '= F -1 E (43G ) Next, the distribution ratio p c of error distribution method, the noise compression factor w e is calculated and output C 0 with modification (39E).

pc=1−pr−pn (49B) eωa+1=Eωa+1−Eωa,…,eωa+ωq =Eωa+ωq−Eωa+ωq−1 (29G) Sge=Eωa +eωa+1 +eωa+2 +…+eωa+ωq (34G) we=κ+(1−κ)Sge/(Sge+ν) (47C) C0=C゜-1+c0,c0←pc・we・c'0 (39E) 実際は、出力値もデジタル化等で修正されているので、
実際の出力された値C0を元に、c0を再修正します。
p c = 1-p r -p n (49B) e ωa + 1 = E ωa + 1 -E ωa, ..., e ωa + ωq = E ωa + ωq -E ωa + ωq-1 (29G) Sge = E ωa 2 + e ωa + 1 2 + e ωa + 2 2 + ... + e ωa + ωq 2 (34G ) w e = κ + (1-κ) sge / (sge + ν 2) (47C) C 0 = C ° -1 + c 0, c 0 ← p c · w e · c '0 (39E) actually Since the output value has also been modified by digitization,
Re-correct c 0 based on the actual output value C 0 .

c0=C0−C-1 (39F) 計算時間の都合等で、雑音圧縮法を用いない場合はwe
1とします。
In c 0 = C 0 -C -1 ( 39F) of the calculation time convenient etc., if not using the noise compression method w e =
Set to 1.

前評価が不十分で、制御中にνを更新するならば、Icou
nt=0の時に、(46A)で更新します。
If the pre-evaluation is insufficient and ν is updated during control, Icou
When nt = 0, update at (46A).

ν←(1−pν)ν+pν・(ε+dgt2) (46A) κの変更は必要ありませんが、変更するならば、(47
F)で更新します。
ν 2 ← (1-p ν ) ν 2 + p ν · (ε 2 + dgt 2 ) (46A) It is not necessary to change κ.
F) to update.

κ=2(1−Qωq) (47F) これで、制御周期の操作が終了です。R,C,D,S;r,c,d,s
を1項ずらして、次の時点の操作を待ちます。
κ = 2 (1- Qωq ) (47F) This completes the control cycle operation. R, C, D, S; r, c, d, s
, And wait for the next operation.

産業上の利用可能性 高速で、正確な制御は、近代産業で常に求められてい
る技術です。近代制御理論を用いた制御法は、高速さと
正確さには目を見張るものがありましたが、雑音による
不安定さと、突発的に起こる制御破綻は、一度採用した
近代制御法をあきらめざるを得ない状態にしていまし
た。本発明は制御破綻を回避し、安定性が良く、しかも
フィードフォワードが可能な、高速で正確な本発明によ
る制御方法とそれを実現する装置です。
Industrial applicability Fast, accurate control is a technology that is always sought in modern industries. Control methods using modern control theory were remarkable in speed and accuracy.However, instability due to noise and sudden control failures had to give up the modern control method once adopted. I was in no state. The present invention is a high-speed and accurate control method according to the present invention which avoids control failure, has good stability, and is capable of feed-forward, and a device for realizing the control method.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G05B 11/00 - 13/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G05B 11/00-13/04

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】加減乗除を定義した左正則的数列を用いた
数列式 r=qr+ac=fc (r:制御値Rの差分,c:操作値の差分,d:可知的外乱の差
分) で表される制御系モデルを用い、 制御中に応答関数(q,a;f)を同定し、目標値S,制御値
R(予測値R゜,予測誤差E=S−R゜)を用いて、操
作値Cを有限整定法(多点整定法を含む。行列で表現し
た場合c'=F-1E)で算出するデジタル制御において、R,
Cの差分の過去値(rn≦0,cn<0)又はこれらと雑
音の大きさ(ν)とを用いて信号の大きさ(K)を求
め、信号Kが大きく(Kが基準値KLIMより大きい場
合)、異常時でない時のR,Cを用いて応答関数(q,a;f)
を同定し、Rの推定値(R゜)を元に、RをSに一致さ
せる値として算出される操作値の差分の現在値(c゜
0c'0)に、1より応答関数の不正確さ(Pr)とモデル不
適性(pn)を差し引いた数値(pc=1−pr−pn)を乗じ
た値をCの差分の現在値(c0=pc(c゜+c'0))と
することを特徴とする制御方法。
1. A sequence expression using a left regular sequence defining addition, subtraction, multiplication, and division r = qr + ac = fc (r: difference of control value R, c: difference of operation value, d: difference of intelligent disturbance) The response function (q, a; f) is identified during the control using the control system model to be performed, and the target value S, the control value R (the predicted value R ゜, the prediction error E = S−R ゜) are used, In digital control in which the operation value C is calculated by a finite settling method (including a multi-point settling method. When represented by a matrix, c ′ = F −1 E), R,
The magnitude (K) of the signal is obtained by using the past value of the difference of C (r n ≦ 0 , cn <0 ) or these and the magnitude of the noise (ν 2 ). If greater than the value K LIM), R a when it is not abnormal, with a C response function (q, a; f)
, And the current value (c ゜) of the difference between the operation values calculated as a value that matches R with S based on the estimated value (R ゜) of R
0 c ′ 0 ) is multiplied by a value (p c = 1−p r −p n ) obtained by subtracting the inaccuracy (P r ) of the response function and the model unsuitability (p n ) from 1. A control method characterized by using a current value of a difference (c 0 = p c (c ゜0 + c ′ 0 )).
【請求項2】操作値Cの出力装置,演算装置U,記憶装置
M及び制御値Rと目標値Sと異常信号の入力装置Wを備
え、Uの演算により、 加減乗除を定義した左正則的数列を用いた数列式 r=qr+ac=fc (r:制御値Rの差分,c:操作値の差分,d:可知的外乱の差
分) で表される制御系モデルを用い、R,Cの差分の過去値
(rn≦0,cn<0)又はこれらと雑音の大きさ
(ν)とで信号の大きさKを算出し、信号が大きく
(Kが基準値KLIMより大きい場合)、異常時でない時の
RとCを応答関数(q,a;f)の同定用のデータとし、同
定した応答関数又は応答関数の同定用データをMに保存
し、RとCとを用いて推定したRの予測値(R゜)を修
正してRをSに一致させるCの値(差分c')を有限整定
法(多点整定法を含む)で求め、その現時点で出力すべ
きCの差分(c゜+c'0)に、1より応答関数の不正
確さ(Pr)とモデル不適性(Pn)を差し引いた数値(pc
=1−pr−pn)を乗じて補正した値(C0=C-1+pc(c
+c'0))を出力することを特徴とする制御装置。
2. An apparatus for outputting an operation value C, an operation device U, a storage device M, and an input device W for a control value R, a target value S, and an abnormal signal. Using a control system model represented by a sequence equation r = qr + ac = fc (r: difference of control value R, c: difference of operation value, d: difference of intellectual disturbance), the difference of R, C past values of (r n ≦ 0, c n <0) or the size of these and noise ([nu 2) the de calculates the magnitude K of the signal, the signal is large (when K is greater than the reference value K LIM) , R and C in the non-abnormal state are used as identification data of the response function (q, a; f), and the identified response function or the identification data of the response function is stored in M, and R and C are used. The estimated value of R (R 差分) is corrected to obtain a value of C (difference c ′) that matches R with S by a finite settling method (including a multipoint settling method). To C difference (c ° 0 + c '0), the numerical values obtained by subtracting the inaccuracy of the response function than 1 (P r) model unsuitable properties the (P n) (p c
= 1-p r -p n) is multiplied by the correction value (C 0 = C -1 + p c (c
制 御0 + c ′ 0 )).
【請求項3】請求項1の方法で求めた操作値の差分に、
雑音圧縮率(we)を乗じる(C0=C-1+kc(c゜
c'0),kc=pcwe)ことを特徴とする請求項1の制御方
法。
3. A difference between operation values obtained by the method according to claim 1,
Noise compressibility multiplied by (w e) (C 0 = C -1 + k c (c ° 0 +
c '0), k c = p c w e) control method according to claim 1, characterized in that.
【請求項4】請求項1の装置において、出力する操作値
の差分に、雑音圧縮率(we)を乗じる(C0=C-1+k
c(c゜+c'0),kc=pcwe)ことを特徴とする請求項
2の制御装置
4. A device according to claim 1, the difference of the operation value output, multiplied noise compression ratio (w e) (C 0 = C -1 + k
c (c ° 0 + c '0), k c = p c w e) that the control device according to claim 2, wherein
【請求項5】加減乗除を定義した左正則的数列を用いた
数列式 r=qr+ac+bd=fc=gd (r:制御値Rの差分,c:操作値の差分,d:可知的外乱の差
分) で表される制御系モデルを用い、 制御中に応答関数(q,a,b;f,g)を同定し、目標値S,制
御値R,可知的外乱Dを用いて、操作値Cを算出するデジ
タル制御において、R,C,Dの差分の過去値(rn≦0,c
n<0,dn<0)又はこれらと雑音の大きさ(ν)を
元に信号の大きさ(K)を求め、信号が大きく(Kが基
準値KLIMより大きい場合)、異常時でない示のR,C,Dを
用いて応答関数を同定し、R,Cと過去,現在,未来の利
用できるDを用いて予測したRの推定値(R゜,予測誤
差E=S−R゜)を元に、RをSに一致させる値として
有限整定法(多点整定法を含む)で算出された操作値の
差分の現在値(c゜+c'0)に、1より応答関数の不
正確さ(Pr)とモデル不適性(pn)を差し引いた数値
(pc=1−pr−pn)を乗じた値をCの差分の現在値(c0
=pc(c゜+c'0))とすることを特徴とする制御方
法。
5. A sequence equation using a left regular sequence defining addition, subtraction, multiplication and division r = qr + ac + bd = fc = gd (r: difference of control value R, c: difference of operation value, d: difference of intelligent disturbance) The response function (q, a, b; f, g) is identified during the control using the control system model expressed by the following equation, and the operation value C is calculated using the target value S, the control value R, and the intelligent disturbance D. In the digital control to be calculated, the past value of the difference between R, C, and D (rn ≦ 0 , c
n <0 , dn <0 ) or the magnitude of the signal (K) based on these and the magnitude of the noise (ν 2 ), and when the signal is large (K is larger than the reference value K LIM ), The response function is identified using R, C, and D shown in the following table, and the estimated value of R (R ゜, prediction error E = S−R) predicted using R, C and available D in the past, present, and future.゜) based on the current value (c ゜0 + c ′ 0 ) of the difference between the operation values calculated by the finite settling method (including the multipoint settling method) as a value that makes R equal to S, from 1 inaccuracies (P r) with model unsuitable properties (p n) obtained by subtracting the numerical value (p c = 1-p r -p n) the current value of a difference between a value obtained by multiplying C (c 0
= P c (c ゜0 + c ′ 0 )).
【請求項6】操作値Cの出力装置,演算装置U,揮発性及
び不揮発性の記憶装置M及び制御値Rと目標値Sと可知
的外乱Dと異常信号の入力装置とを備え、加減乗除を定
義した左正則的数列を用いた数列式 r=qr+ac+bd=fc+gd (r:制御値Rの差分,c:操作値の差分,d:可知的外乱の差
分) で表される制御系モデルを用い、加減乗除を定義した左
正則的数列を用いた数列式 r=qr+ac+bd=fc+gd (r:制御値Rの差分,c:操作値の差分,d:可知的外乱の差
分) で表される制御系モデルを用い、 Uを用いた演算により、C,R,Dの差分の過去値(r
n≦0,cn<0,dn<0)又はこれらと雑音の大きさ
(ν)を元に信号の大きさ(K)を求め、信号が大き
く(Kが基準値KLIMより大きい場合)、異常時で無い時
のCとRとDを応答関数(q,a,b;f,g)の同定用のデー
タとし、同定した応答関数又は応答関数の同定用のデー
タを不揮発性記憶装置に保存し、RとCと過去と現在と
未来の利用できる範囲のDを用いて推定したRの予測値
(R゜,予測誤差E=S−R゜)を修正してRをSに一
致させるCの値を有限整定法(多点整定法を含む)で求
め、その現時点で出力すべきCの差分(c゜+c'0
に、1より応答関数の不正確さ(Pr)とモデル不適性
(Pn)を差し引いた数値(pc=1−pr−pn)を乗じて補
正した値(C0=C-1+pc(c゜+c'0))を出力するこ
とを特徴とする制御装置。
6. An output device for an operation value C, an operation device U, a volatile and nonvolatile storage device M, and an input device for a control value R, a target value S, an intelligent disturbance D, and an abnormal signal. Using a control system model represented by a sequence equation r = qr + ac + bd = fc + gd (r: difference of control value R, c: difference of operation value, d: difference of intelligent disturbance) , A control system represented by a sequence expression using a left regular sequence defining addition, subtraction, multiplication and division r = qr + ac + bd = fc + gd (r: difference of control value R, c: difference of operation value, d: difference of intelligent disturbance) By using the model and calculating with U, the past value (r
The magnitude (K) of the signal is determined based on n ≦ 0 , cn <0 , dn <0 ) or the magnitude of the noise (ν 2 ), and the signal is large (K is larger than the reference value K LIM). Case), C, R, and D when there is no abnormality are used as the data for identifying the response function (q, a, b; f, g), and the identified response function or the data for identifying the response function is non-volatile. The prediction value of R (R ゜, prediction error E = S−R し た), which is stored in a storage device and is estimated using R and C and the available range D of the past, present, and future, is corrected to R Is determined by a finite settling method (including a multipoint settling method), and the difference of C to be output at the current time (c ゜0 + c ′ 0 )
, The inaccuracy of the response function from 1 (P r) a numerical value by subtracting model unsuitable properties the (P n) (p c = 1-p r -p n) obtained by multiplying by the correction value (C 0 = C - 1 + p c (c ゜0 + c ′ 0 )).
JP54029799A 1998-02-25 1999-02-24 Control method and device Expired - Lifetime JP3309142B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8788798 1998-02-25
JP10-87887 1998-02-25
PCT/JP1999/000837 WO1999044105A1 (en) 1998-02-25 1999-02-24 Control method and its device

Publications (1)

Publication Number Publication Date
JP3309142B2 true JP3309142B2 (en) 2002-07-29

Family

ID=13927397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54029799A Expired - Lifetime JP3309142B2 (en) 1998-02-25 1999-02-24 Control method and device

Country Status (3)

Country Link
JP (1) JP3309142B2 (en)
AU (1) AU2639499A (en)
WO (1) WO1999044105A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102929141B (en) * 2012-10-10 2015-03-18 西北工业大学 Aircraft time lag varying model approximation and controller designing method
JP7151546B2 (en) * 2019-02-25 2022-10-12 オムロン株式会社 Control device, control method, and control program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08123507A (en) * 1994-10-27 1996-05-17 Fujitsu Ltd Robust controller

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
寺尾 満,ロバスト適応制御入門,日本,オーム社,1989年 9月25日,第1版,P.147−152

Also Published As

Publication number Publication date
WO1999044105A1 (en) 1999-09-02
AU2639499A (en) 1999-09-15
WO1999044105A9 (en) 2000-01-20

Similar Documents

Publication Publication Date Title
US6556980B1 (en) Model-free adaptive control for industrial processes
Vesely et al. Robust MPC controller design for switched systems using multi-parameter dependent Lyapunov function
Patel Computation of matrix fraction descriptions of linear time-invariant systems
Sentoni et al. Approximate models for nonlinear process control
Khudyakov On mathematical modeling of the measurement transducers
Zhao et al. Adaptive tracking control of linear systems with binary-valued observations and periodic target
JP3309142B2 (en) Control method and device
Gattu et al. Observer based nonlinear quadratic dynamic matrix control for state space and input/output models
CN110824922A (en) Smith estimation compensation method based on six-order B-spline wavelet neural network
US6202007B1 (en) Exact stability integration in network designs
Atkeson Efficient robust policy optimization
CN111641471B (en) Weight design method for prediction in atomic clock signal combination control
Michiels et al. On the Strong Relative Degree of Time-Delay Systems with Noncommensurate Delays
Devarajan Finite interval parameter and state estimation in lti systems using kernel-based multiple regression
Polak et al. An algorithm for computer aided design problems
Zouari et al. Robust neural adaptive control for a class of uncertain nonlinear complex dynamical multivariable systems
Feyel Evolutionary fixed-structure controller tuning against multiple requirements
Benes et al. Honu and supervised learning algorithms in adaptive feedback control
Gray et al. Toward the numerical design of non linear feedback systems by Zakian's method of inequalities
Halevi et al. Parameter-dependent model order reduction
Santillo et al. A retrospective correction filter for discrete-time adaptive control of nonmiminum-phase systems
Dowling et al. Recursive total-least-squares adaptive filtering
JPH04233657A (en) Instructing method for regression neural network
Franco et al. A novel discriminant approximation of periodic differential equations
Rani Pipelined hardware design of self tuning controller with on-chip parameter estimator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140524

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term