JP3305602B2 - Manufacturing method of dehumidifying element - Google Patents

Manufacturing method of dehumidifying element

Info

Publication number
JP3305602B2
JP3305602B2 JP33911596A JP33911596A JP3305602B2 JP 3305602 B2 JP3305602 B2 JP 3305602B2 JP 33911596 A JP33911596 A JP 33911596A JP 33911596 A JP33911596 A JP 33911596A JP 3305602 B2 JP3305602 B2 JP 3305602B2
Authority
JP
Japan
Prior art keywords
water
water glass
honeycomb structure
weight
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33911596A
Other languages
Japanese (ja)
Other versions
JPH10165748A (en
Inventor
英雄 三好
裕司 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP33911596A priority Critical patent/JP3305602B2/en
Publication of JPH10165748A publication Critical patent/JPH10165748A/en
Application granted granted Critical
Publication of JP3305602B2 publication Critical patent/JP3305602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、再生式除湿器や全
熱交換器のための除湿素子を製造する方法に関するもの
である。
The present invention relates to a method for producing a dehumidifying element for a regenerative dehumidifier or a total heat exchanger.

【0002】[0002]

【従来の技術】再生式除湿器や全熱交換器のための除湿
素子の一つに、無機繊維を主要繊維素材に用いて作られ
た紙もしくは不織布とそれを波形に成形したものとを交
互に重ね合わせて接合してなるハニカム構造体に吸湿剤
を担持させたものがある。
2. Description of the Related Art One of the dehumidifying elements for regenerative dehumidifiers and total heat exchangers is to alternate between paper or non-woven fabric made from inorganic fibers as a main fiber material and corrugated one. There is a honeycomb structure in which a moisture absorbent is supported on a honeycomb structure formed by overlapping and joining.

【0003】この種の除湿素子において、除湿剤として
は塩化リチウム、塩化カルシウム等の潮解性無機塩また
はゼオライト、シリカゲル等の非水溶性吸湿剤が用いら
れるが、後者のほうが、吸湿した除湿剤の飛散による装
置汚染や除湿性能低下がなく、またハニカム構造体を補
強する作用もあり、好ましい。また、非水溶性吸湿剤の
中でも、シリカゲルはゼオライトよりも低い温度で再生
可能であり (再生温度がゼオライトの場合230℃以上
であるのに対しシリカゲルは約140℃である)、ま
た、高湿度域から低湿度域まで、広い範囲ですぐれた除
湿性能を示し、価格も低廉であるという特長を持つ。
In this type of dehumidifying element, a deliquescent inorganic salt such as lithium chloride or calcium chloride or a water-insoluble hygroscopic agent such as zeolite or silica gel is used as the dehumidifying agent. It is preferable because there is no contamination of the device and no reduction in dehumidification performance due to scattering, and there is also an action of reinforcing the honeycomb structure. In addition, among water-insoluble moisture absorbents, silica gel can be regenerated at a lower temperature than zeolite (regeneration temperature is 230 ° C. or more for zeolite, whereas silica gel is about 140 ° C.). It has excellent dehumidifying performance over a wide range from low to high humidity, and is inexpensive.

【0004】除湿剤としてシリカゲルを担持するハニカ
ム構造除湿素子の製法の代表的なものは、ハニカム構造
体に水ガラスを含浸させ、次いで酸処理によりケイ酸ア
ルカリをケイ酸ゲルに変換したのち乾燥する方法 (たと
えば特公昭51‐30384号)、上記製造法において
水ガラス含浸と酸処理との間に乾燥工程を設け、含浸さ
れた水ガラスを含水率5〜20%まで濃縮してから酸処
理する方法(特開昭61‐101228号)などであ
る。
A typical method for producing a honeycomb structure dehumidifier supporting silica gel as a dehumidifier is to impregnate a honeycomb structure with water glass, and then convert an alkali silicate to a silicate gel by an acid treatment and then dry. Method (for example, Japanese Patent Publication No. 51-30384), a drying step is provided between the impregnation with water glass and the acid treatment in the above-mentioned production method, and the impregnated water glass is concentrated to a water content of 5 to 20% and then acid-treated. Method (JP-A-61-101228).

【0005】しかしながら、これら従来の製造法では水
ガラスを半乾燥状態にしてから酸処理する場合において
も酸処理工程における微粒子状ケイ酸ゲルの離脱が多
く、このため、製造工程において種々の解決困難な問題
が生じるだけでなく、製品のシリカゲル担持量や耐久性
にも問題があった。また、固定されたシリカゲルが細孔
容量の小さい、したがって飽和吸湿量の小さいものとな
るため、乾燥剤として通常使用される粒状シリカゲルの
性能から期待されるほどには吸湿量や吸湿速度が大きく
ない。
However, in these conventional production methods, even when the water glass is treated in a semi-dry state and then subjected to an acid treatment, a large amount of the particulate silicate gel is detached in the acid treatment step, so that it is difficult to solve various problems in the production step. In addition to these problems, there are also problems with the amount of silica gel carried and durability of the product. In addition, since the fixed silica gel has a small pore volume and therefore a small saturated moisture absorption, the moisture absorption and the moisture absorption rate are not so large as expected from the performance of the granular silica gel usually used as a desiccant. .

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、従来
のシリカゲル担持除湿素子がすぐれた性能を期待されな
がら上述のような欠点を持つものであったことに鑑み、
吸湿性能のよいシリカゲルを多量に担持させることので
きる、改良されたシリカゲル担持除湿素子の製造法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a conventional silica gel-supported dehumidifying element having the above-mentioned drawbacks while expecting excellent performance.
An object of the present invention is to provide an improved method for producing a silica gel-supported dehumidifying element capable of supporting a large amount of silica gel having good moisture absorption performance.

【0007】[0007]

【課題を解決するための手段】本発明による除湿素子の
製造法は、無機繊維からなるハニカム構造体に水ガラス
を含浸したのち乾燥する処理を1回または複数回繰り返
してハニカム構造体上に含水率3重量%以下の水ガラス
乾燥物を固定し、次いで湿り空気と接触させて含水率が
25〜60重量%になるまで上記水ガラス乾燥物に加湿
したのち鉱酸およびその塩を含有するpH1〜2の水中
に浸漬して水ガラスをケイ酸ヒドロゲルに変換し、水で
洗浄後、乾燥して上記ケイ酸ヒドロゲルをシリカゲルに
変換することを特徴とするものである。
According to a method of manufacturing a dehumidifying element according to the present invention, a process of impregnating a honeycomb structure made of inorganic fibers with water glass and then drying the same is repeated one or more times so that a water content is formed on the honeycomb structure. A water glass dried product having a moisture content of 3% by weight or less is fixed, and is then brought into contact with moist air to humidify the water glass dried product until the water content becomes 25 to 60% by weight. (2) to convert the water glass into silicate hydrogel by immersion in water, washing with water, and drying to convert the silicate hydrogel into silica gel.

【0008】典型的には、本発明による除湿素子の製造
法は上記製造法において水ガラス乾燥物に加湿する工程
を相対湿度が80〜99%の常温湿り空気と接触させる
ことにより行い、酸処理工程を、鉱酸およびそのアンモ
ニウム塩を含有するpH1〜2、温度50〜80℃の処
理液により行い、それにより、最終的に細孔径が10〜
25Å、細孔容量が0.4〜0.6cm3/gのシリカゲルが
固定されたハニカム構造の除湿素子を得ることを特徴と
するものである。
Typically, in the method for producing a dehumidifying element according to the present invention, the step of humidifying the dried water glass in the above-mentioned production method is carried out by contacting with a humid air at room temperature having a relative humidity of 80 to 99%. The process is performed with a treatment solution containing a mineral acid and its ammonium salt at a pH of 1 to 2 and a temperature of 50 to 80 ° C., so that the pore size finally becomes 10 to 10.
The present invention is characterized in that a dehumidifying element having a honeycomb structure with 25 ° and a silica gel having a pore volume of 0.4 to 0.6 cm 3 / g is fixed.

【0009】[0009]

【発明の実施の形態】本発明の除湿素子製造法におい
て、シリカゲルの担体とする無機繊維製ハニカム構造体
には特に制限はなく、該ハニカム構造体を構成する無機
繊維製紙または不織布の種類、ハニカム構造体の形状、
寸法等は製品の用途に応じて適当なものを任意に選んで
使用することができる。しかしながら、機械的な強度や
耐久性のよい製品を得るためには、製造工程において水
ガラスや酸と接触したときの物性劣化がなるべく少ない
素材からなるものを用いることが望ましい。その意味で
特に好ましいのは、5〜25重量%のジルコニアを含有
するガラス繊維を用いて作られたハニカム構造体であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a dehumidifying element of the present invention, there is no particular limitation on a honeycomb structure made of inorganic fiber used as a carrier for silica gel. The shape of the structure,
The dimensions and the like can be arbitrarily selected and used according to the use of the product. However, in order to obtain a product having good mechanical strength and durability, it is desirable to use a material made of a material that has as little physical property deterioration as possible upon contact with water glass or acid in the manufacturing process. Particularly preferred in that sense are honeycomb structures made from glass fibers containing 5 to 25% by weight of zirconia.

【0010】ハニカム構造体に含浸する水ガラスとして
は、1号ないし3号の水ガラスを、いずれも使用するこ
とができる。いうまでもなく、これらの水ガラスに相当
するいかなるケイ酸アルカリの水溶液も代替使用が可能
である。濃度は約10〜30重量%が適当で、あまり濃
厚なものは粘度が高いためハニカム構造体を構成する無
機繊維の繊維間空隙に浸透しにくく、またあまり希薄な
ものは1回の含浸処理で固定できるケイ酸ソーダの量が
少ないから所望量のケイ酸ソーダを固定するために何回
も含浸処理をしなければならないという問題がある。
As the water glass to be impregnated into the honeycomb structure, any of the water glasses Nos. 1 to 3 can be used. Of course, any alkali silicate aqueous solution corresponding to these water glasses can be used alternatively. An appropriate concentration is about 10 to 30% by weight, and an excessively thick one has a high viscosity so that it hardly penetrates into the inter-fiber voids of the inorganic fibers constituting the honeycomb structure. Since the amount of sodium silicate that can be fixed is small, there is a problem that the impregnation process must be performed many times to fix the desired amount of sodium silicate.

【0011】ハニカム構造体の繊維間空隙にケイ酸アル
カリ水溶液が充分浸透したならば、ハニカム構造体をケ
イ酸アルカリ水溶液から取出し、必要に応じて高速空気
流を吹付けるなどして表面付着液を除いてから、含水率
が3重量%以下になるまで、約90〜100℃の熱風を
吹き付けて十分乾燥する。水ガラスの含浸と十分な乾燥
を繰り返すことにより、ハニカム構造体上に所望する量
の水ガラスを固定することができるので、望ましくは約
130〜180重量%の水ガラス乾燥物を固定する。
When the aqueous alkali silicate solution has sufficiently penetrated into the inter-fiber voids of the honeycomb structure, the honeycomb structure is taken out from the aqueous alkali silicate solution, and if necessary, the surface adhering liquid is sprayed by blowing a high-speed air stream. After the removal, hot air of about 90 to 100 ° C is blown to dry sufficiently until the water content becomes 3% by weight or less. By repeating the impregnation of water glass and sufficient drying, a desired amount of water glass can be fixed on the honeycomb structure. Therefore, desirably about 130 to 180% by weight of dried water glass is fixed.

【0012】水ガラス乾燥物が固定されたハニカム構造
体を次いで湿り空気と接触させ、水ガラス乾燥物を含水
率が25〜60重量%になるまで加湿する。処理用の湿
り空気は、常温すなわち約20〜35℃の、相対湿度が
約80〜99%のものであることが望ましく、そうでな
い場合は、必要な含水率まで加湿することができなかっ
たり、できても著しく長時間を要したりする。なお、水
ガラス乾燥物上で結露を生じ水ガラスが溶けて流れるの
を防止するため、加湿開始時のハニカム構造体の温度は
処理に用いる湿り空気の露点温度よりも高くしておく。
加湿がハニカム構造体全体に均一に且つ速やかに進行す
るよう、必要ならばハニカム構造体の通気間隙に強制通
気を行う。
[0012] The honeycomb structure to which the dried water glass is fixed is then brought into contact with moist air to humidify the dried water glass until the moisture content becomes 25 to 60% by weight. The humid air for the treatment is preferably at room temperature, ie, about 20-35 ° C., and a relative humidity of about 80-99%, otherwise, it cannot be humidified to the required moisture content, Even if it can be done, it takes an extremely long time. Note that the temperature of the honeycomb structure at the start of humidification is set higher than the dew point temperature of the humid air used for the treatment in order to prevent dew condensation on the dried water glass to melt and flow the water glass.
If necessary, forced ventilation is performed in the ventilation gap of the honeycomb structure so that the humidification proceeds uniformly and quickly throughout the honeycomb structure.

【0013】水ガラスを一旦乾燥したのち加湿する処理
は、このあと酸処理し乾燥して最終的に得られるシリカ
ゲルの吸湿能力を大きくするのに有効であって、このよ
うにしてハニカム構造体上に準備された含水率25〜6
0重量%の水ガラスは十分な乾燥とその後の加湿を経る
ことなく乾燥だけで準備された水ガラスよりも吸湿能力
のすぐれたシリカゲルを与える。加湿を行わないか、加
湿しても加湿後の含水率が25重量%に満たないとき
は、次の酸処理工程で酸との反応が円滑に進行せず、細
孔容量が小さいシリカゲルになる。反対に60重量%を
こえる高含水率にすると、細孔径が大きくなりすぎ、適
正な吸湿能力のシリカゲルが得られない。
The process of once drying and then humidifying the water glass is effective in increasing the hygroscopic capacity of the silica gel finally obtained by acid treatment and drying. Moisture content prepared for 25 to 6
Water glass at 0% by weight gives silica gel with better hygroscopic capacity than water glass prepared only by drying without sufficient drying and subsequent humidification. If humidification is not performed or the moisture content after humidification is less than 25% by weight even after humidification, the reaction with the acid does not proceed smoothly in the next acid treatment step, resulting in silica gel having a small pore volume. . Conversely, if the water content is higher than 60% by weight, the pore diameter becomes too large, and a silica gel having an appropriate hygroscopic capacity cannot be obtained.

【0014】上述のようにして再び含水率の高い状態に
調整された水ガラスを、次に酸処理してケイ酸ヒドロゲ
ルに変換する。酸処理には、アルカリまたは塩を加えて
pHを1〜2に調整した濃度10〜20重量%程度の鉱
酸水溶液を用いる。使用可能な鉱酸としては硫酸、リン
酸、硝酸、塩酸等があるが、硫酸が最も適している。p
H調整に使用するアルカリまたは塩としては、アンモニ
ア水が最も好ましい。処理液pHが1よりも小さいと細
孔径が小さすぎて低湿度で毛管凝縮を起こしやすい、し
たがって吸湿量の小さいシリカゲルになり、反対にpH
が2よりも大きいと細孔径が過大になって高湿度では吸
湿量が大きいが低湿度では吸湿量の小さいシリカゲルに
なる。
The water glass, which has been adjusted to a high water content again as described above, is then converted to a silicate hydrogel by acid treatment. For acid treatment, add alkali or salt
A mineral acid aqueous solution having a pH of 1 to 2 and a concentration of about 10 to 20% by weight is used. Examples of usable mineral acids include sulfuric acid, phosphoric acid, nitric acid, and hydrochloric acid, and sulfuric acid is most suitable. p
As the alkali or salt used for H adjustment, ammonia water is most preferable. If the pH of the treatment liquid is less than 1, the pore size is too small and capillary condensation is likely to occur at low humidity, so that silica gel having a small moisture absorption is obtained.
Is larger than 2, the pore diameter becomes excessively large, and the moisture absorption becomes large at high humidity, but becomes small at low humidity.

【0015】酸処理は、約50〜80℃、望ましくは約
60〜75℃に加熱した状態で行うのがシリカゲルの細
孔容積を大きくし吸湿能力を大にするのに有効である。
必要な処理時間は約0.5〜2時間である。
It is effective to carry out the acid treatment at a temperature of about 50 to 80 ° C., preferably about 60 to 75 ° C., in order to increase the pore volume of the silica gel and the hygroscopic capacity.
The required processing time is about 0.5 to 2 hours.

【0016】この後、水で十分洗浄して付着塩類を除去
し、さらに熱風を吹き付けて乾燥すると、優れた吸湿能
力を有するシリカゲルがハニカム構造体上に形成され
る。その微細構造は酸処理の条件にも影響されるが、酸
処理のpH、温度、処理時間等を選ぶことにより、通常
約10〜25Åの細孔径と約0.4〜0.6cm3/gの細孔
容量(MP法)のものを得ることは容易である。
[0016] Thereafter, the resultant is sufficiently washed with water to remove attached salts, and further dried by blowing hot air, whereby silica gel having excellent moisture absorbing ability is formed on the honeycomb structure. Although the microstructure is affected by the conditions of the acid treatment, the pH, temperature, treatment time and the like of the acid treatment are usually selected to obtain a pore size of about 10 to 25 ° and a pore size of about 0.4 to 0.6 cm 3 / g. It is easy to obtain one with a pore volume of (MP method).

【0017】[0017]

【実施例】【Example】

実施例1 ガラス繊維からなる不織布を用いて作られたハニカム構
造体を3号水ガラスの希釈液(水ガラス:水=2:1)
に浸漬して水ガラスを含浸し、その後、95℃の熱風で
20分間通気乾燥を行う(水ガラスの含水率は3重量%
以下になる)。この操作を3回繰り返して、ハニカム構
造体に対して160重量%の水ガラス乾燥物を固定し
た。
Example 1 A honeycomb structure made using a nonwoven fabric made of glass fiber was used to dilute a No. 3 water glass (water glass: water = 2: 1).
And impregnated with water glass, followed by air drying with hot air at 95 ° C. for 20 minutes (water content of water glass is 3% by weight).
Below). This operation was repeated three times to fix the dried water glass of 160% by weight to the honeycomb structure.

【0018】次に、温度30℃、相対湿度90%の湿り
空気をハニカム構造体の通気間隙方向に吹き付けて加湿
し、15時間後、水ガラスの含水率が25重量%になっ
たところで処理を打ち切った。
Next, humidified air at a temperature of 30 ° C. and a relative humidity of 90% is blown in the direction of the ventilation gap of the honeycomb structure to humidify it. After 15 hours, when the water content of the water glass becomes 25% by weight, the treatment is performed. Censored.

【0019】その後、温度60℃の20重量%硫酸水溶
液(アンモニア水でpHを1に調整したもの)に2時間
浸漬して水ガラスをケイ酸ヒドロゲルに変換し、水洗、
乾燥した。
Thereafter, the glass is immersed in a 20% by weight aqueous solution of sulfuric acid at a temperature of 60 ° C. (pH adjusted to 1 with aqueous ammonia) for 2 hours to convert the water glass into a silicate hydrogel.
Dried.

【0020】得られた除湿素子は、基材に対して130
重量%のシリカゲルが固定されており、該シリカゲルの
細孔径は12Å、細孔容量は0.45cm3/gであった。ま
た、JIS Z0701による吸湿試験を温度25℃で
行なったところ、相対湿度20%で15.1%、相対湿
度90%で46.7%の吸湿率を示した。
The obtained dehumidifying element was subjected to 130
By weight, silica gel was fixed, and the silica gel had a pore diameter of 12 mm and a pore volume of 0.45 cm 3 / g. Further, when a moisture absorption test according to JIS Z0701 was performed at a temperature of 25 ° C., a moisture absorption rate of 15.1% at a relative humidity of 20% and 46.7% at a relative humidity of 90% was shown.

【0021】実施例2 実施例1と同様にして用意された水ガラス乾燥物固定済
みハニカム構造体に実施例1の場合と同様の加湿処理を
30時間行い、含水率が40重量%になったところで処
理を打ち切った。
Example 2 The same humidification treatment as in Example 1 was performed on the honeycomb structure fixed with dried water glass prepared in the same manner as in Example 1 for 30 hours, and the water content became 40% by weight. By the way, the processing was terminated.

【0022】その後、温度75℃の20重量%硫酸水溶
液(アンモニア水でpHを2に調整したもの)に30分
間浸漬して水ガラスをケイ酸ヒドロゲルに変換し、水
洗、乾燥した。
Thereafter, the glass was immersed in a 20% by weight aqueous solution of sulfuric acid at 75 ° C. (pH adjusted to 2 with aqueous ammonia) for 30 minutes to convert the water glass into a silicate hydrogel, washed with water and dried.

【0023】得られた除湿素子は、基材に対して130
重量%のシリカゲルが固定されており、該シリカゲルの
細孔径は16Å、細孔容量は0.6cm3/gであった。ま
た、JIS Z0701による吸湿率(温度25℃)
は、相対湿度20%で14.2%、相対湿度90%で5
2.6%であった。
The obtained dehumidifying element was applied to a substrate at 130
% Silica gel was immobilized, the silica gel had a pore size of 16 ° and a pore volume of 0.6 cm 3 / g. The moisture absorption rate according to JIS Z0701 (temperature 25 ° C)
Is 14.2% at 20% relative humidity and 5% at 90% relative humidity.
2.6%.

【0024】[0024]

【発明の効果】上述のように、本発明によれば高湿度か
ら低湿度まで、広い範囲で優れた吸湿性を示すシリカゲ
ル担持ハニカム構造除湿素子が得られる。
As described above, according to the present invention, it is possible to obtain a silica gel-supported honeycomb structure dehumidifier having excellent hygroscopicity in a wide range from high humidity to low humidity.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 無機繊維からなるハニカム構造体に水ガ
ラスを含浸したのち乾燥する処理を1回または複数回繰
り返してハニカム構造体上に含水率3重量%以下の水ガ
ラス乾燥物を固定し、次いで湿り空気と接触させて含水
率が25〜60重量%になるまで上記水ガラス乾燥物に
加湿したのち鉱酸およびその塩を含有するpH1〜2の
水中に浸漬して水ガラスをケイ酸ヒドロゲルに変換し、
水で洗浄後、乾燥して上記ケイ酸ヒドロゲルをシリカゲ
ルに変換することを特徴とする除湿素子の製造法。
1. A process of impregnating a honeycomb structure made of inorganic fibers with water glass and then drying it once or a plurality of times to fix a dried water glass having a water content of 3% by weight or less on the honeycomb structure, The wet glass is then brought into contact with moist air to humidify the dried water glass until the water content becomes 25 to 60% by weight, and then immersed in water containing a mineral acid and its salt at a pH of 1 to 2 to convert the water glass to a silicate hydrogel. To
A method for producing a dehumidifying element, comprising washing with water and drying to convert the silicate hydrogel into silica gel.
【請求項2】 無機繊維からなるハニカム構造体に水ガ
ラスを含浸したのち乾燥する処理を1回または複数回繰
り返してハニカム構造体上に含水率3重量%以下の水ガ
ラス乾燥物を固定し、次いで湿り空気と接触させて含水
率が25〜60重量%になるまで上記水ガラス乾燥物に
加湿したのち鉱酸およびその塩を含有するpH1〜2の
水中に浸漬して水ガラスをケイ酸ヒドロゲルに変換し、
水で洗浄したのち乾燥することにより、細孔径が10〜
25Å、細孔容量が0.4〜0.6cm3/gのシリカゲルが
固定されたハニカム構造の除湿素子を得ることを特徴と
する除湿素子の製造法。
2. A process of impregnating a honeycomb structure made of inorganic fibers with water glass and drying it once or more times is repeated to fix a dried water glass having a water content of 3% by weight or less on the honeycomb structure, The wet glass is then brought into contact with moist air to humidify the dried water glass until the water content becomes 25 to 60% by weight, and then immersed in water containing a mineral acid and its salt at a pH of 1 to 2 to convert the water glass to a silicate hydrogel. To
After washing with water and drying, the pore size becomes 10
25. A method for producing a dehumidifying element, comprising obtaining a dehumidifying element having a honeycomb structure in which silica gel having a pore volume of 0.4 to 0.6 cm 3 / g is fixed at 25 °.
【請求項3】 無機繊維からなるハニカム構造体に水ガ
ラスを含浸したのち乾燥する処理を1回または複数回繰
り返してハニカム構造体上に含水率3重量%以下の水ガ
ラス乾燥物を固定し、次いで相対湿度が80〜99%の
常温湿り空気と接触させて含水率が25〜60重量%に
なるまで上記水ガラス乾燥物に加湿したのち鉱酸および
そのアンモニウム塩を含有するpH1〜2、温度50〜
80℃の水中に浸漬して水ガラスをケイ酸ヒドロゲルに
変換し、水で洗浄後乾燥して上記ケイ酸ヒドロゲルをシ
リカゲルに変換することを特徴とする除湿素子の製造
法。
3. A process of impregnating a honeycomb structure made of inorganic fibers with water glass and then drying it once or more times to fix a dried water glass having a water content of 3% by weight or less on the honeycomb structure, Next, the dried water glass is humidified by contact with humid air at room temperature having a relative humidity of 80 to 99% until the water content becomes 25 to 60% by weight, and then pH 1-2 containing mineral acid and its ammonium salt, temperature. 50 ~
A method for producing a dehumidifying element, comprising immersing in water at 80 ° C. to convert water glass into a silicate hydrogel, washing with water and drying to convert the silicate hydrogel into silica gel.
JP33911596A 1996-12-05 1996-12-05 Manufacturing method of dehumidifying element Expired - Fee Related JP3305602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33911596A JP3305602B2 (en) 1996-12-05 1996-12-05 Manufacturing method of dehumidifying element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33911596A JP3305602B2 (en) 1996-12-05 1996-12-05 Manufacturing method of dehumidifying element

Publications (2)

Publication Number Publication Date
JPH10165748A JPH10165748A (en) 1998-06-23
JP3305602B2 true JP3305602B2 (en) 2002-07-24

Family

ID=18324405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33911596A Expired - Fee Related JP3305602B2 (en) 1996-12-05 1996-12-05 Manufacturing method of dehumidifying element

Country Status (1)

Country Link
JP (1) JP3305602B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894529B2 (en) 1999-06-28 2007-03-22 ニチアス株式会社 Dehumidifying agent, dehumidifying element and manufacturing method thereof
JP5232517B2 (en) * 2008-03-28 2013-07-10 ニチアス株式会社 Silcagel, production method thereof, silica gel-supported paper and silica gel element
JP5232545B2 (en) * 2008-06-23 2013-07-10 ニチアス株式会社 silica gel
CN114682045B (en) * 2022-03-17 2024-03-08 青岛华世洁环保科技有限公司 Antibacterial household dehumidifying rotating wheel and preparation method thereof

Also Published As

Publication number Publication date
JPH10165748A (en) 1998-06-23

Similar Documents

Publication Publication Date Title
JP2579767B2 (en) Ultra-low concentration gas adsorption element and gas adsorption removal device
JP3346680B2 (en) Adsorbent for moisture exchange
JPH0581831B2 (en)
JP3222728B2 (en) Element for moisture exchanger, moisture exchanger medium and method for producing the same
US5683532A (en) Method of manufacturing an active silica gel honeycomb adsorbing body usable in an atmosphere having 100% relative humidity
KR101641985B1 (en) Honeycomb matrix comprising macroporous desiccant, process and use thereof
JP3305602B2 (en) Manufacturing method of dehumidifying element
JP5392121B2 (en) Method for producing hygroscopic agent
JPH02160046A (en) Production of gas adsorbing element
EP1130161B1 (en) Method for the production of a dehumidifying element
EP1160010A2 (en) Humidity adsorbent agent and humidity adsorbent element using thereof
JPS63218235A (en) Production of element for dehumidification
US20030056884A1 (en) Heat and moisture exchange media
JPH0223208B2 (en)
JPH0225107B2 (en)
JPH0677668B2 (en) Method for manufacturing moisture exchange element
JP3322519B2 (en) Rotor of rotary organic solvent vapor adsorption device
JPS63319021A (en) Production of moisture absorbing device
JPH0773654B2 (en) Method of manufacturing moisture exchange element
JP3345596B2 (en) Adsorbent for moisture exchange
JP2002052337A (en) Air-conditioning material exhibiting excellent water absorption behavior at high-humidity
JP4589044B2 (en) Dehumidifier and dehumidifying member
JP2000189744A (en) Production of moisture regulating material
KR960010898B1 (en) Method for producing a gas absorptions elements
JPS58140340A (en) Porous glass fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees