JP3302506B2 - Electroslag remelting electrode and method for producing electroslag remelted steel ingot - Google Patents

Electroslag remelting electrode and method for producing electroslag remelted steel ingot

Info

Publication number
JP3302506B2
JP3302506B2 JP11609194A JP11609194A JP3302506B2 JP 3302506 B2 JP3302506 B2 JP 3302506B2 JP 11609194 A JP11609194 A JP 11609194A JP 11609194 A JP11609194 A JP 11609194A JP 3302506 B2 JP3302506 B2 JP 3302506B2
Authority
JP
Japan
Prior art keywords
electrode
electroslag
dissolution rate
esr
steel ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11609194A
Other languages
Japanese (ja)
Other versions
JPH07305121A (en
Inventor
勝利 折田
岩生 浅野
奏 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP11609194A priority Critical patent/JP3302506B2/en
Publication of JPH07305121A publication Critical patent/JPH07305121A/en
Application granted granted Critical
Publication of JP3302506B2 publication Critical patent/JP3302506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、異成分領域を有する高
低圧一体タービンロータなどの製造に使用されるエレク
トロスラグ再溶解(以下「ESR」という)用電極およ
びこの電極を用いたESR鋼塊の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for electroslag remelting (hereinafter referred to as "ESR") used for manufacturing a high-low pressure integrated turbine rotor having a heterogeneous region, and an ESR ingot using the electrode. And a method for producing the same.

【0002】[0002]

【従来の技術】従来、高低圧一体タービンロータでは、
高圧部、中圧部、低圧部によってそれぞれ要求される特
性が異なるため、それぞれの特性に合わせて各圧力部に
使用される材料の組成を変えた組成複合型のロータが提
案されている。ところで、特に大型のタービンロータで
は偏析の防止などの観点からESR法を用いた製造方法
が広く採用されているが、上記した組成複合型のロータ
を一体的に製造するためには、ロータの組成に合わせて
組成を変えたESR電極が必要である。このため具体的
には、成分の異なる鋼塊を軸方向に接合したESR電極
(特公昭52−4254号、同56−14842号等)
や、異なる成分の電極を連続して使用する方法(特開昭
56−23367号等)が提案されている。
2. Description of the Related Art Conventionally, in a high-low pressure integrated turbine rotor,
Since the required characteristics are different depending on the high-pressure part, the medium-pressure part, and the low-pressure part, a composition composite rotor in which the composition of the material used for each pressure part is changed in accordance with each characteristic has been proposed. By the way, a manufacturing method using the ESR method is widely adopted particularly from a viewpoint of preventing segregation in a large-sized turbine rotor. It is necessary to use an ESR electrode whose composition is changed according to the requirements. Therefore, specifically, an ESR electrode in which steel ingots having different components are joined in the axial direction (JP-B Nos. 52-4254, 56-14842, etc.)
Also, a method of continuously using electrodes having different components (Japanese Patent Application Laid-Open No. 56-23367) has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかし、いずれの場合
においても、得られたESR鋼塊には異なる成分が混じ
りあった遷移領域が広く形成されて、意図した特性が得
られない場合があり、製品としての信頼性に劣るという
問題がある。これに対し、組成の異なる領域間に予め両
成分が融合された中間部分を設けたESR電極(特開昭
60−135536号)も提案されているが、遷移領域
を十分に減少させるまでには至っていない。この発明は
上記事情を背景としてなされたものであり、遷移領域を
有効に減少させて信頼性の高い製品を製造することがで
きるESR用電極およびESR鋼塊の製造方法を提供す
ることを目的とする。
However, in any case, in the obtained ESR ingot, the transition region where different components are mixed is formed widely, and the intended characteristics may not be obtained. There is a problem that the reliability as a product is poor. On the other hand, an ESR electrode in which an intermediate portion in which both components are fused in advance between regions having different compositions has been proposed (Japanese Patent Application Laid-Open No. 60-135536), but until the transition region is sufficiently reduced. Not reached. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an ESR electrode and a method of manufacturing an ESR steel ingot that can effectively reduce a transition region and manufacture a highly reliable product. I do.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明のうち、第1の発明のエレクトロスラグ再溶
解用電極は、軸方向において化学成分が異なる2以上の
異成分領域からなり、これら異成分領域の境界部分にく
びれ部が形成されており、該くびれ部は、断面積比で通
常太さ部分の0.04〜0.25倍からなる最小太さ部
が異成分領域の境界に位置しているとともに通常太さ部
から最小太さ部にかけて外壁面がテーパー形状に形成さ
れているとを特徴とする
Means for Solving the Problems In order to solve the above problems, among the present invention, the electroslag remelting electrode of the first invention comprises two or more different component regions having different chemical components in the axial direction. Ku at the boundary of these different component area
A constricted portion is formed, and the constricted portion has a cross-sectional area ratio.
Minimum thickness of 0.04 to 0.25 times the normal thickness
Is located at the boundary of the heterogeneous component area and is usually thick
The outer wall surface is tapered from
It is characterized by having been .

【0005】第の発明のエレクトロスラグ再溶解鋼塊
の製造方法は、エレクトロスラグ再溶解に際して、軸方
向において化学成分が異なる2以上の異成分領域からな
り、これら異成分領域の境界部分にくびれ部が形成され
ているエレクトロスラグ再溶解用電極を使用するととも
に、この電極のくびれ部の溶解速度を通常太さ部分の溶
解速度よりも小さくすることを特徴とする。第の発明
のエレクトロスラグ再溶解鋼塊の製造方法は、電極のく
びれ部の溶解速度が、通常太さ部分の溶解速度の20〜
80%であることを特徴とする。
[0005] A method for producing an electroslag remelted steel ingot according to a second aspect of the present invention is characterized in that, when the electroslag is melted again ,
From two or more different component regions that have different chemical components in different directions.
A constriction is formed at the boundary between these different component regions.
In addition to using the electroslag remelting electrode described above, the dissolution rate of the constricted part of the electrode is made smaller than the dissolution rate of the normally thick part. In the method for producing an electroslag remelted steel ingot according to the third invention, the melting rate of the constricted portion of the electrode is usually 20 to 20 times the melting speed of the thick portion.
It is characterized by being 80%.

【0006】本発明のESR電極は、軸方向で成分の異
なる2以上の異成分領域が例えば溶接や機械的方法で接
合されたものであり、代表的には高低圧一体型タービン
ロータの製造に供される。ただし、本発明としては、異
成分領域の数や用途等が限定されるものでない。また、
この電極は製造される製品に応じた径を有するものであ
り、例えば大型の高低圧一体型タービンロータの製造に
おいては、通常太さ部分で900〜1350mmの径を
有するような電極が使用されるが、本発明としては電極
太さが限定されるものでもない。
The ESR electrode of the present invention is obtained by joining two or more different component regions having different components in the axial direction by, for example, welding or a mechanical method, and is typically used for manufacturing a high-low pressure integrated turbine rotor. Provided. However, the present invention does not limit the number, use, and the like of the different component regions. Also,
This electrode has a diameter corresponding to the product to be manufactured. For example, in the manufacture of a large high-low pressure integrated turbine rotor, an electrode having a diameter of 900 to 1350 mm in a thickness portion is usually used. However, the thickness of the electrode is not limited in the present invention.

【0007】なお、本発明の電極のくびれ部は最小太さ
部を、断面積比で通常太さ部の0.04〜0.25倍と
する。一般に電極形状は断面円形であり、円柱電極では
上記内容を換言すれば、くびれ部の最小太さ部を、通常
太さ部分の0.2〜0.5倍の径にすることになる。
[0007] Incidentally, the constricted portion of the electrode of the present invention the minimum thickness portion, and from 0.04 to 0.25 times the normal thickness portion in sectional area ratio
I do. In general, the shape of the electrode is circular in cross section. In the case of a cylindrical electrode, in other words, the minimum thickness of the constricted portion is 0.2 to 0.5 times the diameter of the normal thickness .

【0008】また、くびれ部の通常太さ部から最小太さ
部にかけては、急激な太さの変化がないように外壁面を
テーパー状に形成する。このテーパー部の傾斜角度は3
0〜60度とするのが望ましい。この角度が30度より
も小さいと、テーパー部が必要以上に長くなり、テーパ
ーの形成作業が面倒になる。また、傾斜角度が60度よ
りも大きいと、断面積の変化が急激であり、溶解速度の
制御が難しくなるためである。
Further, the over the minimum thickness portion from the normal thickness portion of the neck portion, that form a outer wall surface tapered such that there is no rapid change in thickness. The inclination angle of this tapered part is 3
Desirably, it is 0 to 60 degrees. If this angle is smaller than 30 degrees, the tapered portion becomes unnecessarily long, and the operation of forming the taper becomes troublesome. On the other hand, if the inclination angle is larger than 60 degrees, the change in the cross-sectional area is sharp, and it is difficult to control the dissolution rate.

【0009】上記電極を用いてESR鋼塊を製造する際
には、フィルレシオ(電極径/鋼塊径)を0.5〜0.
8に設定するのが望ましい。そして電極の溶解速度は、
、第の発明で示すように、くびれ部で通常太さ部
分よりも小さくし(望ましくは20〜80%)、さらに
は最小太さ部で最小にするのが望ましい。また、溶解速
度の低下は、急激に変化させないようにくびれ部の前後
の通常太さ部分で徐々に変化(低下または増大)させる
ものであってもよい。
When producing an ESR ingot using the above-mentioned electrode, the fill ratio (electrode diameter / steel ingot diameter) is set to 0.5 to 0.
It is desirable to set to 8. And the dissolution rate of the electrode is
As shown in the second and third aspects of the present invention, it is desirable to make the constricted portion smaller than the normal thickness portion (preferably 20 to 80%), and further, to minimize the constriction portion in the minimum thickness portion. In addition, the decrease in the dissolution rate may be gradually changed (decreased or increased) in a normal thickness portion before and after the constricted portion so as not to be drastically changed.

【0010】[0010]

【作用】すなわち本発明によれば、異なる成分が混じり
合った遷移領域をできるだけ小さくすることができ、異
成分領域の境界部近傍でも所望の特性を得ることができ
る。また、異成分の材料を溶接などによって接合する際
にも、接合部分が小さくなり、作業能率が向上する。次
に、本発明における数値範囲の限定理由を説明する。
According to the present invention, the transition region in which different components are mixed can be made as small as possible, and desired characteristics can be obtained even near the boundary between the different component regions. Also, when materials of different components are joined by welding or the like, the joining portion is reduced, and work efficiency is improved. Next, the reason for limiting the numerical range in the present invention will be described.

【0011】断面積比:0.04〜0.25倍 異成分領域の境界部に、断面積の小さいくびれ部を形成
することによって、電極溶解量を減らし、遷移領域を小
さくすることが可能となる。この作用を確実に得るため
には、最小太さ部(通常は上記境界に位置する)の断面
積を通常太さ部分の0.25倍以下にするのが望まし
い。一方、この断面積比を0.04倍未満にしても、上
記作用の向上は殆どないばかりでなく、電極として強度
が不十分になるので上記断面積比が望ましい。
Cross-sectional area ratio: 0.04 to 0.25 times By forming a constricted portion having a small cross-sectional area at the boundary between different component regions, it is possible to reduce the amount of electrode dissolution and reduce the transition region. Become. In order to surely obtain this effect, it is desirable that the cross-sectional area of the minimum thickness portion (usually located at the boundary) be 0.25 times or less the normal thickness portion. On the other hand, if the cross-sectional area ratio is less than 0.04 times, the above-mentioned action is hardly improved, and the strength as an electrode becomes insufficient. Therefore, the above-mentioned cross-sectional area ratio is desirable.

【0012】溶解速度:20〜80% 上記したように、電極にくびれ部を設け、このくびれ部
の溶解速度を通常太さ部分よりも小さくすることによっ
て、溶融プールを浅くして遷移領域を小さくできる。上
記作用を十分に得るためには、くびれ部の溶解速度を通
常太さ部分の溶解速度の80%以下にするのが望まし
い。一方、上記溶解速度を20%未満にしても、作用の
向上は僅かであり、さらに溶解に長い時間を要して作業
能率が低下するので20〜80%にするのが望ましい。
なお、同様の理由で40〜70%の範囲にするのが一層
望ましい。この溶解速度は、通常の太さ部の溶解速度に
対する比率で示されるので、絶対的な数値が限定される
ものではないが、例えば、通常太さ部分の溶解速度が8
00〜2000kg/hrの場合には、くびれ部の溶解
速度を400〜1600kg/hrに限定するのが望ま
しいこととなる。
Dissolution rate: 20 to 80% As described above, by forming a constricted portion on the electrode and making the dissolving speed of the constricted portion smaller than the normal thickness portion, the molten pool is made shallower and the transition region is made smaller. it can. In order to obtain the above effect sufficiently, it is desirable that the dissolution rate of the constricted part is usually 80% or less of the dissolution rate of the thick part. On the other hand, even if the dissolution rate is less than 20%, the effect is slightly improved, and the dissolution takes a long time to lower the work efficiency. Therefore, the dissolution rate is preferably set to 20 to 80%.
For the same reason, it is more desirable to set the range to 40 to 70%. Since the dissolution rate is indicated by a ratio to the dissolution rate of the normal thickness portion, the absolute value is not limited.
In the case of 00 to 2000 kg / hr, it is desirable to limit the dissolution rate of the constricted portion to 400 to 1600 kg / hr.

【0013】また、前述したように、電極のフィルレシ
オ(電極径/モールド径)を所定範囲内(通常太さ部で
0.5〜0.8)に定めるのが望ましい。これは、フィ
ルレシオが0.5未満であると、必要溶解量を得るには
電極長さを長くしなければならず、作業能率が低下する
ためであり、また、0.8を越えると、モールド壁と電
極との隙間が小さくなり、スラグ注入などの作業が難し
くなること及びモールド壁と電極のスパーク現象が起き
易くなるためである。
As described above, it is desirable that the fill ratio (electrode diameter / mold diameter) of the electrode is set within a predetermined range (usually 0.5 to 0.8 in the thickness portion). This is because if the fill ratio is less than 0.5, the electrode length must be increased to obtain the required amount of dissolution, and the working efficiency is reduced. This is because the gap between the mold wall and the electrode becomes small, and the work such as slag injection becomes difficult, and the spark phenomenon between the mold wall and the electrode becomes easy to occur.

【0014】[0014]

【実施例】表1に示す組成のCrMoV鋼塊1とNiC
rMoV鋼塊2を常法によって溶製、鍛造した後、それ
ぞれの一端部に機械加工によって先細のテーパー部1
a、2aを形成する。次に、これらテーパー部1a、2
aを突き合わせるようにして鋼塊同士を溶接し、くびれ
部3a、通常太さ部分3bを有する本発明のESR電極
4を製造した。なお、3cは、補助電極である。この電
極4の製造に際し、テーパー部同士の溶接は周囲長も短
く短時間で容易に行うことができた。
EXAMPLE A CrMoV steel ingot 1 having the composition shown in Table 1 and NiC
After the rMoV ingot 2 is melted and forged by a conventional method, the tapered tapered portion 1 is machined at one end thereof.
a and 2a are formed. Next, these tapered portions 1a, 2a
The steel ingots were welded to each other so as to abut each other to produce an ESR electrode 4 of the present invention having a constricted portion 3a and a normal thickness portion 3b. 3c is an auxiliary electrode. In manufacturing the electrode 4, the welding between the tapered portions was short and the peripheral length was short, so that the welding could be easily performed in a short time.

【0015】このESR電極4は、通常太さ部分3bが
径1350mm、くびれ部3aの最小太さ部分(接合
部)が径514mmで、断面積比が約0.145であ
る。さらに、テーパー部1aは、長さが320mm、傾
斜角度αが約53度であり、テーパー部2aは、長さが
400mm、傾斜角度βが約46度であった。また、比
較のため、テーパー部を形成することなくCr−Mo−
V鋼塊とNi−Cr−Mo−V鋼塊とをそのまま溶接し
た、従来の比較ESR電極を用意した。この電極の溶接
作業は、本発明のESR電極と異なり、周囲長も長く、
作業に長い時間を要した。
The ESR electrode 4 usually has a diameter of 1350 mm in the thickness portion 3b, a diameter of 514 mm in the minimum thickness portion (joining portion) of the constricted portion 3a, and a cross-sectional area ratio of about 0.145. Further, the tapered portion 1a had a length of 320 mm and an inclination angle α of about 53 degrees, and the tapered portion 2a had a length of 400 mm and an inclination angle β of about 46 degrees. Further, for comparison, Cr-Mo-
A conventional comparative ESR electrode was prepared by welding a V steel ingot and a Ni-Cr-Mo-V steel ingot as they were. Unlike the ESR electrode of the present invention, the welding operation of this electrode has a long perimeter,
It took a long time to work.

【0016】[0016]

【表1】 [Table 1]

【0017】上記電極を用いて、通常太さ部分の溶解速
度を1600kg/hr、くびれ部の最小太さ部分を同
速度または1000kg/hr(通常深さ部分の62.
5%)に制御して、エレクトロスラグ再溶解を行い、両
鋼塊の境界部(接合部)に対応したESR鋼塊の溶融プ
ール深さを観察することによって遷移領域の大きさを評
価した。本発明の電極を用いて溶解速度を変化させた場
合の溶解線図は図2に示すとおりであり、溶解速度の急
激な変化を避けるため、通常太さ部分から徐々に溶解速
度を変化させた。
Using the above electrode, the dissolution rate of the normal thickness portion is 1600 kg / hr, and the minimum thickness portion of the constricted portion is the same speed or 1000 kg / hr (62.
5%), the electroslag was remelted, and the size of the transition region was evaluated by observing the depth of the molten pool of the ESR ingot corresponding to the boundary portion (joining portion) of both ingots. The dissolution diagram when the dissolution rate was changed using the electrode of the present invention is as shown in FIG. 2, and in order to avoid a rapid change in the dissolution rate, the dissolution rate was gradually changed from the normal thickness portion. .

【0018】上記によって得られたESR鋼塊は、表2
に示すように、比較電極を用いた場合、溶融プールが深
く、大きな遷移領域が形成されていることが分かる。こ
れに対し、本発明のESR電極を用いた場合には、溶融
プール深さが浅く、特にくびれ部の溶解速度を小さく制
御した場合は、図3に示すように溶融プール深さは顕著
に浅くなっており、遷移領域の減少は明らかである。
The ESR ingot obtained as described above is shown in Table 2.
As shown in the graph, when the comparative electrode was used, the molten pool was deep and a large transition region was formed. On the other hand, when the ESR electrode of the present invention is used, the depth of the molten pool is shallow, and particularly when the dissolution rate of the constricted portion is controlled to be small, the depth of the molten pool is remarkably shallow as shown in FIG. The decrease in the transition region is apparent.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
異成分が混じり合った遷移領域を狭くすることができ、
広い範囲で所望の特性を有する大型複合ESR鋼塊の製
造が可能になる。したがって、このESR鋼塊を使用す
ることにより信頼性の高い、高低圧一体型タービンロー
タ等の製品を製造することができる。また、ESR電極
を用意する際に、異成分鋼塊を容易に接合することがで
き、作業能率が向上する効果もある。
As described above, according to the present invention,
The transition region where different components are mixed can be narrowed,
A large composite ESR ingot having desired properties in a wide range can be manufactured. Therefore, by using this ESR steel ingot, it is possible to manufacture a highly reliable product such as a high / low pressure integrated turbine rotor. In addition, when preparing the ESR electrode, it is possible to easily join different component steel ingots, and there is also an effect that work efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明のESR電極を示す概略図であ
る。
FIG. 1 is a schematic diagram showing an ESR electrode of the present invention.

【図2】図2は、ESRの際の溶解線図である。FIG. 2 is a dissolution diagram during ESR.

【図3】図3は、本発明の電極を用いて得られたESR
鋼塊のプール深さを示す模式図である。
FIG. 3 shows the ESR obtained using the electrode of the present invention.
It is a schematic diagram which shows the pool depth of a steel ingot.

【符号の説明】[Explanation of symbols]

1 CrMoV鋼塊 2 NiCrMoV
鋼塊 3a くびれ部 3b 通常太さ部分 4 ESR電極
1 CrMoV steel ingot 2 NiCrMoV
Steel ingot 3a Neck 3b Normal thickness 4 ESR electrode

フロントページの続き (56)参考文献 特開 昭49−78601(JP,A) 特開 昭48−47458(JP,A) 特公 昭56−14842(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 B22D 23/10 Continuation of the front page (56) References JP-A-49-78601 (JP, A) JP-A-48-47458 (JP, A) JP-B-56-14842 (JP, B2) (58) Fields investigated (Int) .Cl. 7 , DB name) C22B 1/00-61/00 B22D 23/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軸方向において化学成分が異なる2以上
の異成分領域からなり、これら異成分領域の境界部分に
くびれ部が形成されており、該くびれ部は、断面積比で
通常太さ部分の0.04〜0.25倍からなる最小太さ
部が異成分領域の境界に位置しているとともに通常太さ
部から最小太さ部にかけて外壁面がテーパー形状に形成
されていることを特徴とするエレクトロスラグ再溶解用
電極
The present invention comprises two or more different component regions having different chemical components in the axial direction, and a constricted portion is formed at a boundary portion between these different component regions. Characterized in that the minimum thickness portion 0.04 to 0.25 times is located at the boundary of the different component region and the outer wall surface is formed in a tapered shape from the normal thickness portion to the minimum thickness portion. Electroslag remelting electrode .
【請求項2】 エレクトロスラグ再溶解に際して、軸方
向において化学成分が異なる2以上の異成分領域からな
り、これら異成分領域の境界部分にくびれ部が形成され
ているエレクトロスラグ再溶解用電極を使用するととも
に、この電極のくびれ部の溶解速度を通常太さ部分の溶
解速度よりも小さくすることを特徴とするエレクトロス
ラグ再溶解鋼塊の製造方法
2. An electroslag remelting electrode comprising two or more different component regions having different chemical components in an axial direction and having a constricted portion formed at a boundary portion between these different component regions when remelting the electroslag. And a dissolution rate of the constricted portion of the electrode is made smaller than a dissolution rate of the normally thick portion .
【請求項3】 電極のくびれ部の溶解速度は、通常太さ
部分の溶解速度の20〜80%であることを特徴とする
請求項2記載のエレクトロスラグ再溶解鋼塊の製造方
3. The method for producing an electroslag remelted steel ingot according to claim 2, wherein the dissolution rate of the constricted part of the electrode is usually 20 to 80% of the dissolution rate of the thick part .
JP11609194A 1994-05-06 1994-05-06 Electroslag remelting electrode and method for producing electroslag remelted steel ingot Expired - Fee Related JP3302506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11609194A JP3302506B2 (en) 1994-05-06 1994-05-06 Electroslag remelting electrode and method for producing electroslag remelted steel ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11609194A JP3302506B2 (en) 1994-05-06 1994-05-06 Electroslag remelting electrode and method for producing electroslag remelted steel ingot

Publications (2)

Publication Number Publication Date
JPH07305121A JPH07305121A (en) 1995-11-21
JP3302506B2 true JP3302506B2 (en) 2002-07-15

Family

ID=14678494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11609194A Expired - Fee Related JP3302506B2 (en) 1994-05-06 1994-05-06 Electroslag remelting electrode and method for producing electroslag remelted steel ingot

Country Status (1)

Country Link
JP (1) JP3302506B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053023A1 (en) * 2008-11-04 2010-05-14 株式会社東芝 Method for manufacturing a steam turbine rotor, and steam turbine rotor
CN104985161B (en) * 2015-07-24 2017-03-01 东北大学 Vacuum electroslag remelting prepares the device and method of dual alloy turbine rotor steel ingot

Also Published As

Publication number Publication date
JPH07305121A (en) 1995-11-21

Similar Documents

Publication Publication Date Title
CA1186874A (en) Method of making a male resistance welding electrode
JP4721659B2 (en) Apparatus and method for friction stir welding high strength materials and articles produced therefrom
EP0320877B1 (en) Lamination of oxide dispersion strengthened patinum and alloys
JP3302506B2 (en) Electroslag remelting electrode and method for producing electroslag remelted steel ingot
US4678720A (en) Silver-copper-titanium brazing alloy
JPS6053099B2 (en) Method of manufacturing hot-processed titanium products
JP3132602B2 (en) Manufacturing method of friction welding valve
JP2006193765A (en) Method for producing member made of aluminum alloy
JP3037611B2 (en) Method for producing remelted ingot of electroslag and method for producing turbine rotor shaft by remelting electroslag
JP3072199B2 (en) Method for producing Ni-Fe-based super heat-resistant alloy ingot
EP0264936B1 (en) Method of producing composite steel body shaft
KR100350072B1 (en) Method of manufacturing high conductivity dispersion streng thened copper alloy
JP2005271016A (en) Friction welding method of steel tube and aluminum alloy hollow member
JPH09248633A (en) Composite punch for fine perforation and its manufacture
JP3350768B2 (en) Pipe manufacturing method
JP3110565B2 (en) Method of manufacturing working roll for cold rolling
JPH07139542A (en) Screw rotor part and manufacture of screw
JPS61100333A (en) Axially drilled material and method of producing same
JPH06102245B2 (en) Manufacturing method of axisymmetric hollow component of bearing steel
JPH0692602B2 (en) Additive powder for surface hardening of Ti and Ti alloy base materials
SU1504024A1 (en) Method of preparing edges for welding
JPS6142403A (en) Production of seamless metallic pipe made of alloy metal consisting of hardly workable material
JPS6254565A (en) Production of nickel-titanium alloy wire
JPH05212532A (en) Manufacture of complex steel ingot
JPH08323455A (en) Manufacture of centrifugal casting sleeve

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140426

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees