JP3292183B2 - Spiral reverse osmosis membrane element - Google Patents

Spiral reverse osmosis membrane element

Info

Publication number
JP3292183B2
JP3292183B2 JP28135199A JP28135199A JP3292183B2 JP 3292183 B2 JP3292183 B2 JP 3292183B2 JP 28135199 A JP28135199 A JP 28135199A JP 28135199 A JP28135199 A JP 28135199A JP 3292183 B2 JP3292183 B2 JP 3292183B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
flow path
supply liquid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28135199A
Other languages
Japanese (ja)
Other versions
JP2000288542A (en
Inventor
正浩 木原
進一 峯岸
貴之 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP28135199A priority Critical patent/JP3292183B2/en
Publication of JP2000288542A publication Critical patent/JP2000288542A/en
Application granted granted Critical
Publication of JP3292183B2 publication Critical patent/JP3292183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スパイラル型逆浸
透膜に関するものであり、特に不純物を含む種々の液体
から不純物を分離するため、特に海水の淡水化などの高
濃度の溶液を分離するために用いる新規なスパイラル型
逆浸透膜エレメントおよびそれを用いた分離装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spiral reverse osmosis membrane, and more particularly to separating impurities from various liquids containing the impurities, and particularly to separating a highly concentrated solution such as desalination of seawater. The present invention relates to a novel spiral reverse osmosis membrane element for use in a device and a separation device using the same.

【0002】[0002]

【従来の技術】近年、逆浸透膜を用いた液体の分離は、
省エネルギープロセスとして注目され、利用が進んでい
る。逆浸透分離法では、塩分等の溶質を含んだ溶液を該
溶液の浸透圧以上の圧力で逆浸透膜を透過させること
で、塩分等の溶質の濃度が低減された液体を得ることが
可能であり、例えば海水の淡水化、かん水の脱塩、超純
水の製造や排水処理に用いられている。
2. Description of the Related Art In recent years, liquid separation using a reverse osmosis membrane has
It is attracting attention as an energy saving process and its use is increasing. In the reverse osmosis separation method, by passing a solution containing a solute such as a salt through a reverse osmosis membrane at a pressure higher than the osmotic pressure of the solution, it is possible to obtain a liquid in which the concentration of the solute such as a salt is reduced. For example, it is used for desalination of seawater, desalination of brackish water, production of ultrapure water, and wastewater treatment.

【0003】逆浸透膜エレメントでは、液体の分離や濃
縮を効率よく行うために逆浸透膜に圧力が負荷される。
これに対し、図1に示すごとく、逆浸透膜エレメントの
透過液側の流路には、透過液の流路を確保し、かつ逆浸
透膜の性能を損なうことなく逆浸透膜を保持するため、
片面、あるいは両面に平行な溝を有するトリコットを使
用した透過液流路材が組み込まれている。
In a reverse osmosis membrane element, pressure is applied to a reverse osmosis membrane in order to efficiently separate and concentrate a liquid.
On the other hand, as shown in FIG. 1, the flow path on the permeated liquid side of the reverse osmosis membrane element secures a flow path for the permeated liquid and holds the reverse osmosis membrane without impairing the performance of the reverse osmosis membrane. ,
A permeate flow path material using a tricot having grooves parallel to one or both sides is incorporated.

【0004】また、スパイラル型逆浸透膜エレメントの
供給液側の流路には、図1に示すように、供給液側の流
路を確保して供給液を逆浸透膜面に均一に供給すると同
時に、供給液の流れを乱して濃度分極によるエレメント
の性能低下を抑制する役割を有する供給液側流路材が組
み込まれている。濃度分極とは、供給液中の不純物が供
給液側の逆浸透膜面で濃縮され、膜面の不純物濃度が供
給液の不純物濃度より高くなり、膜面の浸透圧を増加さ
せ造水量を低下させたり、膜面にゲルやスケールなどの
不溶物を析出させエレメント性能を低下させる現象で、
逆浸透法では、必ず起こる現象である。
As shown in FIG. 1, a flow path on the supply liquid side of the spiral reverse osmosis membrane element is secured on the supply liquid side to supply the supply liquid uniformly to the reverse osmosis membrane surface. At the same time, a supply liquid-side flow path member that has a role of disturbing the flow of the supply liquid and suppressing a decrease in element performance due to concentration polarization is incorporated. Concentration polarization means that impurities in the supply liquid are concentrated on the reverse osmosis membrane surface on the supply liquid side, and the impurity concentration on the membrane surface becomes higher than the impurity concentration on the supply liquid, increasing the osmotic pressure on the membrane surface and reducing the amount of fresh water Or the precipitation of insoluble substances such as gels and scales on the membrane surface, which lowers the element performance.
In the reverse osmosis method, it is a phenomenon that always occurs.

【0005】[0005]

【発明が解決しようとする課題】通常、スパイラル型逆
浸透膜エレメントにより、海水淡水化や果汁濃縮などの
ような高濃度の溶液を効率よく分離しようとする場合、
複数のエレメントを直列に組込んだ逆浸透膜分離装置を
用い、5.0〜10.0MPaといった高圧力をエレメ
ントに付加して運転を行う必要がある。このとき、逆浸
透膜エレメントには、高圧力かつ高濃度の条件下で、耐
圧性と分離性能の両方に優れた特性が要求される。
Generally, when a high-concentration solution such as seawater desalination or fruit juice concentration is to be efficiently separated by a spiral reverse osmosis membrane element,
It is necessary to use a reverse osmosis membrane separation device in which a plurality of elements are incorporated in series, and to perform operation while applying a high pressure of 5.0 to 10.0 MPa to the elements. At this time, the reverse osmosis membrane element is required to have characteristics excellent in both pressure resistance and separation performance under high pressure and high concentration conditions.

【0006】耐圧性については、従来のスパイラル型逆
浸透膜エレメントのほとんどが採用している図2に示す
ようなトリコットを使用した透過液流路材2では、高圧
下で逆浸透膜1がトリコットの溝に落ち込み、逆浸透膜
を傷つけたり透過液流路を閉塞したりして、著しく性能
が低下する問題があった。これに対し耐圧性を向上させ
るために、例えば図3で示すように、トリコット7の溝
を有する面の側に、直径0.05mm〜0.1mmの小
孔を0.1mm〜20mm程度の間隔で有する、厚さ
0.07〜0.4μmのポリエステルなどの多孔性シー
ト9を配することにより、高圧下での逆浸透膜の変形を
防止し、膜の傷付きや透過液流路の閉塞を防止すること
が知られている。しかし、この場合、多孔性シートの小
孔径を小さくし、かつ小孔の間隔を大きくすると、シー
ト全体の小孔面積が少ないため、シートの厚さが薄い場
合でも、シートの剛性は十分であるものの、透過液の透
過抵抗が極端に大きくなり、圧力損失が生じて十分な性
能が得られない場合がある。また、透過抵抗を小さくす
るために小孔面積を大きくすると、シートの剛性が小さ
くなるため、シートの厚さを厚くする必要があり、スパ
イラル型エレメントのように一定容積中に逆浸透膜を装
填する必要があるときは、1本のエレメントに装填する
ことができる逆浸透膜の膜面積が減少し、十分な透過液
量が得られなくなるという問題がある。
With respect to pressure resistance, in a permeated liquid flow path material 2 using a tricot as shown in FIG. 2, which is employed in most of the conventional spiral type reverse osmosis membrane elements, the reverse osmosis membrane 1 has a tricot under high pressure. Of the permeated liquid flow path, and the performance is remarkably deteriorated. On the other hand, in order to improve the pressure resistance, for example, as shown in FIG. 3, small holes having a diameter of 0.05 mm to 0.1 mm are provided on the side of the tricot 7 having a groove at an interval of about 0.1 mm to 20 mm. By disposing a porous sheet 9 made of polyester having a thickness of 0.07 to 0.4 μm or the like, deformation of the reverse osmosis membrane under high pressure is prevented, and the membrane is damaged and the permeated liquid flow path is blocked. It is known to prevent. However, in this case, when the small hole diameter of the porous sheet is reduced and the interval between the small holes is increased, the small hole area of the entire sheet is small, so even if the sheet is thin, the rigidity of the sheet is sufficient. However, there is a case where the permeation resistance of the permeated liquid becomes extremely large and a sufficient performance cannot be obtained due to a pressure loss. Also, if the area of the small holes is increased to reduce the permeation resistance, the rigidity of the sheet decreases, so it is necessary to increase the thickness of the sheet, and a reverse osmosis membrane is loaded in a fixed volume like a spiral type element. When it is necessary to perform such a process, there is a problem that the membrane area of the reverse osmosis membrane that can be loaded in one element decreases, and a sufficient amount of permeate cannot be obtained.

【0007】この問題に対して、エレメント1本当たり
の膜面積を向上させる方法としては、例えば、エレメン
トの供給液流路材の厚さを薄くすることにより、充填さ
れる膜を増やし、透過する面積を増加することが考えら
れる。さらにこの場合、供給液流路材を薄くすることに
よる効果として、濃度分極によるエレメント性能低下を
抑制することができる。これは、供給液側流路材の厚さ
を薄くすることにより、供給液の膜面線速度が大きくな
って膜面の流れが乱流状態となり、濃度分極層が薄くな
るためである。
In order to solve this problem, as a method of improving the membrane area per element, for example, the thickness of the supply liquid flow path material of the element is reduced, thereby increasing the membrane to be filled and permeating the membrane. It is conceivable to increase the area. Further, in this case, as an effect of reducing the thickness of the supply liquid flow path material, a decrease in element performance due to concentration polarization can be suppressed. This is because, by reducing the thickness of the supply liquid-side channel material, the linear velocity of the supply liquid on the film surface increases, the flow on the film surface becomes turbulent, and the concentration polarization layer becomes thin.

【0008】しかし、反面、供給液側流路材の厚さを薄
くすると供給液中の不純物や微生物によるファウリング
物質が供給液側の流路を閉塞してエレメント性能が低下
したり、エレメントの圧力損失が大きくなり、供給液を
供給するポンプの必要動力が大きくなるため電力費が高
くなったりするという問題が生じる。このため、従来の
スパイラル型逆浸透膜エレメントでは、供給液側流路材
はエレメントの圧力損失があまり大きくならないような
厚さのものを用いているため、エレメント1本当たりの
膜の透過面積が小さくなる。また図5に示すごとく、通
常は供給液側流路材の線状物交点同士の間隔XおよびY
が等しいものを用いているために、濃度分極によるエレ
メントの性能低下を十分に抑制することができない。し
たがって、これまでは高圧力かつ高濃度の条件下で、優
れた耐圧性と分離性能をともに発揮することができる逆
浸透膜エレメントは得られていなかった。
On the other hand, however, if the thickness of the supply liquid-side flow path material is reduced, impurities in the supply liquid or fouling substances due to microorganisms block the flow path on the supply liquid side, and the element performance deteriorates. The pressure loss increases, and the power required for the pump for supplying the supply liquid increases, resulting in a problem that the power cost increases. For this reason, in the conventional spiral reverse osmosis membrane element, the feed liquid side flow path material is of such a thickness that the pressure loss of the element is not so large, so that the permeation area of the membrane per element is small. Become smaller. In addition, as shown in FIG. 5, usually, the intervals X and Y between the intersections of the linear objects of the supply liquid side flow path material.
Are not equal to each other, it is not possible to sufficiently suppress the performance degradation of the element due to concentration polarization. Therefore, a reverse osmosis membrane element capable of exhibiting both excellent pressure resistance and separation performance under high pressure and high concentration conditions has not been obtained.

【0009】本発明は、かかる問題を解決し、高圧、高
濃度の条件下で、十分な耐圧性と分離性能を発揮するこ
とができるスパイラル型逆浸透膜エレメントを提供する
ことを目的とする。
An object of the present invention is to provide a spiral reverse osmosis membrane element which can solve such problems and exhibit sufficient pressure resistance and separation performance under high pressure and high concentration conditions.

【0010】[0010]

【課題を解決するための手段】本発明は、「逆浸透膜
と、透過液流路材と、供給液流路材とを含むユニットが
集水管の周囲に配置され、前記透過液流路材は、複数の
溝を有する織編物と、この織編物の溝を有する面側に配
置された透水性布帛とを含み、前記溝は、幅が0.1〜
0.2mmの範囲内にあり、深さが0.05〜0.2m
mの範囲内にあり、ピッチが18〜25本/cmの範囲
内にあり、前記供給液流路材は格子体からなり、その格
子体は、前記集水管の軸線に垂直な方向における交点間
の間隔Xが2〜5mmの範囲内にあり、前記軸線方向に
おける交点間の間隔YがXの1.0〜1.8倍の範囲内
にあることを特徴とするスパイラル型逆浸透膜エレメン
ト。」、「上記のスパイラル型逆浸透膜エレメントを用
いることを特徴とする液体の製造方法。」、「上記のス
パイラル型逆浸透膜エレメントと、このスパイラル型逆
浸透膜エレメントの上流側に設けた昇圧ポンプとを備え
ていることを特徴とする逆浸透膜分離装置。」、「第1
の昇圧ポンプ、逆浸透膜エレメント、第2の昇圧ポンプ
および上記のスパイラル型逆浸透膜エレメントをこの順
序で接続してなることを特徴とする逆浸透膜分離装
置。」および「上記の逆浸透膜分離装置を用いて海水を
処理することを特徴とする造水方法。」からなるもので
ある。
According to the present invention, a unit including a reverse osmosis membrane, a permeate flow path material, and a supply liquid flow path material is disposed around a water collection pipe, Includes a woven / knitted fabric having a plurality of grooves, and a water-permeable fabric disposed on the surface side of the woven / knitted material having the grooves.
It is in the range of 0.2mm and the depth is 0.05-0.2m
m, the pitch is in the range of 18 to 25 lines / cm, and the supply liquid flow path material is formed of a lattice, and the lattice is formed between intersections in a direction perpendicular to the axis of the water collecting pipe. Wherein the distance X between 2 and 5 mm is within a range of 2 to 5 mm, and the distance Y between the intersections in the axial direction is within a range of 1.0 to 1.8 times X. "A method for producing a liquid characterized by using the above-mentioned spiral reverse osmosis membrane element.", "The above-mentioned spiral reverse osmosis membrane element, and a pressurization provided upstream of the spiral reverse osmosis membrane element." A reverse osmosis membrane separation device comprising: a pump;
A reverse pressure osmosis membrane element, a second pressure booster pump and the above spiral type reverse osmosis membrane element are connected in this order. And "a method for producing fresh water, characterized by treating seawater using the above reverse osmosis membrane separation device."

【0011】[0011]

【発明の実施の形態】本発明者らは、透過液流路材と供
給液流路材のそれぞれについて、構造の異なる多くの透
過液流路材と供給液側流路材を用いて鋭意検討を行っ
た。その結果、ある特定の範囲の透過液流路材と供給液
流路材の組合せにおいて、海水淡水化などの高圧、高濃
度条件下で耐圧性と分離特性が、ともに優れたエレメン
トが得られることを見出した。以下に、発明の実施の形
態について図面を用いて説明する。 まず、透過液流路
材であるが、本発明の透過液流路材は、図4に示すよう
に、2枚の逆浸透膜エレメント1に挟まれて、少なくと
も一方の表面に溝を有する織編物(本発明においては、
織編物とは織物または編物を意味する。)10とその溝
を有する面に配された透水性布帛11を主たる構成部材
とする。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted intensive studies on each of a permeate flow path material and a supply liquid flow path material by using many permeate flow path materials and supply liquid side flow path materials having different structures. Was done. As a result, an element with both excellent pressure resistance and high separation characteristics under high pressure and high concentration conditions such as seawater desalination can be obtained for a combination of a certain range of permeate flow path material and feed liquid flow path material. Was found. Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, as for the permeated liquid flow path material, the permeated liquid flow path material of the present invention is sandwiched between two reverse osmosis membrane elements 1 and has a groove having a groove on at least one surface as shown in FIG. Knitted fabric (in the present invention,
A woven or knitted fabric means a woven or knitted fabric. 10) and the water-permeable cloth 11 arranged on the surface having the grooves are the main constituent members.

【0012】本発明においては、透過液流路材を構成す
る織編物の平均厚さは、0.15mm以上0.4mm以
下である。透過液流路材を構成する織編物の厚さが前記
の範囲にあれば、後述する透水性布帛を該織編物の溝を
有する面に配して、エレメントに組み込んだ場合に、逆
浸透膜と供給液流路材との組合せによって十分な充填膜
面積を得ることができる。織編物の平均厚さが0.15
mm以下では、確かに充填膜面積は多くすることができ
るが、後述する透過液流路となる溝の大きさが十分に確
保できなくなるため透過液の流動抵抗が大きくなり分離
性能が低下してしまうため好ましくない。また、0.4
mm以上では、透過液の流路は十分に確保できるが、一
方、エレメントにしたときの充填膜面積が小さくなり、
エレメント当たりの透過液量が低下してしまう問題があ
り、また織編物が厚くなると剛性が高くなり、スパイラ
ル形状に加工することが困難になるため好ましくない。
織編物の平均厚さのより好ましい範囲は、0.15mm
以上0.3mm以下である。
In the present invention, the average thickness of the woven or knitted fabric constituting the permeate flow path material is 0.15 mm or more and 0.4 mm or less. If the thickness of the woven or knitted fabric constituting the permeated liquid flow path material is within the above range, a reverse osmosis membrane is formed when a water-permeable fabric described later is arranged on a surface of the woven or knitted fabric having a groove and incorporated into an element. A sufficient packed film area can be obtained by the combination of the liquid and the supply liquid channel material. The average thickness of the woven or knitted fabric is 0.15
mm or less, the packed membrane area can certainly be increased, but the flow resistance of the permeate increases because the size of the groove serving as the permeate flow channel described later cannot be sufficiently secured, and the separation performance decreases. This is not preferred. Also, 0.4
mm or more, the flow path of the permeated liquid can be sufficiently secured, but on the other hand, the area of the packed membrane when the element is formed becomes small,
There is a problem in that the amount of permeate per element is reduced, and when the woven or knitted material is thick, the rigidity is increased, and it is difficult to process into a spiral shape, which is not preferable.
A more preferable range of the average thickness of the woven or knitted fabric is 0.15 mm.
It is 0.3 mm or less.

【0013】ここで、該織編物の平均厚さは、最低10
点以上の厚さを精密厚さゲージ等で測定した平均値を本
発明の平均厚さとするのが好ましい。
The woven or knitted fabric has an average thickness of at least 10
It is preferable that the average value obtained by measuring the thickness of a point or more with a precision thickness gauge or the like be the average thickness of the present invention.

【0014】該透過液流路材を構成する織編物は、少な
くとも一方の表面に溝を有する構造である。該織編物表
面の溝の大きさについては特に規定するものではない
が、溝幅は0.1mm以上0.2mm以下、溝の深さは
0.05mm以上0.2mm以下、また溝のピッチは1
8本/cm以上25本/cm以下の範囲とするのが、透
過液に対して十分低い流動抵抗を有し、かつ高圧下にお
いて、表面に配した透水性布帛を十分に支持できる大き
さであるので好ましい。より好ましくは、溝幅が0.1
mm以上0.15mm以下、溝の深さが0.1mm以上
0.15mm以下、また溝のピッチが20本/cm以上
23本/cm以下の範囲である。
The woven or knitted fabric constituting the permeated liquid channel material has a structure having a groove on at least one surface. The size of the groove on the surface of the woven or knitted fabric is not particularly specified, but the groove width is 0.1 mm or more and 0.2 mm or less, the groove depth is 0.05 mm or more and 0.2 mm or less, and the pitch of the groove is 1
The range of 8 lines / cm or more and 25 lines / cm or less has a sufficiently low flow resistance with respect to the permeated liquid and a size sufficient to support the water-permeable cloth disposed on the surface under high pressure. Is preferred. More preferably, the groove width is 0.1
mm to 0.15 mm, the depth of the groove is 0.1 mm to 0.15 mm, and the pitch of the groove is 20 lines / cm to 23 lines / cm.

【0015】ここで、溝幅、溝の深さおよび溝のピッチ
については、10〜50倍の倍率で拡大撮影した写真上
で、それぞれ最低10点以上の溝幅、溝の深さおよび溝
のピッチを測定した平均値とすることが好ましい。
Here, regarding the groove width, groove depth and groove pitch, at least 10 points or more of groove width, groove depth, and groove pitch on a photograph magnified at a magnification of 10 to 50 times. It is preferable that the average value is obtained by measuring the pitch.

【0016】また、透過液流路材の織編物の種類につい
ては、上述したような構造的特徴を有するものであれば
どのようなものでも良く特に限定しないが、高品質、か
つ安価で製造できる点でトリコットを織編物として用い
るのが好ましい。また、トリコットについては、例え
ば、ダブルデンビ、クインズコード、三枚オサ等、編成
組織の違いにより、いく通りもの種類が挙げられるが、
透過液の流路を確保し、かつ高圧下でも変形しにくいも
のであれば、どのようなものを使用しても良く、特に限
定はしない。
The type of the woven or knitted fabric of the permeate flow path material is not particularly limited as long as it has the above-mentioned structural characteristics, but it can be manufactured at high quality and at low cost. In view of this, it is preferable to use tricot as the woven or knitted fabric. Also, for tricots, for example, there are many types depending on the knitting organization, such as double denbi, Queen's code, three-piece mat,
Any material may be used as long as it secures a flow path for the permeated liquid and does not easily deform even under high pressure, and is not particularly limited.

【0017】織編物の材質については、流路材としての
形状を保持し、かつ透過液中への成分の溶出が少ないも
のならばどのようなものでも良く、例えば、ナイロン等
のポリアミド、ポリエステル、ポリアクリロニトリル、
ポリエチレンやポリプロピレン等のポリオレフィン、ポ
リ塩化ビニル、ポリ塩化ビニリデン、ポリフルオロエチ
レン、カーボンが挙げられるが、特に高圧下に耐えうる
強度や、後述する織編物の加工のしやすさ等を考慮する
と、ポリエステルを用いるのが好ましい。
The material of the woven or knitted fabric may be any material as long as it retains its shape as a channel material and has little elution of components into the permeate. For example, polyamide such as nylon, polyester, nylon, etc. Polyacrylonitrile,
Polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyvinylidene chloride, polyfluoroethylene, and carbon are listed.In particular, in consideration of the strength that can withstand high pressure and the ease of processing the woven or knitted fabric described later, polyester is used. It is preferable to use

【0018】また、本発明では、高圧下で流路材自体が
変形するのを抑制するために、織編物の剛性を高める硬
化処理を行うのが好ましい。硬化処理の方法としては、
例えば織編物にメラミンやエポキシなどの樹脂を含浸加
工したり、あるいは織編物を加熱して繊維を相互に融着
固化させる熱融着加工を施す等の方法があるが、本発明
では、高圧下において流路材自体が変形しないような硬
度が得られる処理方法であればいかなる方法でも用いる
ことができる。
In the present invention, in order to suppress deformation of the flow path material itself under high pressure, it is preferable to perform a hardening treatment for increasing the rigidity of the woven or knitted fabric. As a method of curing treatment,
For example, there is a method of impregnating a woven or knitted product with a resin such as melamine or epoxy, or a method of applying a heat fusion process of fusing and solidifying fibers by heating the woven or knitted material. In any of the above methods, any method can be used as long as it is a processing method capable of obtaining a hardness such that the channel material itself is not deformed.

【0019】さらに、本発明では高圧下において透水性
布帛や逆浸透膜に局部的、あるいは不均一な変形が起こ
らないようにするため、透過液流路材の織編物にカレン
ダー加工を施しても良い。カレンダー加工により織編物
は、繊維の形状に起因する微細な起伏がつぶされて非常
に平滑かつ平坦になる。このため、高圧下で透水性不織
布や逆浸透膜が不均一な変形を起こさなくなり性能や耐
久性をさらに向上させることが可能となる。
Furthermore, in the present invention, in order to prevent local or non-uniform deformation of the water-permeable cloth or reverse osmosis membrane under high pressure, the woven or knitted material of the permeated liquid channel material may be subjected to calendering. good. By calendering, the woven or knitted fabric becomes very smooth and flat due to the undulations caused by the fiber shape. For this reason, the water-permeable nonwoven fabric and the reverse osmosis membrane do not undergo uneven deformation under high pressure, and the performance and durability can be further improved.

【0020】本発明では、上述したような織編物の溝を
有する面に、さらに透水性を有する布帛を配することを
特徴とする。
The present invention is characterized in that a cloth having water permeability is further disposed on the surface of the woven or knitted material having the grooves as described above.

【0021】透水性布帛の厚さについては、薄すぎると
剛性が低くなり、高圧下で変形し、また、厚すぎると剛
性の面では良いが逆に、流路材自体が厚くなりすぎてエ
レメントに組み込んだときの膜面積が減少してしまう問
題や、透過抵抗が大きくなり、エレメントの性能が低下
する問題があるため、平均厚さが0.05mm以上0.
2mm以下の範囲とすることが好ましい、さらに好まし
くは0.07mm以上0.15mm以下の範囲である。
With respect to the thickness of the water-permeable cloth, if it is too thin, the rigidity will be low and it will be deformed under high pressure. If it is too thick, the rigidity is good, but on the contrary, the flow path material itself will be too thick and the element will be too thick. Since there is a problem that the film area when incorporated into the element is reduced, and a problem that the permeation resistance is increased and the performance of the element is reduced, the average thickness is 0.05 mm or more.
The range is preferably 2 mm or less, more preferably 0.07 mm or more and 0.15 mm or less.

【0022】ここで、該透水性布帛の平均厚さは、最低
10点以上の厚さを精密厚さゲージ等で測定した平均値
を本発明の平均厚さとするのが好ましい。
Here, the average thickness of the water-permeable fabric is preferably an average value obtained by measuring at least 10 points or more with a precision thickness gauge or the like as the average thickness of the present invention.

【0023】本発明では、布帛の種類については特に規
定するものではないが、透過液流路材として十分な透水
性と、高圧下での変形に耐えうる強度を満足する点で、
不織布を用いるのが好ましい。
In the present invention, the type of the fabric is not particularly specified, but in terms of satisfying sufficient water permeability as a permeate flow path material and strength capable of withstanding deformation under high pressure.
It is preferable to use a nonwoven fabric.

【0024】また、不織布はその製造方法により繊維の
方向性がない、いわゆる無配向状態のものと、一定方向
に繊維が配向したもの、あるいは両者の中間的なものが
あり、本発明においては、どちらを用いてもよいが、一
定の厚さの範囲で、不織布に十分な剛性を持たせるため
には、一定方向に繊維が配向したものを用いるのが好ま
しい。
The non-woven fabric is classified into two types: a non-woven fabric, which has no fiber orientation depending on the manufacturing method, a so-called non-oriented state, a fiber in which fibers are oriented in a certain direction, and a material intermediate between the two. Either of them may be used, but in order to provide the nonwoven fabric with sufficient rigidity in a certain thickness range, it is preferable to use one in which fibers are oriented in a certain direction.

【0025】さらに、一定方向に繊維が配向した不織布
は、織編物の表面に配されたときに、その繊維の配向方
向が織編物の溝の方向と直交するようにすることが好ま
しい。
Further, it is preferable that, when the nonwoven fabric in which the fibers are oriented in a certain direction is arranged on the surface of the woven or knitted fabric, the orientation direction of the fibers is orthogonal to the direction of the groove of the woven or knitted fabric.

【0026】これは、不織布の繊維が一定方向に配向し
ていると、不織布の強度や剛性に異方性が生じ、曲げや
たわみなどの変形に対しては、繊維の配向方向と平行な
方向よりも垂直方向の方が強くなるため、織編物の溝方
向と不織布の繊維の配向方向を直交させることにより、
高圧下で不織布が変形して織編物の溝に落ち込むのを抑
制できるからである。
This is because, when the fibers of the nonwoven fabric are oriented in a certain direction, the strength and rigidity of the nonwoven fabric become anisotropic, and deformations such as bending and bending are caused in a direction parallel to the orientation direction of the fibers. Because the vertical direction is stronger than the vertical direction, by making the groove direction of the woven or knitted fabric orthogonal to the orientation direction of the fibers of the nonwoven fabric,
This is because deformation of the nonwoven fabric under high pressure and falling into the groove of the woven or knitted fabric can be suppressed.

【0027】本発明において、布帛の透水性の度合い、
即ち透水度については特に規定しないが、25℃におけ
る純水の透過係数が0.5m3/(m2・MPa・mi
n)以上であることが、不織布の透過抵抗を小さくする
上で好ましい。さらに好ましくは0.8m3/(m2・M
Pa・min)以上である。
In the present invention, the degree of water permeability of the fabric,
That is, although the water permeability is not particularly specified, the permeability of pure water at 25 ° C. is 0.5 m 3 / (m 2 · MPa · mi.
n) or more is preferable in order to reduce the permeation resistance of the nonwoven fabric. More preferably, 0.8 m 3 / (m 2 · M
Pa · min) or more.

【0028】また、本発明の透水性布帛の材質について
も特に規定するものではなく、圧力に対して変形を起こ
さず、かつ透過液中への成分の溶出が少ないものならば
どのようなものでも良い。例えば、ナイロン等のポリア
ミド、ポリエステル、ポリアクリロニトリル、ポリエチ
レンやポリプロピレン等のポリオレフィン、ポリ塩化ビ
ニル、ポリ塩化ビニリデン、ポリフルオロエチレン等を
用いることができるが、これらの中でも、特に不織布に
するときの加工性が良く、強度が高く、かつ透過液中へ
の成分の溶出が少ない材質として、ポリエステルを用い
ることが好ましい。
Further, the material of the water-permeable fabric of the present invention is not particularly specified, and any material may be used as long as it does not deform under pressure and the component is less eluted into the permeate. good. For example, polyamides such as nylon, polyester, polyacrylonitrile, polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyvinylidene chloride, and polyfluoroethylene can be used. It is preferable to use polyester as a material having good strength, high strength, and little elution of components into the permeate.

【0029】次に、本発明のスパイラル型逆浸透膜エレ
メントにおける、もう1つの重要な構成部材である供給
液流路材について説明する。
Next, the supply liquid flow path material which is another important component in the spiral reverse osmosis membrane element of the present invention will be described.

【0030】供給液流路材については、図5に示す供給
液側流路材の集水管の軸線の平行方向に注目した線状構
造物の間隔Y(図5において12)とそれに垂直な方向
の間隔X(図5において13)と平均厚さを選択する
と、逆浸透膜自身の性能が等しくても、エレメントの圧
力損失をあまり増加させずにエレメント性能すなわち造
水性能と阻止性能とが著しく向上できるのである。
As for the supply liquid flow path material, the interval Y (12 in FIG. 5) of the linear structure and the direction perpendicular to the direction parallel to the axis of the water collection pipe of the supply liquid side flow path material shown in FIG. When the distance X (13 in FIG. 5) and the average thickness are selected, even if the performance of the reverse osmosis membrane itself is the same, the element performance, that is, the fresh water generation performance and the rejection performance are significantly increased without increasing the pressure loss of the element much. It can be improved.

【0031】供給液側流路材を構成する線状物の間隔を
小さくしてやれば、供給液のミクロに見た流れ方向が変
化する機会が増えるため、供給液の流れが乱れ、膜面に
生じた濃度分極層を薄くするので、エレメント性能が向
上する。しかし、あまりピッチを小さくすると供給液の
流動抵抗が増加するため、エレメントの圧力損失が増加
し、好ましくなく、最適な間隔にする必要がある。
If the distance between the linear objects constituting the supply liquid side flow path material is reduced, the chance of changing the flow direction of the supply liquid microscopically increases, so that the flow of the supply liquid is disturbed, and Since the concentration polarization layer is made thinner, the element performance is improved. However, if the pitch is too small, the flow resistance of the supply liquid increases, so that the pressure loss of the element increases.

【0032】また、図6、図7に示したように供給液は
供給液側流路材の網目線状物に沿って広がりながら流れ
ていくわけであるが、図6に示したように流れ方向に対
して、Yに対してXが大きいと供給液の流れが線状物か
ら剥離を起こし易く、供給液の流れは広がりにくい。一
方、図7に示したように流れ方向に対して、Xに対して
Yが大きい場合、供給液の流れが線状物から剥離しにく
く、比較的長い間線状物に沿って流れてから剥離するの
で供給液の流れが広がる。供給液の流れの広がりが大き
いと供給液が膜面に均一に供給され、流れを混合する効
果もあるので、濃度分極の影響が低減できると同時に、
流れの剥離が少ないため供給液の流動抵抗も小さくな
る。そこで線状物の網目の角度(α(図5における1
4))は、90°以下58°以上、好ましくは85°以
下61°以上、さらに好ましくは80°以下67°以上
が良い。
As shown in FIG. 6 and FIG. 7, the supply liquid flows while spreading along the mesh line of the supply liquid side flow path material. If X is larger than Y with respect to the direction, the flow of the supply liquid tends to separate from the linear object, and the flow of the supply liquid is difficult to spread. On the other hand, when Y is large relative to X in the flow direction as shown in FIG. 7, the flow of the supply liquid is unlikely to be separated from the linear object, and flows along the linear object for a relatively long time. Because of the peeling, the flow of the supply liquid spreads. If the spread of the flow of the supply liquid is large, the supply liquid is uniformly supplied to the membrane surface, and there is also an effect of mixing the flow, so that the influence of concentration polarization can be reduced and
Since there is little flow separation, the flow resistance of the supply liquid is also small. Then, the angle of the mesh of the linear object (α (1 in FIG. 5)
4)) is 90 ° or less and 58 ° or more, preferably 85 ° or less and 61 ° or more, and more preferably 80 ° or less and 67 ° or more.

【0033】以上整理すると、本発明は、Xを2mm以
上5mm以下、好ましくは2.5mm以上4.5mm以
下、さらに好ましくは3mm以上4mm以下とし、かつ
YをXの1.0倍以上1.8倍以下、好ましくは1.1
倍以上1.7倍以下、さらに好ましくは1.2倍以上
1.5倍以下とした供給液側流路材を用いたスパイラル
型逆浸透膜エレメントである。
In summary, according to the present invention, X is 2 mm or more and 5 mm or less, preferably 2.5 mm or more and 4.5 mm or less, more preferably 3 mm or more and 4 mm or less, and Y is 1.0 times or more of X and 1.times. 8 times or less, preferably 1.1 times
This is a spiral reverse osmosis membrane element using a supply liquid side channel material having a flow rate of from 1.2 times to 1.7 times, and more preferably from 1.2 times to 1.5 times.

【0034】ここで、X、Yは少なくとも1つの網目に
注目したところで、成立していればよいが、発明の最低
10点以上、望ましくは供給水が通過するところ全体の
網目を測定した平均値を本発明の間隔とするのが好まし
い。
Here, X and Y may be satisfied when at least one mesh is focused on, but it is sufficient if at least 10 points of the present invention, preferably an average value obtained by measuring the entire mesh where the supply water passes. Is preferably the interval of the present invention.

【0035】供給液側流路材の厚さについては、既に述
べたように薄くすれば、供給液の膜面線速度が大きくな
り膜面の流れが乱れるので、濃度分極層が薄くなり、エ
レメントの性能も向上し好ましいが、あまり供給液側流
路材の厚さを薄くすると供給液中の不純物や微生物によ
るファウリング物質が供給液側の流路を閉塞してエレメ
ント性能が低下したり、エレメントの圧力損失が大きく
なり、供給液を供給するポンプの必要動力が大きくなっ
たり、エレメントが破損するといった問題が生じるた
め、好ましくない。そこで、供給液側流路材の平均厚さ
は、0.5mm以上1.0mm以下、好ましくは0.5
5mm以上0.9mm以下、さらに好ましくは0.6m
m以上0.8mm以下である。
If the thickness of the supply liquid side channel material is reduced as described above, the linear velocity of the supply liquid on the film surface increases and the flow on the film surface is disturbed. However, if the thickness of the supply liquid side flow path material is too thin, fouling substances due to impurities or microorganisms in the supply liquid block the flow path on the supply liquid side, and the element performance decreases, This is not preferable because the pressure loss of the element increases, and the power required for the pump for supplying the supply liquid increases, and the element is damaged. Therefore, the average thickness of the supply liquid side channel material is 0.5 mm or more and 1.0 mm or less, preferably 0.5 mm or less.
5 mm or more and 0.9 mm or less, more preferably 0.6 m
m or more and 0.8 mm or less.

【0036】供給液側流路材の平均厚さは、供給水が通
過する部分の最低10点以上の厚さを精密厚みゲージ等
で測定した平均値を本発明の平均厚さと定義することが
好ましい。
The average thickness of the supply liquid side channel material is defined as an average value obtained by measuring at least 10 or more thicknesses of a portion through which the supply water passes with a precision thickness gauge or the like as the average thickness of the present invention. preferable.

【0037】また、供給液側流路材の厚さのばらつきが
大きいことは、逆浸透膜の性能を均一に発揮させること
ができず好ましくないので、供給液側流路材の最大厚さ
平均厚さの0.9倍以上1.1倍以下であることが好ま
しい。
In addition, a large variation in the thickness of the supply liquid side flow path material is not preferable because the performance of the reverse osmosis membrane cannot be exerted uniformly, so that the maximum thickness average of the supply liquid side flow path material is not preferable. The thickness is preferably 0.9 times or more and 1.1 times or less.

【0038】さらに、供給液側流路材の素材は、本発明
の主旨から言って特に限定されるものではないが、ポリ
エチレンまたはポリプロピレンが逆浸透膜を傷つけない
点やコストの面から好ましい。
Further, the material of the supply liquid side channel material is not particularly limited in view of the gist of the present invention, but polyethylene or polypropylene is preferable in terms of not damaging the reverse osmosis membrane and cost.

【0039】また、上述した本発明の透過液流路材と供
給液流路材を用い、逆浸透膜と組み合わせて外径200
mm、長さ1,000mm、集水管外径32mmのスパ
イラル型のエレメントに組み込んだ場合の、有効膜面積
は25m2以上35m2以下であり、好ましくは、27m
2以上32m2以下である。
Further, the above-mentioned permeated liquid flow path material and the supply liquid flow path material of the present invention are combined with a reverse osmosis membrane to have an outer diameter of 200 μm.
mm, the length of 1,000 mm, the effective membrane area when incorporated into a spiral-type element having a collecting pipe outer diameter of 32 mm is 25 m 2 or more and 35 m 2 or less, and preferably 27 m 2 or less.
It is 2 or more and 32 m 2 or less.

【0040】また、本発明のスパイラル型逆浸透膜エレ
メントに供給される供給液は、海水あるいは濃縮された
海水をさらに逆浸透分離する場合のように、溶液中の不
純物濃度が高く、浸透圧が高い溶液の方が、高い運転圧
力、例えば8MPa以上、さらには8.5MPa以上が
必要となり、しかも濃度分極によるエレメント性能の低
下が大きくなるため、本発明の効果が十分発揮され好ま
しい。
The feed liquid supplied to the spiral reverse osmosis membrane element of the present invention has a high impurity concentration and a high osmotic pressure in the solution as in the case of further reverse osmosis separation of seawater or concentrated seawater. A higher solution requires a higher operating pressure, for example, 8 MPa or more, and more preferably 8.5 MPa or more, and furthermore, the element performance is greatly reduced due to concentration polarization, so that the effect of the present invention is sufficiently exhibited and is preferable.

【0041】また、本発明のスパイラル逆浸透膜エレメ
ントは、ポンプおよび逆浸透膜エレメントの順に供給流
路がつながっている逆浸透膜分離装置に使用することが
できる。また、第1の昇圧ポンプ、第1の逆浸透膜エレ
メント、第2の昇圧ポンプおよび第2の逆浸透膜エレメ
ントの順に供給流路がつながっている逆浸透膜分離装置
の第2の逆浸透膜エレメントに使用することができる。
Further, the spiral reverse osmosis membrane element of the present invention can be used in a reverse osmosis membrane separation apparatus in which a supply path is connected to a pump and a reverse osmosis membrane element in this order. In addition, the second reverse osmosis membrane of the reverse osmosis membrane separation device in which the supply flow paths are connected in the order of the first pressure increase pump, the first reverse osmosis membrane element, the second pressure increase pump, and the second reverse osmosis membrane element. Can be used for elements.

【0042】[0042]

【実施例】以下に具体的実施例を挙げて本発明を説明す
るが、本発明はこれら実施例により何ら限定されるもの
ではない。 実施例1、比較例1 実施例および比較例共に、有効膜面積32cm2の平膜
評価セルを用いて6.0wt%の食塩水を9.0MPa
の操作圧力で逆浸透分離したとき、脱塩率99.80
%、膜造水量0.85m3/m2・dの性能を有する、厚
さが0.15mmの平膜状架橋芳香族ポリアミド複合膜
を用い、透過液流路材を構成する織編物として、ポリエ
ステル繊維をダブルデンビ組織に編成し、熱融着による
硬化と表面のカレンダー加工を施した種々の厚さのシン
グルトリコットと、透水性布帛としてポリエステル短繊
維からなる種々の厚さの不織布を用い、さらに供給液流
路材として、XとYの値が異なる種々の厚さのポリエチ
レン製網目状構造体を用いて、それぞれを表1に示すよ
うに組み合わせて、外径200mm、長さ1,000m
m、集水管径32mmの所定の大きさの8インチ径スパ
イラル型逆浸透膜エレメントを作製した。エレメントの
性能は、まず、純水を逆浸透分離したときのエレメント
の造水量を逆浸透膜の純水透過係数で除することによ
り、エレメントの有効膜面積を求め、次に各エレメント
について、操作圧力9.0MPa、食塩(NaCl)濃
度6.0wt%、温度25℃、pH6.5、濃縮水流量
80L/minの条件で食塩水を逆浸透分離し、24時
間後エレメントの脱塩率、造水量、およびエレメント差
圧を測定し、表1の結果を得た。
EXAMPLES The present invention will be described below with reference to specific examples, but the present invention is not limited to these examples. Example 1 and Comparative Example 1 In both the example and the comparative example, 6.0 wt% saline solution was used at 9.0 MPa using a flat membrane evaluation cell having an effective membrane area of 32 cm 2.
When the reverse osmosis separation is carried out at an operating pressure of
%, Using a flat membrane crosslinked aromatic polyamide composite membrane having a performance of 0.85 m 3 / m 2 .d and a membrane thickness of 0.15 mm, as a woven or knitted fabric constituting a permeate flow path material, Polyester fibers are knitted into a double denbi structure, single tricots of various thicknesses subjected to curing by heat fusion and calendering of the surface, and non-woven fabrics of various thicknesses made of polyester short fibers as a water-permeable fabric, As a supply liquid flow path material, using a mesh structure made of polyethylene having various thicknesses having different values of X and Y, each was combined as shown in Table 1, and the outer diameter was 200 mm and the length was 1,000 m.
m, an 8 inch diameter spiral reverse osmosis membrane element having a predetermined size and a water collecting pipe diameter of 32 mm was produced. First, the effective membrane area of the element is determined by dividing the amount of water produced by the element when pure water is subjected to reverse osmosis separation by the pure water permeability coefficient of the reverse osmosis membrane. The salt solution was subjected to reverse osmosis separation under the conditions of a pressure of 9.0 MPa, a salt (NaCl) concentration of 6.0 wt%, a temperature of 25 ° C., a pH of 6.5, and a concentrated water flow rate of 80 L / min. The amount of water and the element differential pressure were measured, and the results shown in Table 1 were obtained.

【0043】判定は、エレメントの脱塩率が99.7%
以上、造水量が16.0m3/d以上で、かつエレメン
ト差圧が11.0kPa以下のものを◎、脱塩率が9
9.5〜99.7%、造水量が14.0〜16.0m3
/dで、かつエレメント差圧が11.0〜14.0kP
aのものを○、脱塩率が99.0〜99.5%、造水量
が12.0〜14.0m3/dで、かつエレメント差圧
が14.0〜17.0kPaのものを△、これら以外の
性能のものは×とした。
It was determined that the desalting rate of the element was 99.7%.
As described above, those having a water production amount of 16.0 m 3 / d or more and an element differential pressure of 11.0 kPa or less were evaluated as excellent.
9.5 to 99.7%, water production 14.0 to 16.0 m 3
/ D and the element differential pressure is 11.0 to 14.0 kP
の も の indicates that the sample a has a desalination rate of 99.0 to 99.5%, the amount of fresh water is 12.0 to 14.0 m 3 / d, and the element differential pressure is 14.0 to 17.0 kPa. , And those having performances other than these were evaluated as x.

【0044】本発明の透過液流路材と供給液流路材を用
いたスパイラル型エレメントは、比較例に示したエレメ
ントと対比して、いずれも、高圧、高濃度の評価条件下
で優れたエレメント性能を有していた。
The spiral type element using the permeate flow path material and the feed liquid flow path material of the present invention is superior to the element shown in the comparative example under the high pressure and high concentration evaluation conditions. It had element performance.

【0045】[0045]

【表1】 [Table 1]

【0046】実施例2、比較例2 実施例1および比較例1と同様にして作製した、表2に
示すスパイラル型逆浸透膜エレメントを用い、愛媛沖の
海水を逆浸透膜分離装置により濃縮した海水を供給水と
して、供給水の汚れ度合いを示すファウリングインデッ
クス(FI値)が3.0〜4.0、操作圧力9.0MP
a、蒸発残留物濃度6.0wt%、pH6.5、濃縮水
流量80L/minの条件で濃縮海水を逆浸透分離し、
2,000時間後エレメントの脱塩率、造水量、および
エレメント差圧を測定し、初期値との保持率、あるいは
変化率を求めたところ表2の結果を得た。
Example 2, Comparative Example 2 Seawater off Ehime was concentrated by a reverse osmosis membrane separation apparatus using a spiral type reverse osmosis membrane element shown in Table 2 and produced in the same manner as in Example 1 and Comparative Example 1. Is the supply water, the fouling index (FI value) indicating the degree of contamination of the supply water is 3.0 to 4.0, and the operating pressure is 9.0 MP.
a, reverse osmosis separation of concentrated seawater under the conditions of a concentration of evaporation residue of 6.0 wt%, pH of 6.5, and a flow rate of concentrated water of 80 L / min;
After 2,000 hours, the desalting rate of the element, the amount of fresh water, and the differential pressure of the element were measured, and the retention rate from the initial value or the rate of change was obtained.

【0047】ここで、脱塩率の保持率は、 (2,000時間後の脱塩率/初期脱塩率)×100 造水量の保持率は、 (2,000時間後の造水量/初期造水量)×100 エレメント差圧の変化率は、 (2,000時間後のエレメント差圧/初期エレメント
差圧) により求めた。
Here, the retention of the desalination rate is (desalination rate after 2,000 hours / initial desalination rate) × 100 The retention rate of fresh water is (water desalination after 2,000 hours / initial desalination). (The amount of fresh water) × 100 The change rate of the element differential pressure was determined by (element differential pressure after 2,000 hours / initial element differential pressure).

【0048】本発明のスパイラル型逆浸透膜エレメント
は、比較例に示したエレメントと対比して、実海水を用
いた長期間の評価でも、脱塩率や造水量といったエレメ
ント性能の変化が少なく、かつエレメント差圧の変化も
少ないため、高圧、高濃度の条件下でも安定して運転す
ることができるが、比較例に示したエレメントはエレメ
ント性能の変化が激しく、安定に運転することは困難で
あった。
The spiral reverse osmosis membrane element of the present invention has less change in element performance such as desalination rate and fresh water amount even in a long-term evaluation using actual seawater, in comparison with the element shown in the comparative example. In addition, since there is little change in element differential pressure, stable operation can be performed even under high pressure and high concentration conditions.However, the element shown in the comparative example has a drastic change in element performance, and it is difficult to operate stably. there were.

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【発明の効果】本発明により、高圧、高濃度の運転条件
下でも、優れた脱塩率や造水量を発揮し、かつ、エレメ
ントの圧力損失が小さく、汚れ成分を含む供給水でも長
期間安定したエレメント性能を発揮することが可能なス
パイラル型逆浸透膜エレメントを提供することが可能と
なる。
According to the present invention, an excellent desalting rate and water production amount can be exhibited even under high-pressure, high-concentration operating conditions, and the pressure loss of the element is small, and the supply water containing dirt components is stable for a long time. It is possible to provide a spiral reverse osmosis membrane element capable of exhibiting improved element performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 スパイラル型逆浸透膜エレメントの断面構造
FIG. 1 is a sectional structural view of a spiral reverse osmosis membrane element.

【図2】 従来の代表的な透過液流路材を示す断面概略
FIG. 2 is a schematic cross-sectional view showing a typical conventional permeate flow path material.

【図3】 従来の、高圧下で使用するスパイラルエレメ
ントに用いられている透過液流路材の断面概略図
FIG. 3 is a schematic cross-sectional view of a permeate flow path material used in a conventional spiral element used under high pressure.

【図4】 本発明の供給液流路材の構造の断面概略図FIG. 4 is a schematic cross-sectional view of the structure of the supply liquid flow path material of the present invention.

【図5】 供給液流路材の構造を示す概念図FIG. 5 is a conceptual diagram showing the structure of a supply liquid channel material.

【図6】 供給液流路材の構造および供給液の流れを示
す概念図
FIG. 6 is a conceptual diagram showing a structure of a supply liquid flow path material and a flow of a supply liquid.

【図7】 本発明の供給液流路材の構造および供給液の
流れを示す概念図
FIG. 7 is a conceptual diagram showing the structure of the supply liquid flow path material and the flow of the supply liquid according to the present invention.

【符号の説明】[Explanation of symbols]

1:逆浸透膜 2:透過液側流路材 3:供給液側流路材 4:集水孔 5:集水管 6:溝 7:凸部 8:小孔 9:多孔性シート 10:織編物 11:透水性布帛 12:供給液流路材のY 13:供給液流路材のX 14:供給液流路材の網目の角度(α) 1: Reverse osmosis membrane 2: Permeate liquid side flow path material 3: Supply liquid side flow path material 4: Water collecting hole 5: Water collecting pipe 6: Groove 7: Convex part 8: Small hole 9: Porous sheet 10: Woven and knitted fabric 11: Water-permeable cloth 12: Y of supply liquid channel material 13: X of supply liquid channel material 14: Angle (α) of mesh of supply liquid channel material

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−31087(JP,A) 特開 昭60−41505(JP,A) 特開 平5−168869(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/44 B01D 61/08 B01D 63/10 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-54-31087 (JP, A) JP-A-60-41505 (JP, A) JP-A-5-168869 (JP, A) (58) Field (Int.Cl. 7 , DB name) C02F 1/44 B01D 61/08 B01D 63/10

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 逆浸透膜と、透過液流路材と、供給液流
路材とを含むユニットが集水管の周囲に配置され、前記
透過液流路材は、複数の溝を有する織編物と、この織編
物の溝を有する面側に配置された透水性布帛とを含み、
前記溝は、幅が0.1〜0.2mmの範囲内にあり、深
さが0.05〜0.2mmの範囲内にあり、ピッチが1
8〜25本/cmの範囲内にあり、前記供給液流路材は
格子体からなり、その格子体は、前記集水管の軸線に垂
直な方向における交点間の間隔Xが2〜5mmの範囲内
にあり、前記軸線方向における交点間の間隔YがXの
1.0〜1.8倍の範囲内にあることを特徴とするスパ
イラル型逆浸透膜エレメント。
1. A unit including a reverse osmosis membrane, a permeate flow path material, and a supply liquid flow path material is disposed around a water collection pipe, and the permeate flow path material has a plurality of grooves. And a water-permeable cloth arranged on the surface side having the groove of the woven or knitted fabric,
The groove has a width in the range of 0.1 to 0.2 mm, a depth in the range of 0.05 to 0.2 mm, and a pitch of 1 mm.
In the range of 8 to 25 lines / cm, the supply liquid flow path material is formed of a grid, and the grid has a distance X between intersections in a direction perpendicular to the axis of the water collecting pipe of 2 to 5 mm. Wherein the distance Y between the intersections in the axial direction is within a range of 1.0 to 1.8 times X.
【請求項2】 請求項1に記載のスパイラル型逆浸透膜
エレメントを用いることを特徴とする液体の製造方法。
2. A method for producing a liquid, comprising using the spiral reverse osmosis membrane element according to claim 1.
【請求項3】 運転圧力を8MPa以上とする、請求項
2に記載の液体の製造方法。
3. The method for producing a liquid according to claim 2, wherein the operating pressure is 8 MPa or more.
【請求項4】 請求項1に記載のスパイラル型逆浸透膜
エレメントと、このスパイラル型逆浸透膜エレメントの
上流側に設けた昇圧ポンプとを備えていることを特徴と
する逆浸透膜分離装置。
4. A reverse osmosis membrane separation device comprising: the spiral reverse osmosis membrane element according to claim 1; and a pressurizing pump provided on an upstream side of the spiral reverse osmosis membrane element.
【請求項5】 第1の昇圧ポンプ、逆浸透膜エレメン
ト、第2の昇圧ポンプおよび請求項1に記載のスパイラ
ル型逆浸透膜エレメントをこの順序で接続してなること
を特徴とする逆浸透膜分離装置。
5. A reverse osmosis membrane comprising a first booster pump, a reverse osmosis membrane element, a second booster pump and the spiral reverse osmosis membrane element according to claim 1 connected in this order. Separation device.
【請求項6】 請求項4または5に記載の逆浸透膜分離
装置を用いて海水を処理することを特徴とする造水方
法。
6. A fresh water producing method comprising treating seawater using the reverse osmosis membrane separation device according to claim 4. Description:
JP28135199A 1999-04-09 1999-10-01 Spiral reverse osmosis membrane element Expired - Fee Related JP3292183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28135199A JP3292183B2 (en) 1999-04-09 1999-10-01 Spiral reverse osmosis membrane element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28135199A JP3292183B2 (en) 1999-04-09 1999-10-01 Spiral reverse osmosis membrane element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11102310A Division JP3052958B1 (en) 1998-06-18 1999-04-09 Spiral reverse osmosis membrane element and separation method

Publications (2)

Publication Number Publication Date
JP2000288542A JP2000288542A (en) 2000-10-17
JP3292183B2 true JP3292183B2 (en) 2002-06-17

Family

ID=17637911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28135199A Expired - Fee Related JP3292183B2 (en) 1999-04-09 1999-10-01 Spiral reverse osmosis membrane element

Country Status (1)

Country Link
JP (1) JP3292183B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200017828A (en) * 2018-08-09 2020-02-19 도레이첨단소재 주식회사 Filter assembly containing mesh sheet for internal spacer for water treatment and filter module containing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993081B2 (en) * 2006-04-10 2015-03-31 Vlaamse Instelling Voor Technologish Onderzoek N.V. (Vito) Knitted support for tubular membranes
AU2011259905B2 (en) * 2010-06-03 2015-05-28 Toray Industries, Inc. Separation membrane element
JP5828328B2 (en) * 2013-02-20 2015-12-02 栗田工業株式会社 Operation method of reverse osmosis membrane device and reverse osmosis membrane device
JP7037306B2 (en) * 2016-09-16 2022-03-16 日東電工株式会社 Spiral type membrane element
KR20200112415A (en) * 2019-03-22 2020-10-05 주식회사 엘지화학 High-recovery reverse osmosis spacer and element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200017828A (en) * 2018-08-09 2020-02-19 도레이첨단소재 주식회사 Filter assembly containing mesh sheet for internal spacer for water treatment and filter module containing the same
KR102129667B1 (en) 2018-08-09 2020-07-02 도레이첨단소재 주식회사 Filter assembly containing mesh sheet for internal spacer for water treatment and filter module containing the same

Also Published As

Publication number Publication date
JP2000288542A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
JP3430783B2 (en) Liquid separation element, apparatus and processing method
CN109715275B (en) Separation membrane element and method for operating same
EP2730331A1 (en) Separation membrane, separation membrane element, and method for producing separation membrane
JP2017148805A (en) Separation membrane, separation membrane element, and method of manufacturing separation membrane
US11065580B2 (en) Separation membrane element
JP3230490B2 (en) Spiral reverse osmosis membrane element and separation device using the same
WO2014003171A1 (en) Separation membrane and separation membrane element
JP2018015735A (en) Separation membrane element
JP3292183B2 (en) Spiral reverse osmosis membrane element
JP3052958B1 (en) Spiral reverse osmosis membrane element and separation method
KR20220052935A (en) Separator element
JP3317113B2 (en) Liquid separation element, apparatus, and processing method
JPH09141060A (en) Liquid separation element, device and treatment therefor
JP6245407B1 (en) Separation membrane element
CN109496163B (en) Separation membrane element
JP2018086638A (en) Spiral type separation membrane element
JP2000051668A (en) Liquid separation element and water making method
JP7478510B2 (en) Separation Membrane Element
JP2019205954A (en) Separation membrane element and operation method thereof
WO2023008251A1 (en) Separation membrane element and separation membrane system
JP2019025419A (en) Separation membrane element and vessel
CN114602327B (en) Separation membrane element
JP2000051667A (en) Liquid separation element and water making method
JPH0747112B2 (en) Spiral type liquid separation element
JP2020011231A (en) Supply side channel material and separation membrane element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees