JP3291153B2 - Quartz glass products for heat treatment - Google Patents

Quartz glass products for heat treatment

Info

Publication number
JP3291153B2
JP3291153B2 JP06510295A JP6510295A JP3291153B2 JP 3291153 B2 JP3291153 B2 JP 3291153B2 JP 06510295 A JP06510295 A JP 06510295A JP 6510295 A JP6510295 A JP 6510295A JP 3291153 B2 JP3291153 B2 JP 3291153B2
Authority
JP
Japan
Prior art keywords
heat treatment
heat
quartz glass
cooling medium
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06510295A
Other languages
Japanese (ja)
Other versions
JPH08236461A (en
Inventor
信一 大越
吉明 伊勢
佳寿美 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD.
Shin Etsu Quartz Products Co Ltd
Original Assignee
YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD.
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD., Shin Etsu Quartz Products Co Ltd filed Critical YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD.
Priority to JP06510295A priority Critical patent/JP3291153B2/en
Publication of JPH08236461A publication Critical patent/JPH08236461A/en
Application granted granted Critical
Publication of JP3291153B2 publication Critical patent/JP3291153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体ウエハ等の被熱
処理物を熱処理する炉心管その他の反応容器、該容器を
封止する石英ガラス板のように、半導体の熱処理領域に
連設する非加熱領域の周縁側にフランジ部を具えてなる
熱処理用石英ガラス製品若しくは前記フランジ部と当接
するシール用周縁部を形成してなる熱処理用石英ガラス
品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace tube or other reaction vessel for heat-treating an object to be heat-treated, such as a semiconductor wafer, or a non-continuously connected non-heat treatment region for a semiconductor such as a quartz glass plate for sealing the vessel. about the peripheral edge to the flange portion comprising by comprising heat-treating the silica glass product or the flange portion and abuts by forming a sealing periphery for heat treatment the quartz glass <br/> products of the heating region.

【0002】[0002]

【従来の技術】半導体ウエハの薄膜形成や熱拡散を行う
為の熱処理装置には、多数枚のウエーハを搭載したウエ
ーハボートを炉心管内に装設して熱処理を行うバッチ式
の熱処理装置、更に近年ウエーハ口径の大口径化、更に
は次世代の半導体の高集積密度化及び高品質化に対応す
る為に、一枚のウエーハ毎に熱処理を行う枚葉式熱処理
装置が存在する。
2. Description of the Related Art A heat treatment apparatus for forming a thin film and thermally diffusing a semiconductor wafer includes a batch type heat treatment apparatus in which a wafer boat having a large number of wafers is mounted in a furnace tube to perform heat treatment. In order to cope with the increase in the diameter of the wafer and the high integration density and the high quality of the next generation semiconductor, there is a single wafer type heat treatment apparatus for performing a heat treatment for each wafer.

【0003】このような熱処理装置は、例えば、図5に
示すように、バッチ式の縦型熱処理装置の場合、略垂直
状に配設された石英ガラスからなる円筒状の炉心管50
と、必要に応じその外側に同心円筒状に配設された均熱
管59と、ヒータ56と、断熱材が内包された断熱体5
7とより熱処理用炉が形成され、前記ヒータ56により
炉心管50内の温度を数百ないし1200℃前後に加熱
可能に構成してある。前記炉心管50の下端開口部には
フランジ部51を設けるとともに、Oリング60を介し
て前記フランジ部51と当接し、炉心管50内の気密封
止を行う石英板53が設けられている。そして前記断熱
体57上には被熱処理物である半導体ウエハ55を多数
枚収納載置したウエハボート58を載置する。
As shown in FIG. 5, for example, as shown in FIG. 5, in the case of a batch-type vertical heat treatment apparatus, a cylindrical furnace tube 50 made of quartz glass disposed substantially vertically.
And, if necessary, a heat equalizing tube 59 disposed concentrically on the outside thereof, a heater 56, and a heat insulator 5 including a heat insulating material.
7, a heat treatment furnace is formed, and the temperature inside the furnace tube 50 can be heated to several hundreds to about 1200 ° C. by the heater 56. A flange portion 51 is provided at the lower end opening of the furnace tube 50, and a quartz plate 53 is provided to abut the flange portion 51 via an O-ring 60 to hermetically seal the inside of the furnace tube 50. Then, a wafer boat 58 containing a large number of semiconductor wafers 55 to be heat-treated is placed on the heat insulator 57.

【0004】かかる処理装置によれば、前記ウエハボー
トに多数枚のウエハを収納載置して炉心管50内に搬入
した後、前記石英板53と該板が対応する炉心管50開
口部に設けたフランジ部51との間に設けたOリング6
0を介して炉心管50を気密裡に閉塞し、炉心管50内
部を真空状態にした後所望ガスを流入して、前記被熱処
理部材であるウエハを高温雰囲気の下に、薄膜形成、拡
散処理等の熱処理をしている。
According to such a processing apparatus, after a large number of wafers are stored in the wafer boat and loaded into the furnace tube 50, the quartz plate 53 and the plate are provided at the opening of the corresponding furnace tube 50. O-ring 6 provided between the flange 51
0, the furnace tube 50 is airtightly closed, the inside of the furnace tube 50 is evacuated, a desired gas is introduced, and the wafer to be heat-treated is formed into a thin film and diffused under a high-temperature atmosphere. And other heat treatments.

【0005】かかる装置のOリングは一般に弗素樹脂な
いしシリコンゴム等の耐熱樹脂から形成しているが、該
Oリングの耐熱度は150℃程度良くても200〜30
0℃程度である。
The O-ring of such an apparatus is generally formed of a heat-resistant resin such as a fluorine resin or silicone rubber.
It is about 0 ° C.

【0006】一方、炉心管50の中央域はウエハ処理の
ため、600〜1250℃前後の高温雰囲気に置かれて
いるが、Oリングの耐熱温度を維持するために加熱領域
とフランジとの間に断熱体を介在させているが、これの
みではフランジ部温度を150℃前後に維持するのが不
可能である。
On the other hand, the central region of the furnace tube 50 is placed in a high-temperature atmosphere of about 600 to 1250 ° C. for wafer processing. Although the heat insulator is interposed, it is impossible to maintain the temperature of the flange portion at around 150 ° C. by only this.

【0007】即ち、前記フランジ部51温度をシリコン
ゴムや弗素樹脂等の耐熱温度まで下げるには断熱体57
の背丈を相当程度高くせねばならず、結局前記断熱体5
7だけで実効ある働きをさせるためには限度がある。こ
の為、一般的には特開平2ー9118号公報に記載され
ているように、炉心管のフランジ上部に冷却水循環用配
管を配設して該フランジの下面に設けてあるOリングを
冷却する提案や、また、実開平3ー112932号公報
には炉心管50フランジ上部及び排気フランジ部に水冷
ジャケットを設ける提案も開示されている。
That is, in order to lower the temperature of the flange portion 51 to a heat-resistant temperature of silicon rubber, fluorine resin or the like, a heat insulator 57 is used.
The height of the heat insulator 5 must be considerably high.
There is a limit to having 7 work effectively. For this reason, as described in Japanese Patent Application Laid-Open No. Hei 2-9-1118, a cooling water circulation pipe is generally provided above a flange of a core tube to cool an O-ring provided on a lower surface of the flange. A proposal and a proposal of providing a water-cooling jacket on the upper part of the furnace tube 50 flange and on the exhaust flange portion are also disclosed in Japanese Utility Model Laid-Open No. 3-12932.

【0008】[0008]

【発明が解決しようとする課題】しかしながら前記従来
技術はいずれも、フランジの背面より水冷することによ
りシール部材を保護する方法であるが、高温側のフラン
ジが石英ガラス等の輻射熱透過可能の石英部材の場合
は、水冷をしてもOリングに熱がかかり、Oリングの高
熱を防ぐことが出来なく、Oリングの劣化は実質上避け
得ない状況にあった。
However, in each of the prior arts described above, the sealing member is protected by water cooling from the back of the flange. However, the high temperature side flange is made of quartz glass or another quartz member capable of transmitting radiant heat. In case (2), the O-ring is heated even if it is cooled with water, so that high heat of the O-ring cannot be prevented, and deterioration of the O-ring is substantially unavoidable.

【0009】従って、従来の熱遮断の手段によっては、
前記フランジ下面を200℃、好ましくは100℃以下
にすることは不可能の問題で、そのため、十分に遮断出
来なかったこれらの熱によりシール部材が劣化し、半導
体処理用の有毒な処理ガスの外部への漏洩発生の問題を
惹起しており、ひいては、上記ガスリーク防止のための
フランジ部の締め付けによる局部的応力の集中に起因す
る炉心管自体の破損発生等の問題があり、なんらかの対
策が望まれている。
[0009] Therefore, depending on the conventional means of heat insulation,
It is impossible to lower the temperature of the lower surface of the flange to 200 ° C., preferably 100 ° C. or less. Therefore, the heat which could not be shut off sufficiently deteriorates the sealing member, and the outside of a toxic processing gas for semiconductor processing. Causes a problem of occurrence of breakage of the core tube itself due to local stress concentration due to the tightening of the flange portion for preventing the gas leak, and some measures are desired. ing.

【0010】本発明は、上記技術的課題に鑑みなされた
もので、効率的冷却手段によりフランジ下面を100℃
以下に抑え、Oリングの劣化防止やガスリーク等の問題
を皆無とする熱処理用石英ガラス製品の提供を目的とす
るものである。
[0010] The present invention has been made in view of the above technical problems, and the lower surface of the flange is kept at 100 ° C. by an efficient cooling means.
Kept below, it is an object to provide a heat treatment for quartz glass products to eradicate the problem of preventing deterioration or gas leakage, etc. of the O-ring.

【0011】[0011]

【課題を解決するための手段】本発明は、かかる技術的
課題を達成するため、半導体の熱処理領域に連設する非
加熱領域の周縁側にフランジ部を具えてなる炉心管、反
応容器、その他の熱処理用石英ガラス製品、若しくは石
英ガラスキャップのように、フランジ部と当接するシー
ル用周縁部を形成してなる熱処理用石英ガラス製品に適
用されるもので、前記フランジ部若しくはシール用周縁
部(以下フランジ部という)内に冷却媒体還流通路を設
け、該通路内を冷却媒体が通流可能に構成した点を要旨
とする。
SUMMARY OF THE INVENTION In order to achieve the above technical object, the present invention provides a furnace tube, a reaction vessel, etc., having a flange on the peripheral side of a non-heating region connected to a heat treatment region of a semiconductor. heat-treating the silica glass product, Moshiku is like a stone <br/> silica glass cap, intended to be applied to the heat-treating the silica glass product obtained by forming the flange portion and the peripheral portion for abutting the seal, the flange The point is that a cooling medium recirculation passage is provided in a portion or a peripheral portion for sealing (hereinafter, referred to as a flange portion), and the cooling medium can flow through the passage.

【0012】このようなフランジ部等は短尺の穴明き石
英ガラスブロック体を適宜数を熱融着により連設して無
端状リングを形成するとともに、前記穴明き部を気密状
に連繋して冷却媒体の還流通路を形成、より具体的には
前記ブロック体を一側が縮幅化された略台形状ブロック
で形成するとともに、ブロック体を適宜数を熱融着して
断面矩形状の略多角形状リングを形成してもよく、そし
て該リングの上面若しくは内周側等の一側に、熱融着に
より石英ガラス製品の本体部を連設することにより、炉
心管、反応容器、石英ガラスキャップその他の熱処理用
石英ガラス製品が完成する。
An appropriate number of short perforated quartz glass blocks are connected by heat fusion to form an endless ring, and the perforated portions are connected in an airtight manner. More specifically, a cooling medium return passage is formed, and more specifically, the block body is formed of a substantially trapezoidal block having one side reduced in width, and an appropriate number of the block bodies are heat-sealed to form a substantially rectangular section. A polygonal ring may be formed, and a furnace body tube, a reaction vessel, and a quartz glass are formed by connecting a main body of a quartz glass product to one side such as an upper surface or an inner peripheral side of the ring by heat fusion. Caps and other quartz glass products for heat treatment are completed.

【0013】、前記石英ガラス製品は、炉心管、反応
容器または石英キャップ以外にもボートを炉心管内に挿
入する搬送治具のフランジ部等にも有効に適用しうる。
[0013] Incidentally, the quartz glass product, the core tube can boat other than the reaction vessel or quartz cap applied effectively to the flange portion or the like of the conveying jig to be inserted into the core tube.

【0014】そして前記製品は、前記冷却媒体が通流可
能に構成した冷却媒体還流通路を内部に設けたフランジ
部にシール部材を当接させて前記半導体の熱処理領域に
連設する非加熱領域を気密封止したことを特徴とする。
この場合、前記熱処理領域から受熱される熱に対応させ
て、前記還流通路を流れる冷却媒体の流量を制御する制
御手段を設けるのがよい。
[0014] Then the product of the previous SL cooling medium is brought into contact with the seal member to the flange portion of the cooling medium recirculation passage provided inside which is configured to be Tsuryu heat treatment region of the semiconductor
It is characterized in that the non-heated area continuously provided is hermetically sealed.
In this case, it is preferable to provide control means for controlling the flow rate of the cooling medium flowing through the return passage in accordance with the heat received from the heat treatment region.

【0015】[0015]

【作用】かかる技術手段によれば、前記石英ガラス製品
のフランジ部を、冷却媒体が還流する冷却媒体還流通路
よりなる冷却手段を内蔵する冷却フランジで構成したた
め、高温加熱領域よりフランジに到達した輻射熱及び伝
播熱は冷却フランジ内に入り還流する冷却媒体により直
接冷却吸収され、この結果フランジ下面への前記熱は効
率よく遮断出来、そして前記熱処理領域から受熱される
熱に対応させて、前記還流通路を流れる冷却媒体の流量
を制御することにより、フランジ下面の温度は100℃
以下の温度に維持することが出来、併せて前記下面に面
接触するOリングによる十分なシール性を確保出来る。
According to this technical means, since the flange portion of the quartz glass product is constituted by a cooling flange including a cooling means including a cooling medium return passage through which a cooling medium flows, the radiant heat reaching the flange from the high-temperature heating region. And the transmitted heat is directly cooled and absorbed by the cooling medium flowing into the cooling flange and flowing back. As a result, the heat to the lower surface of the flange can be efficiently cut off, and the return passage is made to correspond to the heat received from the heat treatment region. By controlling the flow rate of the cooling medium flowing through the
The following temperature can be maintained, and at the same time, sufficient sealing performance can be ensured by the O-ring that is in surface contact with the lower surface.

【0016】特に、前記冷却フランジ部を前記パウダー
INチューブ法により形成し、特に前記充填シリカ粉を
結晶質シリカ粉より構成することにより、熱衝撃の防止
とともに大きな曲げ強度を形成するため、耐熱衝撃性に
も強くフランジ内に冷却媒体を還流させてもフランジに
熱的破壊をもたらすことはない。
In particular, the cooling flange portion is formed by the powder IN tube method, and in particular, by forming the filled silica powder from crystalline silica powder, heat shock is prevented and large bending strength is formed. Even when the cooling medium is refluxed in the flange, the flange is not thermally damaged.

【0017】[0017]

【実施例】以下、図面を参照して本発明の好適な実施例
を例示的に詳しく説明する。ただし、この実施例に記載
されている構成部品の寸法、形状、その相対的位置等は
特に特定的な記載がないかぎりは、この発明の範囲をそ
れに限定する趣旨ではなく、単なる説明例にすぎない。
図1及び図2は本発明第一実施例の冷却フランジの製造
方法と構成を示し、図3は図1の冷却フランジを用いて
形成された枚葉式CVD装置である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be illustratively described in detail below with reference to the drawings. However, unless otherwise specified, the dimensions, shapes, relative positions, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. Absent.
1 and 2 show a manufacturing method and a structure of a cooling flange according to a first embodiment of the present invention. FIG. 3 shows a single-wafer CVD apparatus formed by using the cooling flange of FIG.

【0018】図3に示す枚葉式CVD装置は、支持台3
3上に、前記円筒ドーム状の石英ガラス製反応容器1が
設置されている。前記反応容器1の下端開口外縁には図
1により製造されたフランジ2が囲繞接合され、該フラ
ンジ2の支持台33と対面する部位にはOリング34が
介装されており、反応容器1と支持台33との間の気密
封止を図る。又フランジ部2は支持台33外周より更に
外方に張り出しており、該張り出し部にリフタ35を係
止しながら外部ヒータ30とともに反応容器1を上昇さ
せ、これによりウエーハ36が反応容器1外に開放さ
れ、容易に交換することが出来るように構成している。
そして前記フランジ部2は内部にリング円状に冷却媒体
還流通路10を設け、該通路内を冷却媒体が通流可能に
構成するとともに反応容器1のヒータに囲繞される熱処
理領域から受熱される熱に対応させて、前記還流通路1
0を流れる冷却媒体の流量を制御する制御装置42を設
けている。尚、前記冷却媒体は水を用いたが、これのみ
に限定されない。
The single-wafer CVD apparatus shown in FIG.
The reaction vessel 1 made of quartz glass having a cylindrical dome shape is disposed on the reaction vessel 3. A flange 2 manufactured according to FIG. 1 is surrounded and joined to the outer edge of the lower end opening of the reaction vessel 1, and an O-ring 34 is interposed at a portion of the flange 2 facing the support 33, and Hermetic sealing with the support 33 is achieved. Further, the flange portion 2 projects further outward from the outer periphery of the support base 33, and the reaction vessel 1 is raised together with the external heater 30 while the lifter 35 is locked to the projection portion, whereby the wafer 36 is moved out of the reaction vessel 1. It is open and can be easily replaced.
The flange portion 2 is provided with a cooling medium recirculation passage 10 in a ring shape inside, the cooling medium can flow through the passage, and heat received from a heat treatment region surrounded by a heater of the reaction vessel 1. The reflux passage 1
A control device 42 is provided for controlling the flow rate of the cooling medium flowing through zero. In addition, although the cooling medium used water, it is not limited only to this.

【0019】又制御装置42には例えば熱処理領域の温
度を検知する温度センサ43に基づいて制御される流量
制御弁421、若しくは前記制御装置を直流モ−タ42
2が直結されたポンプ423として構成し、前記温度セ
ンサ43に基づいて直流モ−タ422の回転数を制御す
るように構成してもよい。
The control device 42 includes, for example, a flow control valve 421 controlled based on a temperature sensor 43 for detecting the temperature of the heat treatment region, or a DC motor 42
2 may be configured as a pump 423 directly connected thereto, and may be configured to control the rotation speed of the DC motor 422 based on the temperature sensor 43.

【0020】そして前記フランジ部2は、図1及び図2
に示すようにパウダーINチューブ法により長尺穴明き
成形体を形成すること(実施例1)も又図4に示すよう
に、ブロック体により製造する事(実施例2)も出来
る。 (実施例1)先ず、天然水晶粉を用いた多角柱シリカガ
ラス棒の製造手順を図1及び図2に従って説明する。
The flange portion 2 is provided in FIGS.
As shown in FIG. 4, a long perforated molded body can be formed by a powder IN tube method (Example 1), and as shown in FIG. 4, it can be manufactured from a block body (Example 2). (Example 1) First, a procedure for producing a polygonal column silica glass rod using natural quartz powder will be described with reference to FIGS.

【0021】(1)シリカガラス製の鞘管の用意 図2(A)に示すように断面中空長方形の天然石英ガラ
ス多角柱管13と又、冷却環状通路をなす内管14も複
数用意する。そして前記柱管(以下外管という)13内
に下端を封止し、上端14aを開口した内管14を挿設
した後、その底部に、穴開きの長方形の底板13aをガ
ラス溶接し、四角柱シリカガラス鞘管11を作成した。
(1) Preparation of a sheath tube made of silica glass As shown in FIG. 2A, a natural quartz glass polygonal column tube 13 having a hollow rectangular cross section and a plurality of inner tubes 14 forming a cooling annular passage are prepared. A lower end is sealed in the column tube (hereinafter referred to as an outer tube) 13 and an inner tube 14 having an upper end 14a opened is inserted thereinto. A prismatic silica glass sheath tube 11 was prepared.

【0022】(2)前記鞘管の熱歪除去処理 前記鞘管11を電気炉にて1050℃で10hrs加熱
処理を行ない、熱歪除去処理を行った後、10wt%フ
ッ化水素水溶液に前記被加熱体を10min浸しその後
純水で洗い流して内外表面洗浄及びマイクロクラックの
除去を行なった。 (3)前記鞘管11の乾燥 純水で洗い流した多角柱シリカガラス鞘管11を米国連
邦規格209のクラス10000のクリーンルームの清
浄な空気で乾燥した。
(2) Heat distortion removal treatment of the sheath tube The sheath tube 11 was subjected to a heat treatment at 1050 ° C. for 10 hrs in an electric furnace to remove the heat distortion, and then the sheath tube 11 was covered with a 10 wt% aqueous hydrogen fluoride solution. The heated body was immersed for 10 minutes, and then washed with pure water to wash the inner and outer surfaces and to remove micro cracks. (3) Drying of the sheath tube 11 The polygonal silica glass sheath tube 11 rinsed with pure water was dried with clean air from a clean room of class 10000 of US Federal Standard 209.

【0023】(4)主原料シリカ粉の作成及び加熱純化
処理 シリカ粉の種類は天然水晶、合成水晶、合成クリストバ
ライト、合成シリカガラスのいずれか1種類以上用い、
塩素ガスや塩化水素ガス等の含有雰囲気で加熱純化処理
を行うが、非晶質シリカ粉を用いる場合は、水素含有雰
囲気若しくはヘリウム含有雰囲気にて加熱純化処理を行
なうのがよい。又シリカ粉12の粒径は、10〜100
0μmが好ましい。これ以下では、溶融体17中に気泡
が多量に含まれてしまう。これ以上では、溶融時均一に
ならなかったり、同様に気泡がぬけにくくなってしま
う。
(4) Preparation of Main Raw Material Silica Powder and Purification by Heating The type of silica powder is at least one of natural quartz, synthetic quartz, synthetic cristobalite, and synthetic silica glass.
The heat purification treatment is performed in an atmosphere containing chlorine gas, hydrogen chloride gas, or the like. When amorphous silica powder is used, the heat purification treatment is preferably performed in a hydrogen-containing atmosphere or a helium-containing atmosphere. The particle size of the silica powder 12 is 10 to 100.
0 μm is preferred. Below this, a large amount of bubbles are contained in the melt 17. Above this, it is not uniform at the time of melting or it is difficult to remove air bubbles.

【0024】本実施例においては、主原料の結晶質シリ
カ粉として、天然水晶粉体を粒径50〜500μmの範
囲かつ10μm未満の粉を0.1wt%以下に調整し
た。又必要に応じて耐熱性等を増すために、金属元素化
合物粉等を前記純化処理後に混合してもよいが、その場
合製造後のシリカガラスドットの特定ドープ元素の濃度
が0.1〜5wt%になるようにドープ用粉体と主原料
シリカ粉の混合比を設定するのがよい。
In the present embodiment, as crystalline silica powder as a main raw material, natural quartz powder was adjusted to a powder having a particle size in the range of 50 to 500 μm and less than 10 μm to 0.1 wt% or less. Also, in order to increase heat resistance and the like, if necessary, a metal element compound powder or the like may be mixed after the purification treatment. In this case, the concentration of the specific doping element in the silica glass dots after production is 0.1 to 5 wt. %, The mixing ratio of the powder for doping and the silica powder of the main raw material is preferably set.

【0025】(5)合成シリカガラス粉の調整 ゾルゲル法で製造した合成シリカガラス粉を粒径50〜
500μmに調整した。 (6)多角柱鞘管11へのシリカ粉の充填 小口径の不図示のシリカガラス管を鞘管11内に挿入し
た状態で、主原料シリカ粉に結晶質シリカを用いる場合
は、鞘管11の下端部分には合成シリカガラス粉26a
を入れ、次いで徐々に水晶粉等の結晶粉の比率を大きく
した粉を入れていく。下端のシリカガラス粉26aの充
填長さL1は、溶融に使用する円筒型加熱抵抗炉若しく
は誘導加熱炉28(以下円筒型電気炉28という)の均
熱長Lより大きくするのがよい。
(5) Preparation of Synthetic Silica Glass Powder
It was adjusted to 500 μm. (6) Filling of Polygonal Sheath Tube 11 with Silica Powder When crystalline silica is used as the main raw material silica powder in a state where a small-diameter silica glass tube (not shown) is inserted into the sheath tube 11, the sheath tube 11 is used. The synthetic silica glass powder 26a
And then gradually add a powder having a larger ratio of crystal powder such as crystal powder. Filling the length L 1 of the lower end of the silica glass powder 26a is better to be larger than soaking length L of the cylindrical heating resistance furnace or induction heating furnace 28 used in the melt (hereinafter referred to as a cylindrical electric furnace 28).

【0026】この理由は、先端部分にシリカガラス粉2
6aを入れないで、いきなり水晶粉26bを入れて、上
記電気炉28にて昇温すると、水晶のα/β型の転移温
度にて急膨張し、鞘管11を破壊させてしまうからであ
る。尚、主原料粉としてすべてを非晶質シリカガラスと
する場合は、先端部分からすべて同一種類のシリカガラ
ス粉26を順次充填すれば良い。
The reason is that the silica glass powder 2
If the quartz powder 26b is immediately put without the 6a, and the temperature is increased in the electric furnace 28, the quartz tube 26b rapidly expands at the α / β transition temperature of the quartz and breaks the sheath tube 11. . When all of the main raw material powder is made of amorphous silica glass, the same type of silica glass powder 26 may be sequentially filled from the tip portion.

【0027】鞘管11の上端開口部は上板13bを取付
けた後に、上板13bに設けた穴13cより不図示の小
口径のシリカガラス管をヘリウムガスを流しながら抜取
った。これによりシリカガラス粉26の空隙内がヘリウ
ムガスに置換される。
After the upper plate 13b was attached to the upper end opening of the sheath tube 11, a small-diameter silica glass tube (not shown) was extracted from the hole 13c provided in the upper plate 13b while flowing helium gas. Thereby, the space inside the silica glass powder 26 is replaced with helium gas.

【0028】(7)円筒型電気炉28を使った溶融透明
ガラス化と延伸溶融 次に図2(B)に示すように、円筒型電気炉28内にシ
リカ粉を充填した前記鞘管11を垂直のまま先端部に挿
入し、前記上板の穴13cに減圧管29を取付けて鞘管
11内の減圧度を、100〜200Pa、内管14を正
圧にしながら炉28を徐々に昇温する。炉内温度が18
00℃以上2200℃以下の溶融温度、好ましくは略1
900〜2000℃に達した後に、円筒型電気炉28内
への送り速度と該円筒型電気炉28により溶融されたシ
リカガラスの引き速度を制御して延伸溶融を行って、そ
の後自然冷却によりこれを固化させて穴開き透明長方形
四角柱状のシリカガラス棒1を得る。
(7) Melting and Transparent Vitrification Using a Cylindrical Electric Furnace 28 and Stretching and Melting Next, as shown in FIG. While being inserted vertically, the furnace 28 is gradually heated while the pressure inside the sheath tube 11 is reduced to 100 to 200 Pa and the inner tube 14 is set to a positive pressure by attaching a pressure reducing tube 29 to the hole 13c of the upper plate. I do. Furnace temperature 18
Melting temperature between 00 ° C and 2200 ° C, preferably about 1
After the temperature reaches 900 to 2000 ° C., stretching and melting are performed by controlling the feeding speed into the cylindrical electric furnace 28 and the pulling speed of the silica glass melted by the cylindrical electric furnace 28, and thereafter, by natural cooling, Is solidified to obtain a perforated transparent rectangular quadrangular prism-shaped silica glass rod 1.

【0029】尚、前記溶融は内管14内と外管13外を
正圧下で行われ、内管14内を除く外管13内の減圧下
に比較し相対的に大きく設定している。この結果、前記
内管14は所定形状を維持した状態で、溶融時点では図
2(C)に示すように各辺が中心側に凹んだ形状をな
す。その後の冷却過程で各辺の凹んだ部分が表面張力で
膨出して、冷却完了時点では図1(D)に示すように、
長方形の断面形状の多角柱シリカガラス棒1が形成でき
る。
The melting is performed under a positive pressure inside the inner tube 14 and outside the outer tube 13, and is set to be relatively large as compared with the reduced pressure inside the outer tube 13 except inside the inner tube 14. As a result, the inner tube 14 maintains a predetermined shape, and at the time of melting, has a shape in which each side is depressed toward the center as shown in FIG. In the subsequent cooling process, the concave portion on each side swells due to surface tension, and at the time of completion of cooling, as shown in FIG.
A polygonal silica glass rod 1 having a rectangular cross section can be formed.

【0030】この場合、内管14を正圧下に、又外管1
3内圧力を1Pa〜1000Pa、好ましくは100〜
500Pa程度に設定する事により、内管14が押しつ
ぶされることなく又各辺が無用に凹設することもなく、
表面張力との関係において、精度よい寸法精度が維持さ
れながら加熱溶融されることとなる。尚、この線引後の
シリカガラス角棒2Aの各辺長は、鞘管11の直径の1
/2以下にするのが好ましい。
In this case, the inner pipe 14 is placed under positive pressure,
3 The internal pressure is 1 Pa to 1000 Pa, preferably 100 to
By setting it to about 500 Pa, the inner tube 14 is not crushed and each side is not unnecessarily recessed,
In relation to the surface tension, heating and melting are performed while maintaining high dimensional accuracy. In addition, each side length of the silica glass square bar 2A after the drawing is 1 mm of the diameter of the sheath tube 11.
/ 2 or less.

【0031】ついで、上記加熱成形後のシリカガラス角
棒2Aを所定長さ切り出し、前記角棒2Aの両端部分に
て前記内管14の先端部位と対面連通する折り曲げ口出
し管8、9の穴明け加工をしたフランジ素材2Bを溶着
する。
Next, the silica glass square rod 2A after the above-mentioned heat molding is cut out to a predetermined length, and the bent outlet pipes 8, 9 communicating with the front end portion of the inner pipe 14 at both ends of the square rod 2A are opened. The processed flange material 2B is welded.

【0032】ついで、前記の様に構成したフランジ素材
2A−2Bを矢印方向に適当な湾曲力を加えながら、前
記フランジ部2と略同一のドーナツ状に加熱成形し、当
接する両端を熱融着させ冷却フランジ2を形成する。つ
いで、上記冷却フランジ2の内縁上に反応容器1の開口
部を熱融着させ、冷却フランジ部2を持つ反応容器1を
構成する。ついで、口出し管8に例えば冷却媒体の供給
側に接続させるようにし、口出し管9を同じく排出側に
接続するように構成する。
Next, the flange material 2A-2B constructed as described above is heat-formed into a donut shape substantially the same as the flange portion 2 while applying an appropriate bending force in the direction of the arrow, and both ends which are in contact with each other are thermally fused. Then, the cooling flange 2 is formed. Next, the opening of the reaction vessel 1 is heat-sealed on the inner edge of the cooling flange 2 to form the reaction vessel 1 having the cooling flange 2. Next, the outlet pipe 8 is connected to, for example, the supply side of the cooling medium, and the outlet pipe 9 is also connected to the discharge side.

【0033】上記構成で、加熱成形された冷却フランジ
3は、耐熱性、強度も大で、冷却水の流量調整を行いな
がら前記環状通路10内に冷却水を還流させることによ
りフランジ部2下面の温度を十分下げ、例えば100℃
以下としてOリング34の劣化防止及びガスリークを防
止できるとともに、フランジ2上に溶着した反応容器1
と還流通路10周辺のフランジとの温度差による熱衝撃
破壊を防止できる。
With the above-mentioned structure, the heat-formed cooling flange 3 has high heat resistance and strength, and allows the cooling water to flow back into the annular passage 10 while adjusting the flow rate of the cooling water, thereby forming the lower surface of the flange portion 2. Lower the temperature sufficiently, for example 100 ° C
The following can prevent the O-ring 34 from deteriorating and prevent gas leakage, and can prevent the reaction vessel 1 from being welded onto the flange 2.
Shock destruction due to a temperature difference between the temperature and the flange around the recirculation passage 10 can be prevented.

【0034】(実施例2)図4には図1とは別の実施例
のフランジの製造方法を示す分解斜視図で、同図に示す
ように、所要フランジと略同一の横断面寸法を持ち、冷
却媒体用の通路を縦方向に形成する複数個の還流通路1
0用の小孔16を穴開け加工した石英ガラス製の短尺の
等辺台形状の穴明きブロック体15をn個用意し、前記
ブロック体15のうちいずれか2個のブロック体15の
還流通路小孔16の末端を外側に曲げ口出し管17、1
8をそれぞれ熱融着加工をしたブロック体15n+1を設
け、ついで前記n個のブロック体15とブロック体15
j、15j+1の順に配設してその当接面を熱融着させ、
所要のフランジ寸法と略同一形状の正n多角形状リング
を持つ冷却フランジ19形成させる。
(Embodiment 2) FIG. 4 is an exploded perspective view showing a method of manufacturing a flange according to another embodiment different from FIG. 1, as shown in FIG. , A plurality of recirculation passages 1 that form a passage for a cooling medium in a longitudinal direction.
N pieces of short isosceles trapezoidal perforated blocks 15 made of quartz glass having a small hole 16 for 0 are prepared, and a reflux passage for any two of the blocks 15 The end of the small hole 16 is bent outward and the outlet pipes 17, 1
8 are provided with a heat-fused block 15n + 1, and then the n blocks 15 and the blocks 15
j, 15j + 1, and the contact surface is thermally fused,
A cooling flange 19 having a regular n polygonal ring having substantially the same shape as the required flange size is formed.

【0035】なお、前記熱融着の際、各ブロック体15
1〜15j+1に設けられた冷却媒体用の還流通路10を
気密状に互いに連繋させ、17〜18の2系統の冷却媒
体の環状通路を形成するよう構成する。ついで、前記冷
却フランジ2上に反応容器1の開口部を熱融着させ、冷
却フランジを持つ反応容器1を構成する。なお、前記熱
融着の際、反応容器1の内壁が前記冷却フランジ2の内
壁と略一致するように前記ブロック体15の長さN及び
ブロック体15の個数nを調整する。ついで、口出し管
17に例えば冷却媒体の供給側に接続させるようにし、
口出し管18を同じく排出側に接続するように構成す
る。
At the time of the heat fusion, each block 15
The cooling medium recirculation passages 10 provided in 1 to 15j + 1 are connected to each other in a gas-tight manner to form two systems of cooling medium passages 17 to 18. Next, the opening of the reaction vessel 1 is heat-sealed on the cooling flange 2 to form a reaction vessel 1 having a cooling flange. During the thermal fusion, the length N of the block body 15 and the number n of the block bodies 15 are adjusted so that the inner wall of the reaction vessel 1 substantially matches the inner wall of the cooling flange 2. Next, the outlet pipe 17 is connected to, for example, a supply side of a cooling medium,
The outlet pipe 18 is also connected to the discharge side.

【0036】冷却媒体は、冷却水ないし冷却ガスを状況
に応じて、使用出来る構成にしてある。また、冷却媒体
の還流通路10の本数は本実施例のように2本に限定さ
れるものでなく、また、本実施例では2本並列接続とし
たが直列接続としても良い。
As the cooling medium, cooling water or cooling gas can be used according to the situation. Further, the number of the cooling medium recirculation passages 10 is not limited to two as in the present embodiment, and in the present embodiment, two are connected in parallel, but may be connected in series.

【0037】なお、前記還流通路はフランジ側に設けず
に石英キャップの円周側に、前記還流通路10を内蔵す
るドーナツリング状の前記フランジと同様な環状体を溶
着してフランジと対面する側のシール構造とする事も出
来る。
The recirculation passage is not provided on the flange side, but is formed by welding an annular body similar to the donut ring-shaped flange containing the recirculation passage 10 on the circumferential side of the quartz cap and facing the flange. Seal structure.

【0038】[0038]

【発明の効果】以上記載したように本発明によれば、フ
ランジ内に冷却媒体の還流通路を内蔵する構成としたた
め、フランジ内に流入する伝播熱及び輻射熱は前記還流
通路を還流する冷却媒体により吸収され、当該フランジ
のOリング取り付け面に対し効率的冷却をすることがで
きる。又本発明は前記パウダ−IN−チューブ法若しく
はブロック体によりフランジを構成したために、耐熱の
点、強度の点においても十分大きな値を持つフランジを
構成できたため、フランジの熱的反りや破壊を防止出来
る。
As described above, according to the present invention, since the cooling medium return passage is built in the flange, the propagation heat and the radiant heat flowing into the flange are controlled by the cooling medium returning through the return passage. It is absorbed and efficient cooling can be performed on the O-ring mounting surface of the flange. Further, in the present invention, since the flange is formed by the powder-IN-tube method or the block body, a flange having a sufficiently large value in terms of heat resistance and strength can be formed, thereby preventing thermal warpage and breakage of the flange. I can do it.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例にかかる熱処理用石英ガラス製
品のフランジ部の構成を示す分解斜視図である。
FIG. 1 is an exploded perspective view showing a configuration of a flange portion of a quartz glass product for heat treatment according to an embodiment of the present invention.

【図2】図1のフランジの製造工程図を示す。FIG. 2 shows a manufacturing process diagram of the flange of FIG.

【図3】図1若しくは図3に示すフランジ部を具えた反
応容器を用いる枚葉式熱処理装置の概略構成を示す断面
図である。
FIG. 3 is a cross-sectional view showing a schematic configuration of a single-wafer heat treatment apparatus using a reaction vessel provided with a flange portion shown in FIG. 1 or FIG.

【図4】前記フランジを製造する為の他の実施例の構成
を示す分解斜視図である。
FIG. 4 is an exploded perspective view showing a configuration of another embodiment for manufacturing the flange.

【図5】従来の縦型熱処理炉の概略の構成を示す縦断面
図である。
FIG. 5 is a longitudinal sectional view showing a schematic configuration of a conventional vertical heat treatment furnace.

【符号の説明】[Explanation of symbols]

1 反応容器 2 フランジ部 10 還流通路 13 シリカガラス外管 14 シリカガラス内管 11 鞘管 15 穴明きブロック体 DESCRIPTION OF SYMBOLS 1 Reaction container 2 Flange part 10 Reflux passage 13 Silica glass outer tube 14 Silica glass inner tube 11 Sheath tube 15 Perforated block body

フロントページの続き (72)発明者 星川 佳寿美 福島県郡山市田村町金屋字川久保88 信 越石英株式会社石英技術研究所内 (56)参考文献 特開 昭58−141523(JP,A) 特開 平2−9118(JP,A) 特開 平7−29841(JP,A) 特開 平7−33478(JP,A) 特開 平3−87020(JP,A) 特開 平8−119649(JP,A) 実開 昭61−142876(JP,U) 実開 平6−11345(JP,U) 特表 平4−500197(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 H01L 21/22 511 Continuation of the front page (72) Inventor Kasumi Hoshikawa 88 Kawaya, Kanaya, Tamura-cho, Koriyama-shi, Fukushima Prefecture Shin-Etsu Quartz Co., Ltd. Quartz Research Laboratory (56) References JP-A-58-141523 (JP, A) 2-9118 (JP, A) JP-A-7-29841 (JP, A) JP-A-7-33478 (JP, A) JP-A-3-87020 (JP, A) JP-A-8-119649 (JP, A A) Shokai Sho 61-142876 (JP, U) Shokai Hei 6-11345 (JP, U) Tokuhyo Hei 4-500197 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) ) H01L 21/205 H01L 21/22 511

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体の熱処理領域に連設する非加熱領
域の周縁側にフランジ部を具えてなる熱処理用石英ガラ
ス製品若しくは前記フランジ部と当接するシール用周縁
部を形成してなる熱処理用石英ガラス製品において、 前記フランジ部若しくはシール用周縁部(以下フランジ
部という)内に冷却媒体還流通路を設け、該通路内を冷
却媒体が通流可能に構成するとともに、前記冷却媒体の
還流通路を、適宜数の短尺の穴明き石英ガラスブロック
体を熱融着により連設して無端状リングに形成するとと
もに、前記穴明き部を気密状に連繋して冷却媒体の還流
通路となしたことを特徴とする熱処理用石英ガラス製
品。
1. A quartz glass product for heat treatment comprising a flange portion on a peripheral side of a non-heating region connected to a heat treatment region of a semiconductor or a quartz crystal for heat treatment comprising a peripheral portion for sealing abutting on said flange portion. In the glass product, a cooling medium recirculation passage is provided in the flange portion or the peripheral edge portion for sealing (hereinafter, referred to as a flange portion), and the cooling medium is configured to be able to flow through the passage. An appropriate number of short perforated quartz glass blocks were continuously formed by heat fusion to form an endless ring, and the perforated portions were connected in an airtight manner to form a cooling medium return passage. A quartz glass product for heat treatment characterized by the following.
【請求項2】 前記ブロック体を一側が縮幅化された略
台形状ブロックで形成するとともに、ブロック体を適宜
数を熱融着して断面矩形状の略多角形状リングを形成
し、該リングの上面若しくは内周側に、石英ガラス製品
の本体部を熱融着した請求項1記載の熱処理用石英ガラ
ス製品。
2. The block body is formed of a substantially trapezoidal block whose one side is reduced in width, and an appropriate number of the block bodies are heat-sealed to form a substantially polygonal ring having a rectangular cross section. 2. The quartz glass product for heat treatment according to claim 1, wherein the main body of the quartz glass product is heat-sealed on the upper surface or the inner peripheral side of the quartz glass product.
【請求項3】 前記冷却媒体が通流可能に構成した冷却
媒体還流通路を内部に設けたフランジ部にシール部材を
当接させて前記半導体の熱処理領域に連設する非加熱領
域を気密封止したことを特徴とする請求項1記載の熱処
理用石英ガラス製品。
3. A non-heating region connected to a heat treatment region of the semiconductor is hermetically sealed by bringing a sealing member into contact with a flange portion provided with a cooling medium recirculation passage configured to allow the cooling medium to flow therethrough. The quartz glass product for heat treatment according to claim 1, wherein:
【請求項4】 前記熱処理領域から受熱される熱に対応
させて、前記還流通路を流れる冷却媒体の流量を制御す
る制御手段を設けたことを特徴とする請求項1記載の熱
処理用石英ガラス製品。
4. A quartz glass product for heat treatment according to claim 1, further comprising control means for controlling a flow rate of a cooling medium flowing through said return passage in accordance with heat received from said heat treatment region. .
JP06510295A 1995-02-28 1995-02-28 Quartz glass products for heat treatment Expired - Fee Related JP3291153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06510295A JP3291153B2 (en) 1995-02-28 1995-02-28 Quartz glass products for heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06510295A JP3291153B2 (en) 1995-02-28 1995-02-28 Quartz glass products for heat treatment

Publications (2)

Publication Number Publication Date
JPH08236461A JPH08236461A (en) 1996-09-13
JP3291153B2 true JP3291153B2 (en) 2002-06-10

Family

ID=13277216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06510295A Expired - Fee Related JP3291153B2 (en) 1995-02-28 1995-02-28 Quartz glass products for heat treatment

Country Status (1)

Country Link
JP (1) JP3291153B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035481A (en) * 2013-08-08 2015-02-19 東京エレクトロン株式会社 Heater device, substrate processing apparatus, and maintenance method

Also Published As

Publication number Publication date
JPH08236461A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
JP3125199B2 (en) Vertical heat treatment equipment
JPH04264716A (en) Heat treatment device
EP1443543B1 (en) Thermal treating apparatus
JP3338884B2 (en) Semiconductor processing equipment
US5318633A (en) Heat treating apparatus
JP3291153B2 (en) Quartz glass products for heat treatment
JPH088203A (en) Heat treating apparatus
US6928838B2 (en) Apparatus and method for forming silica glass elements
JP2006319175A (en) Substrate processing apparatus
JPS62140413A (en) Vertical type diffusion equipment
JP2773150B2 (en) Semiconductor device manufacturing equipment
JP3055797B2 (en) Vertical heat treatment equipment
JP3473263B2 (en) Low pressure CVD equipment
JP3668703B2 (en) Semiconductor heat treatment method and apparatus used therefor
JP2777643B2 (en) Semiconductor wafer heat treatment apparatus and semiconductor wafer heat treatment apparatus
JPS63166218A (en) Wafer cooling method for semiconductor thermal processing equipment
JP3328853B2 (en) Heat treatment apparatus and heat treatment method
JP2620698B2 (en) Heat treatment equipment
JP2634424B2 (en) Vapor phase growth furnace and processing method
JPS63137416A (en) Vacuum heat insulating furnace
JPH063795B2 (en) Heat treatment equipment for semiconductor manufacturing
JPH10321528A (en) Semiconductor processor and using method therefor
JPH06338473A (en) Longitudinal furnace of semiconductor manufacturing apparatus
JPH10265300A (en) Heat treating device for fluorite single crystal and heat treatment therefor
JPH01243515A (en) Heat treatment device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees