JP3289235B2 - Absorption type cold heat generator - Google Patents

Absorption type cold heat generator

Info

Publication number
JP3289235B2
JP3289235B2 JP10082096A JP10082096A JP3289235B2 JP 3289235 B2 JP3289235 B2 JP 3289235B2 JP 10082096 A JP10082096 A JP 10082096A JP 10082096 A JP10082096 A JP 10082096A JP 3289235 B2 JP3289235 B2 JP 3289235B2
Authority
JP
Japan
Prior art keywords
temperature
evaporator
combustion
bypass valve
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10082096A
Other languages
Japanese (ja)
Other versions
JPH0989410A (en
Inventor
哲也 山田
修一 山口
昇 小林
剛 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Yazaki Corp
Original Assignee
Osaka Gas Co Ltd
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Yazaki Corp filed Critical Osaka Gas Co Ltd
Priority to JP10082096A priority Critical patent/JP3289235B2/en
Publication of JPH0989410A publication Critical patent/JPH0989410A/en
Application granted granted Critical
Publication of JP3289235B2 publication Critical patent/JP3289235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式冷熱発生装
置に係り、特に二次冷媒として相変化を利用する流体を
用いる吸収式冷熱発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption type cold heat generator, and more particularly to an absorption type cold heat generator using a fluid utilizing a phase change as a secondary refrigerant.

【0002】[0002]

【従来の技術】従来、吸収式冷熱発生装置として図5に
示す構成の吸収冷温水機を用いた空調装置が知られてい
る。図示の装置は、冷熱を発生する吸収冷温水機100
と、この吸収冷温水機100に冷却水管40,41で接
続され冷却水を冷却するクーリングタワー42と、吸収
冷温水機100に冷温水管43,44で接続され空調対
象空間に配置されて該空間の空気との熱交換を行う図示
されていない空調用室内機と、前記冷却水管41に介装
され冷却水をクーリングタワー42から吸収冷温水機1
00に循環させる冷却水循環ポンプ14と、前記冷温水
管43に介装され該冷温水管43,44に充填された二
次冷媒を吸収冷温水機100と前記空調用室内機の間で
循環させる冷温水循環ポンプ15と、を含んで構成され
ている。
2. Description of the Related Art Conventionally, an air conditioner using an absorption chiller / heater having the structure shown in FIG. 5 has been known as an absorption chiller. The illustrated device is an absorption chiller / heater 100 that generates cold heat.
And a cooling tower 42 connected to the absorption chiller / heater 100 by cooling water pipes 40 and 41 to cool the cooling water, and a cooling tower 42 connected to the absorption chiller / heater 100 by cooling and hot water pipes 43 and 44 and arranged in the space to be air-conditioned. An air-conditioning indoor unit (not shown) for exchanging heat with air, and an absorption chiller / heater 1 for cooling water interposed in the cooling water pipe 41 from a cooling tower 42.
A cooling water circulation pump 14 for circulating the cooling water and a cooling water circulation pump 14 for circulating the secondary refrigerant interposed in the cooling and heating water pipe 43 between the absorption cooling and heating water heater 100 and the air conditioning indoor unit. And a pump 15.

【0003】前記空調用室内機に対して、吸収冷温水機
100は、通常、室外機と呼ばれ、燃料を燃焼させその
熱で希溶液を加熱する高温再生器1と、この高温再生器
1で加熱された希溶液から冷媒蒸気と中間濃溶液を分離
する分離器2と、分離された冷媒蒸気を熱源として前記
中間濃溶液を加熱してさらに冷媒蒸気を発生させる低温
再生器3と、該低温再生器3を通過した冷媒蒸気及び該
低温再生器3で発生した冷媒蒸気を冷却して凝縮液化さ
せ液冷媒を生成する凝縮器4と、該凝縮器4で生成され
た液冷媒を内装した冷媒分配器6Bから同じく内装した
蒸発コイル上に滴下蒸発させ該蒸発コイル中の二次冷媒
を冷却する蒸発器6と、該蒸発器6で蒸発した冷媒蒸気
を濃溶液に吸収させ希溶液を生成する吸収器5と、該希
溶液を加圧し低温溶液熱交換器8、高温溶液熱交換器7
の被加熱流体側を経て前記高温再生器1に送りこむ溶液
循環ポンプ9と、前記分離器2の底部と前記蒸発器6の
底部を冷暖切換弁10を介して連通する管路10Aと、
前記低温溶液熱交換器8の加熱流体出側を前記吸収器5
の上部に接続する濃溶液管8Aと、該濃溶液管8Aと前
記吸収器5の下部を溶液バイパス弁13を介して接続す
る管路13Aと、該濃溶液管8Aと前記蒸発器5に内装
された冷媒分配器を凍結防止弁12を介して連通する管
路12Aと、前記冷媒分配器に装着され該冷媒分配器内
の冷媒の温度を検知する蒸発器温度センサ17と、前記
凝縮器4から前記冷媒分配器6Bに液冷媒を導く管路に
並列に接続され水冷媒比例弁11を介装する管路11A
と、を含んで構成されている。
[0003] In contrast to the indoor unit for air conditioning, an absorption chiller / heater 100 is usually called an outdoor unit, and a high-temperature regenerator 1 for burning fuel and heating a dilute solution with the heat thereof, A separator 2 that separates the refrigerant vapor and the intermediate concentrated solution from the dilute solution heated in Step 1, a low-temperature regenerator 3 that heats the intermediate concentrated solution using the separated refrigerant vapor as a heat source to further generate refrigerant vapor, A condenser 4 for cooling and condensing and liquefying the refrigerant vapor that has passed through the low-temperature regenerator 3 and the refrigerant vapor generated in the low-temperature regenerator 3 to generate a liquid refrigerant, and a liquid refrigerant generated by the condenser 4 are installed. An evaporator 6 for dropping and evaporating the refrigerant from the refrigerant distributor 6B onto the evaporating coil, which is also housed therein, to cool the secondary refrigerant in the evaporating coil; and absorbing the refrigerant vapor evaporated by the evaporator 6 into a concentrated solution to generate a dilute solution. Absorber 5 and pressurizes the dilute solution to reduce the temperature. Liquid heat exchanger 8, the high temperature solution heat exchanger 7
A solution circulating pump 9 that feeds into the high-temperature regenerator 1 via the heated fluid side, a pipe 10A that communicates the bottom of the separator 2 with the bottom of the evaporator 6 via a cooling / heating switching valve 10,
The heating fluid outlet side of the low-temperature solution heat exchanger 8 is connected to the absorber 5
A concentrated solution pipe 8A connected to the upper part of the pipe, a pipe line 13A connecting the concentrated solution pipe 8A and the lower part of the absorber 5 via a solution bypass valve 13, and a built-in pipe for the concentrated solution pipe 8A and the evaporator 5. A pipe line 12A communicating the separated refrigerant distributor via an anti-freeze valve 12, an evaporator temperature sensor 17 mounted on the refrigerant distributor for detecting the temperature of the refrigerant in the refrigerant distributor, and the condenser 4 11A, which is connected in parallel to a conduit for guiding liquid refrigerant to the refrigerant distributor 6B from above, and in which a water refrigerant proportional valve 11 is interposed.
And is configured.

【0004】また、分離器2で分離された中間濃溶液
は、前記高温溶液熱交換器7の加熱流体側を経て前記低
温再生器3に導かれ、低温再生器3で冷媒を蒸発させて
濃溶液となったのち、前記低温溶液熱交換器8の加熱流
体側を経て前記濃溶液管8Aに導かれるように管路が構
成されている。前記吸収器5及び凝縮器4にはそれぞれ
冷却水コイルが内装され、吸収器5の冷却水コイルの出
口は前記凝縮器4の冷却水コイルの入り口に接続されて
いて、吸収器5の冷却水コイルの入り口は前記冷却水管
41に、凝縮器4の冷却水コイルの出口は前記冷却水管
40に、それぞれ接続されている。前記冷温水管43は
前記蒸発器6の蒸発コイルの入り側に、前記冷温水管4
4は前記蒸発器6の蒸発コイルの出側に、それぞれ接続
され、該冷温水管44の前記蒸発コイル出口近傍には二
次冷媒の温度を検知する冷水出口温度センサ16が装着
されている。
The intermediate concentrated solution separated by the separator 2 is led to the low temperature regenerator 3 via the heating fluid side of the high temperature solution heat exchanger 7, and the low temperature regenerator 3 evaporates the refrigerant to concentrate the medium. After the solution is turned into a solution, the conduit is configured to be led to the concentrated solution tube 8A via the heating fluid side of the low temperature solution heat exchanger 8. Each of the absorber 5 and the condenser 4 is provided with a cooling water coil, and an outlet of the cooling water coil of the absorber 5 is connected to an inlet of the cooling water coil of the condenser 4. The inlet of the coil is connected to the cooling water pipe 41, and the outlet of the cooling water coil of the condenser 4 is connected to the cooling water pipe 40. The cold / hot water pipe 43 is provided on the inlet side of the evaporator coil of the evaporator 6.
Reference numeral 4 denotes a chilled water outlet temperature sensor 16 connected to the outlet side of the evaporating coil of the evaporator 6 and detecting the temperature of the secondary refrigerant near the evaporating coil outlet of the chilled / hot water pipe 44.

【0005】上記構成の装置において、冷暖切換弁10
は、冷房と暖房の切替を行うもので、冷房時は閉、暖房
時は開とされる。水冷媒比例弁11は、蒸発器の温度
(蒸発器温度センサ17の出力)を入力として開度制御
され、溶液濃度の調整を行う弁である。凍結防止弁12
は、蒸発温度が低下して1℃になれば開いて濃溶液を冷
媒分配器6Bに流入させ、冷媒(吸収冷温水機の冷媒に
は通常水が使用される。以下、水冷媒ともいう)の凍結
を防ぐ弁である。溶液バイパス弁13は、冷房立上り時
及び低負荷運転時に、蒸発器温度が低下したとき、凍結
防止弁が作動する前に濃溶液を吸収器5の下部にバイパ
スして吸収器5の吸収能力を低下させ、蒸発器のそれ以
上の温度低下を防ぐためのオン−オフ制御弁である。
In the apparatus having the above-mentioned structure, the cooling / heating switching valve 10
Switches between cooling and heating, and is closed during cooling and opened during heating. The water refrigerant proportional valve 11 is a valve whose opening degree is controlled by inputting the temperature of the evaporator (output of the evaporator temperature sensor 17) to adjust the solution concentration. Antifreeze valve 12
Is opened when the evaporation temperature drops to 1 ° C. and the concentrated solution flows into the refrigerant distributor 6B, and the refrigerant (usually water is used as the refrigerant of the absorption chiller / heater, hereinafter also referred to as water refrigerant). This is a valve to prevent freezing. The solution bypass valve 13 bypasses the concentrated solution to the lower part of the absorber 5 before the antifreeze valve operates when the evaporator temperature is lowered at the start of cooling and low-load operation, thereby increasing the absorption capacity of the absorber 5. An on-off control valve to lower the temperature and prevent further temperature reduction of the evaporator.

【0006】吸収冷温水機は、冷房運転時に機内の水冷
媒が凍結して晶析運転されること、及び低負荷時に冷温
水回路が凍結破損することが最もダメージが大きい。こ
れらの状況になるのをふせぐために冷温水出口温度及び
蒸発器温度に基づく各保護制御がなされている。
The absorption chiller / heater suffers the greatest damage from the fact that the water refrigerant in the machine freezes during the cooling operation and performs the crystallization operation, and that the chiller / heater circuit freezes and breaks at a low load. In order to prevent these situations from occurring, various protection controls are performed based on the cold / hot water outlet temperature and the evaporator temperature.

【0007】例えば、100%負荷時に7℃の冷水を取
り出すようになっている場合、負荷が少ないと能力が負
荷に対して過剰である分、冷水温度が低下する。通常冷
水出口温度5〜6℃になったら高温再生器1の燃焼を停
止させる。冷房立上り時や低負荷時には、冷水出口温度
よりも蒸発器温度が適切な温度幅以上に低下する場合が
あるので、機内の水冷媒が凍結して晶析することのない
よう、蒸発器温度に基づく各種保護制御が行われる。
[0007] For example, in the case where cold water of 7 ° C is taken out at 100% load, if the load is small, the cold water temperature is reduced as the capacity is excessive with respect to the load. When the normal cold water outlet temperature reaches 5 to 6 ° C., the combustion of the high-temperature regenerator 1 is stopped. At the start of cooling or at a low load, the evaporator temperature may be lower than the appropriate temperature range by more than the chilled water outlet temperature.Therefore, the evaporator temperature should be adjusted to prevent the water refrigerant inside the machine from freezing and crystallizing. Various protection controls based on the above are performed.

【0008】図4は、蒸発器温度に基づく制御の例を示
す。図中、LT0〜LT2は蒸発器温度制御の制御種別
を示す。 LT0:蒸発器温度が2℃に低下すると溶液バイパス弁
13を開く、蒸発器温度が3℃に上昇すると溶液バイパ
ス弁13を閉じる。 LT1:蒸発器温度が1℃に低下すると凍結防止弁12
を開く、蒸発器温度が2℃に上昇すると凍結防止弁12
を閉じる。 LT2:蒸発器温度が−2℃に低下すると高温再生器1
での燃焼が停止され、冷却水循環ポンプ14が停止され
る、蒸発器温度が−1℃に上昇すると高温再生器1での
燃焼が開始され、冷却水循環ポンプ14が起動される。
FIG. 4 shows an example of control based on the evaporator temperature. In the figure, LT0 to LT2 indicate control types of evaporator temperature control. LT0: The solution bypass valve 13 is opened when the evaporator temperature drops to 2 ° C., and the solution bypass valve 13 is closed when the evaporator temperature rises to 3 ° C. LT1: anti-freeze valve 12 when evaporator temperature drops to 1 ° C
Open the antifreeze valve 12 when the evaporator temperature rises to 2 ° C.
Close. LT2: high temperature regenerator 1 when evaporator temperature drops to -2 ° C
Is stopped, the cooling water circulation pump 14 is stopped, and when the evaporator temperature rises to -1 ° C., the combustion in the high temperature regenerator 1 is started, and the cooling water circulation pump 14 is started.

【0009】[0009]

【発明が解決しようとする課題】図5に示した空調装置
では、室内機と室外機の間で循環して熱を搬送する二次
冷媒として、相変化をしない流体、一般に液体が用いら
れてきたが、近年、二次冷媒に相変化を行わせることに
より、単位流量あたりの熱搬送量を増加させるものが考
案されている。図6はそのような構成の例を示すもの
で、図5に示す構成のうち、冷温水管43,44に代え
て冷媒液管50、冷媒蒸気管51が蒸発コイルの下端、
上端にそれぞれ接続されている。冷媒液管50,冷媒蒸
気管51の他端は、蒸発コイルよりも下方に配置された
室内機52,53の数だけ分岐しており、冷媒液管50
の分岐端は、室内機にそれぞれ内装された熱交換器の下
側入り口に膨張弁54,55を介して接続され、冷媒蒸
気管51の分岐端は、該熱交換器の上側入り口にそれぞ
れ接続されている。冷媒液管50の蒸発コイルとの接続
部近傍には、二次冷媒の温度を検出して電気信号として
コントローラ59に出力する冷媒液温度センサ21が装
着されている。
In the air conditioner shown in FIG. 5, a non-phase-change fluid, generally a liquid, has been used as a secondary refrigerant which circulates heat between an indoor unit and an outdoor unit to carry heat. However, in recent years, a method has been devised in which a secondary refrigerant undergoes a phase change to increase the heat transfer amount per unit flow rate. FIG. 6 shows an example of such a configuration. In the configuration shown in FIG. 5, the refrigerant liquid pipe 50 and the refrigerant vapor pipe 51 are replaced with the lower end of the evaporating coil instead of the cold and hot water pipes 43 and 44.
Each is connected to the upper end. The other ends of the refrigerant liquid pipe 50 and the refrigerant vapor pipe 51 are branched by the number of the indoor units 52 and 53 arranged below the evaporating coil.
Are connected via expansion valves 54 and 55 to lower inlets of heat exchangers respectively installed in the indoor units, and branch ends of the refrigerant vapor pipes 51 are connected to upper inlets of the heat exchangers, respectively. Have been. A refrigerant liquid temperature sensor 21 that detects the temperature of the secondary refrigerant and outputs it to the controller 59 as an electric signal is mounted near the connection portion of the refrigerant liquid pipe 50 with the evaporation coil.

【0010】冷媒液管50は、途中に室内機52,53
よりも低い位置に配置された部分があり、そこに冷媒液
を加圧して前記蒸発コイルに送りこむ冷媒ポンプ57が
装着されている。冷媒ポンプ57の吐出側には、逆止弁
58が設けられ、この逆止弁58の出側と冷媒ポンプ5
7の吸い込み側は、冷暖切換弁56を介して接続されて
いる。相変化する二次冷媒(以下単に冷媒ともいう)と
して、HFC−134aが冷媒液管に充填されている。
他の構成は前記図5の説明と同じであるので、説明は省
略する。
The refrigerant liquid pipe 50 is provided between the indoor units 52 and 53 on the way.
There is a portion located at a lower position, and a refrigerant pump 57 for pressurizing the refrigerant liquid and sending the pressurized refrigerant liquid to the evaporation coil is mounted thereon. On the discharge side of the refrigerant pump 57, a check valve 58 is provided.
The suction side of 7 is connected via a cooling / heating switching valve 56. HFC-134a is filled in a refrigerant liquid pipe as a secondary refrigerant that changes phase (hereinafter, also simply referred to as a refrigerant).
The other configuration is the same as the description of FIG. 5, and the description is omitted.

【0011】図6に示す空調装置の冷房時の動作は次の
通りである。冷房時には、冷暖切換弁56は開かれてい
る。冷媒蒸気(HFC−134a)は、蒸発器6の蒸発
コイルで冷却凝縮されて冷媒液となり、重力により、冷
媒液管50を下方に流れ、膨張弁54,55を経て各室
内機52,53の熱交換器に流入する。熱交換器に流入
した冷媒液は、空調対象空間の空気の熱を奪って蒸発
し、冷媒蒸気となって冷媒蒸気管51を経て上昇し蒸発
器6の蒸発コイルに流入する。室外機(吸収式冷熱発生
装置)は冷房モードで運転されているから、蒸発器6の
蒸発コイルは、その表面に滴下される水冷媒の蒸発によ
り冷却され、蒸発コイルに流入してきた冷媒蒸気(HF
C−134a)は、凝縮液化する。この凝縮液化によ
り、蒸発コイル内部の圧力が低下し、室内機の熱交換器
で蒸発した冷媒蒸気は蒸発器に吸引される。蒸発コイル
内部で凝縮液化した冷媒液は重力で室内機に流入するか
ら、冷房時の冷媒(HFC−134a)は、自然循環
し、ポンプによる冷媒の駆動を行う必要がない。
The operation of the air conditioner shown in FIG. 6 during cooling is as follows. During cooling, the cooling / heating switching valve 56 is open. The refrigerant vapor (HFC-134a) is cooled and condensed by the evaporator coil of the evaporator 6 to become a refrigerant liquid, flows downward through the refrigerant liquid pipe 50 by gravity, passes through expansion valves 54 and 55, and flows through the indoor units 52 and 53. Flow into heat exchanger. The refrigerant liquid that has flowed into the heat exchanger evaporates by removing the heat of the air in the air-conditioned space, becomes refrigerant vapor, rises through the refrigerant vapor pipe 51, and flows into the evaporator coil of the evaporator 6. Since the outdoor unit (absorption type cold heat generator) is operated in the cooling mode, the evaporation coil of the evaporator 6 is cooled by the evaporation of the water refrigerant dropped on the surface thereof, and the refrigerant vapor ( HF
C-134a) condenses and liquefies. Due to this condensation and liquefaction, the pressure inside the evaporating coil decreases, and the refrigerant vapor evaporated in the heat exchanger of the indoor unit is sucked into the evaporator. Since the refrigerant liquid condensed and liquefied inside the evaporation coil flows into the indoor unit by gravity, the refrigerant (HFC-134a) during cooling naturally circulates, and there is no need to drive the refrigerant by a pump.

【0012】冷房運転が開始されると、先に述べたよう
に、蒸発コイル内部の圧力が低下し、冷媒蒸気管内の飽
和冷媒蒸気が圧力差により蒸発コイル内に流入する。蒸
発コイル内で凝縮して生成された冷媒液は、冷媒液管5
0内を自重で流下し、冷媒液のヘッド(液柱)が上昇し
てくる。先に述べた冷媒の自然循環が成立するために
は、(冷媒の液ヘッド−冷媒ガスヘッド)が冷媒循環経
路の全圧力損失以上であればよい。つまり、次式を満足
する液ヘッドが形成されるまでは冷媒の自然循環は開始
されない。このことは、冷房運転開始時点で蒸発器6に
供給される熱負荷が少ないことを意味する。
When the cooling operation is started, as described above, the pressure inside the evaporating coil decreases, and the saturated refrigerant vapor in the refrigerant vapor pipe flows into the evaporating coil due to the pressure difference. The refrigerant liquid generated by condensation in the evaporating coil is supplied to the refrigerant liquid pipe 5.
0 flows down by its own weight, and the head (liquid column) of the refrigerant liquid rises. In order to achieve the natural circulation of the refrigerant described above, it is sufficient that (the refrigerant liquid head-the refrigerant gas head) is equal to or more than the total pressure loss of the refrigerant circulation path. That is, the natural circulation of the refrigerant is not started until a liquid head satisfying the following equation is formed. This means that the heat load supplied to the evaporator 6 at the start of the cooling operation is small.

【0013】[0013]

【数1】 (Equation 1)

【0014】暖房時には、冷暖切換弁56は閉じられて
いる。冷媒液(HFC−134a)は、蒸発器6の蒸発
コイルで加熱されて冷媒蒸気となり、冷媒蒸気管51を
下方に流れ、各室内機52,53の熱交換器に流入す
る。熱交換器に流入した冷媒蒸気は、空調対象空間の空
気に熱を奪われて凝縮液化し、冷媒液となって冷媒液管
51を下方に流れて冷媒ポンプ57入り側に流入する。
冷媒液は冷媒ポンプ57で加圧され、蒸発器6の蒸発コ
イルに流入して上記のサイクルを繰り返す。このとき、
室外機は暖房モードで運転され、蒸発器6には分離器2
で分離された高温の溶液が導かれ、蒸発コイルはこの熱
により加熱される。
During heating, the cooling / heating switching valve 56 is closed. The refrigerant liquid (HFC-134a) is heated by the evaporator coil of the evaporator 6 to become refrigerant vapor, flows down the refrigerant vapor pipe 51, and flows into the heat exchangers of the indoor units 52 and 53. The refrigerant vapor flowing into the heat exchanger is deprived of heat by the air in the air-conditioned space, condensed and liquefied, becomes a refrigerant liquid, flows downward through the refrigerant liquid pipe 51, and flows into the refrigerant pump 57 inlet side.
The refrigerant liquid is pressurized by the refrigerant pump 57, flows into the evaporation coil of the evaporator 6, and repeats the above cycle. At this time,
The outdoor unit is operated in the heating mode, and the evaporator 6 has the separator 2
The high-temperature solution separated by the above is led, and the evaporation coil is heated by this heat.

【0015】上述の吸収式冷媒自然循環冷房装置の室外
機に、図4,5を参照して説明した蒸発器温度による制
御(LT制御)をそのまま適用して冷房運転を行うと、
次のような問題がある。 1)LT0とLT1の温度幅が狭く、蒸発器温度が急降
下によりオーバーシュートしてLT1作動温度(凍結防
止弁開温度)にまで低下し、凍結防止弁12を作動させ
るため、蒸発器6の水冷媒中に濃溶液が混入し、蒸発器
の冷却能力が著しく低下する。蒸発器の冷却能力が低下
すると蒸発コイル内の圧力が上がり、室内機との間での
冷媒の自然循環が阻害される。冷媒分配器に混入した濃
溶液がほぼなくなるまで蒸発器の冷却能力が回復せず、
また冷媒分配器に混入した濃溶液がほぼなくなるまでに
時間がかかる。このため、蒸発器の冷却能力が回復し、
冷房運転が立ち上がるのに時間がかかることになる。蒸
発器温度が急降下するのは、室内機側の冷媒回路に冷房
時に冷媒を強制循環させるポンプがないため、冷房立上
り時に冷媒の循環量が少なく、したがって負荷との熱交
換量が少ないので冷媒によって蒸発器6の蒸発コイルに
供給される熱量も少ないことによる。このため、室外機
の冷房運転開始時に吸収器の能力が蒸発コイルに供給さ
れる負荷に対して過大となり、蒸発器温度の急降下を招
くことになる。
When the control based on the evaporator temperature (LT control) described with reference to FIGS. 4 and 5 is directly applied to the outdoor unit of the above-mentioned absorption type refrigerant natural circulation cooling device, the cooling operation is performed.
There are the following problems. 1) The temperature range of LT0 and LT1 is narrow, and the evaporator temperature overshoots due to a rapid drop to fall to the LT1 operating temperature (freezing valve opening temperature). The concentrated solution is mixed in the refrigerant, and the cooling capacity of the evaporator is significantly reduced. When the cooling capacity of the evaporator decreases, the pressure in the evaporator coil increases, and the natural circulation of the refrigerant with the indoor unit is hindered. The cooling capacity of the evaporator did not recover until the concentrated solution mixed in the refrigerant distributor almost disappeared,
In addition, it takes time for the concentrated solution mixed in the refrigerant distributor to almost disappear. For this reason, the cooling capacity of the evaporator is restored,
It takes time for the cooling operation to start. The sudden drop in the evaporator temperature is due to the fact that there is no pump in the indoor unit's refrigerant circuit for forced circulation of the refrigerant during cooling, so the amount of circulation of the refrigerant at the start of cooling is small, and therefore the amount of heat exchange with the load is small. This is because the amount of heat supplied to the evaporating coil of the evaporator 6 is also small. For this reason, at the time of starting the cooling operation of the outdoor unit, the capacity of the absorber becomes excessive with respect to the load supplied to the evaporating coil, which causes a sudden drop in the evaporator temperature.

【0016】2)蒸発器温度がLT1作動温度に低下す
る前に、LT0制御により溶液バイパス弁13を開い
て、濃溶液を吸収器上部に導く代わりに吸収器底部にバ
イパスし、吸収能力を低下させて蒸発器での水冷媒の蒸
発を抑制しているが、二次冷媒(HFC−134a)は
温度変化が早く、従来採用されているオン−オフ制御の
溶液バイパス弁13の分流比(10〜20%程度のバイ
パス量)では、LT1作動を止めらない。
2) Before the evaporator temperature falls to the LT1 operating temperature, the solution bypass valve 13 is opened by LT0 control to bypass the concentrated solution to the upper part of the absorber and to bypass the concentrated solution to the bottom of the absorber to reduce the absorption capacity. Although the evaporation of the water refrigerant in the evaporator is suppressed by this, the secondary refrigerant (HFC-134a) has a rapid temperature change, and the branching ratio (10) of the solution bypass valve 13 of the conventionally used on-off control. At about 20% bypass amount), the LT1 operation is not stopped.

【0017】なお、LT1制御は、室外機内の水冷媒の
凍結防止に有効であるが、設定温度を下げると、凍結防
止効果が損なわれる。すなわち、蒸発器温度1℃で凍結
防止弁を開としているが、例えば0℃で開とすると、実
質的に水冷媒は凍結を始めており、蒸発器温度センサ1
7の精度、ばらつきを考えると、0℃では水冷媒回路の
凍結により晶析運転につながる可能性が高い。
Note that the LT1 control is effective in preventing freezing of the water refrigerant in the outdoor unit, but lowering the set temperature impairs the antifreezing effect. That is, the antifreeze valve is opened at an evaporator temperature of 1 ° C. However, if the antifreeze valve is opened at 0 ° C., for example, the water refrigerant substantially starts to freeze, and the evaporator temperature sensor 1
Considering the accuracy and variation of 7, there is a high possibility that at 0 ° C., freezing of the water refrigerant circuit will lead to crystallization operation.

【0018】上述のように、二次冷媒として相変化する
流体を用い、冷房時に冷媒を自然循環させる場合、冷房
運転開始時に、特に低負荷時の冷房運転開始時にLT1
制御が作動し、冷房立上りに長時間を要するという問題
がある。また、冷却水温度が計画温度より低い場合も吸
収器の吸収能力が負荷に対応して必要な能力よりも大き
くなり、冷房運転開始時に蒸発器温度が急降下してLT
1制御が作動し、冷房立上りに長時間を要するという問
題がある。
As described above, when a phase-changing fluid is used as the secondary refrigerant and the refrigerant is naturally circulated during cooling, LT1 is used at the start of cooling operation, especially at the start of cooling operation under low load.
There is a problem that the control is activated and it takes a long time to start cooling. Also, when the cooling water temperature is lower than the planned temperature, the absorption capacity of the absorber becomes larger than the required capacity corresponding to the load, and the evaporator temperature drops rapidly at the start of the cooling operation, resulting in LT LT.
There is a problem that one control is activated and it takes a long time to start cooling.

【0019】本発明の目的は、二次冷媒として相変化す
る流体を用い、冷房時に二次冷媒に自然循環させる場合
でも、負荷率に対応して冷房運転をスムースに立上らせ
ることにある。
An object of the present invention is to smoothly start up a cooling operation in accordance with a load factor even when a phase-change fluid is used as a secondary refrigerant and the secondary refrigerant is naturally circulated during cooling. .

【0020】[0020]

【課題を解決するための手段】上記の目的は、燃焼熱で
吸収溶液を加熱する高温再生器を備え、吸収器上部に濃
溶液を導く濃溶液管と蒸発器に内装された冷媒分配器と
が凍結防止弁を介して連通されるとともに、前記濃溶液
管と吸収器底部が溶液バイパス弁を介して連通されてお
り、負荷との間で循環する二次冷媒として相変化する流
体を用いる吸収式冷熱発生装置において、前記溶液バイ
パス弁を蒸発器温度に応じて開度制御される開度調整可
能な弁とすることにより達成される。開度制御の範囲と
しては、蒸発器の計画運転温度よりも低い温度で開き始
め、凍結防止弁が開く温度よりも高い温度で全開するよ
うにし、開き始める温度と全開する温度との差を従来の
LT1制御の温度幅よりも広げるとともに、その間では
蒸発器温度に比例した開度とするのが望ましい。同時
に、凍結防止弁が開くときに溶液バイパス弁を全閉する
のが望ましい。必ずしも全閉しなくてもよいが、少なく
とも凍結防止弁を経て濃溶液が蒸発器の冷媒分配器に流
入する程度に溶液バイパス弁の開度を小さくする。上記
の目的はまた、吸収溶液を燃焼熱によって加熱する高温
再生器1と、吸収器5に冷却水を循環させる冷却水循環
ポンプ14と、吸収器5上部に濃溶液を導く濃溶液管8
Aと蒸発器6に内装された冷媒分配器とを接続する管路
を開閉する凍結防止弁12と、前記濃溶液管8Aと吸収
器5底部を接続する管路22Aを開閉する溶液バイパス
弁22と、前記高温再生器1の燃焼、冷却水循環ポンプ
14、凍結防止弁12、及び溶液バイパス弁22を制御
するコントローラ59を含んでなり、負荷との間で循環
する二次冷媒として相変化する流体を用い、前記コント
ローラ59は、蒸発器温度が0℃より高い予め設定され
た第1の温度以下に低下したとき、前記凍結防止弁12
を開くとともに前記溶液バイパス弁22を全閉し、凍結
防止弁12の開状態で蒸発器温度が前記第1の温度より
高く設定された第2の温度以上に上昇したとき前記凍結
防止弁12を閉じるものである吸収式冷熱発生装置にお
いて、前記コントローラを、 蒸発器温度が前記第1の温度と第2の温度の間の予め
設定された第3の温度以下に低下したとき、高温再生器
1での燃焼及び前記冷却水循環ポンプ14の運転を停止
し、 蒸発器温度が、高温再生器1での燃焼及び前記冷却水
循環ポンプ14の運転が停止された状態で、前記第2の
温度より高く、蒸発器の計画運転温度よりも低い予め設
定された第4の温度以上に上昇したとき、高温再生器1
での燃焼及び前記冷却水循環ポンプ14の運転を開始
し、 蒸発器の温度が前記第2の温度より高く前記第4の温
度より低い予め設定された第5の温度以下に低下したと
き、溶液バイパス弁22の開度を全開し、 蒸発器の温度が、溶液バイパス弁22全開状態で、前
記第4の温度より高く、蒸発器の計画運転温度より低い
予め設定された第6の温度以上に上昇したとき、溶液バ
イパス弁22の開度を予め設定された中間開度に設定
し、 蒸発器の温度が、溶液バイパス弁22中間開度状態
で、前記第6の温度より高く、蒸発器の計画運転温度よ
り低い予め設定された第8の温度以上に上昇したとき、
溶液バイパス弁22を全閉し、 蒸発器の温度が、溶液バイパス弁22全閉状態で、前
記第6の温度より低く、前記第5の温度より高い予め設
定された第7の温度以下に低下したとき、溶液バイパス
弁22の開度を中間開度に設定する、 ものとすることによっても達成される。
An object of the present invention is to provide a high-temperature regenerator for heating an absorption solution by heat of combustion, a concentrated solution pipe for guiding a concentrated solution above the absorber, and a refrigerant distributor provided in an evaporator. Is communicated via a freeze prevention valve, and the concentrated solution pipe and the bottom of the absorber are communicated via a solution bypass valve. The absorption using a phase-change fluid as a secondary refrigerant circulating with a load is performed. This is achieved by providing the solution bypass valve as a valve whose opening can be controlled in accordance with the evaporator temperature in the cooling air generator. The range of the opening control is to start opening at a temperature lower than the planned operating temperature of the evaporator, and to fully open at a temperature higher than the temperature at which the antifreeze valve opens. It is desirable that the temperature be wider than the temperature width of the LT1 control described above and that the opening be proportional to the evaporator temperature during that time. At the same time, it is desirable to fully close the solution bypass valve when the antifreeze valve opens. Although it is not always necessary to fully close, the opening degree of the solution bypass valve is made small at least to such an extent that the concentrated solution flows into the refrigerant distributor of the evaporator via the antifreeze valve. The above objects are also achieved by a high-temperature regenerator 1 for heating the absorbing solution by combustion heat, a cooling water circulating pump 14 for circulating cooling water to the absorber 5, and a concentrated solution pipe 8 for guiding the concentrated solution to the upper part of the absorber 5.
A and an antifreeze valve 12 for opening and closing a pipe connecting the refrigerant distributor provided in the evaporator 6 and a solution bypass valve 22 for opening and closing a pipe 22A connecting the concentrated solution pipe 8A and the bottom of the absorber 5. And a controller 59 for controlling the combustion of the high temperature regenerator 1, the cooling water circulation pump 14, the antifreeze valve 12, and the solution bypass valve 22, and a phase change fluid as a secondary refrigerant circulating between the load and the controller 59. When the evaporator temperature drops below a first temperature higher than 0 ° C., the controller 59 sets the antifreeze valve 12
Is opened and the solution bypass valve 22 is fully closed. When the evaporator temperature rises to a second temperature higher than the first temperature and higher than the first temperature in the open state of the antifreeze valve 12, the antifreeze valve 12 is opened. In the absorption-type cold heat generating apparatus which is a closed type, when the evaporator temperature falls below a third temperature set in advance between the first temperature and the second temperature, the high-temperature regenerator 1 The evaporator temperature is higher than the second temperature in a state where the combustion in the high-temperature regenerator 1 and the operation of the cooling water circulation pump 14 are stopped, When the temperature rises above a preset fourth temperature lower than the planned operating temperature of the evaporator, the high-temperature regenerator 1
And the operation of the cooling water circulation pump 14 is started. When the temperature of the evaporator drops below a predetermined fifth temperature lower than the fourth temperature and higher than the second temperature, the solution bypass The degree of opening of the valve 22 is fully opened, and the temperature of the evaporator rises above a predetermined sixth temperature higher than the fourth temperature and lower than the planned operating temperature of the evaporator when the solution bypass valve 22 is fully open. Then, the opening degree of the solution bypass valve 22 is set to a preset intermediate opening degree, and the temperature of the evaporator is higher than the sixth temperature in the intermediate state of the solution bypass valve 22 when the evaporator is planned. When the temperature rises above a preset eighth temperature lower than the operating temperature,
The solution bypass valve 22 is fully closed, and the temperature of the evaporator is lower than the sixth temperature and is lower than the predetermined seventh temperature higher than the fifth temperature when the solution bypass valve 22 is fully closed. Then, the opening degree of the solution bypass valve 22 is set to an intermediate opening degree.

【0021】上記の課題はまた、上記各手段において、
冷房負荷との間で循環する相変化する二次冷媒の蒸発器
出口における温度Trを検出する冷媒液温度センサを備
え、 温度Trが0℃より高い予め設定された温度T1以下に
低下したとき、前記高温再生器における燃焼を停止し、 温度Trが前記温度T1より高く設定された温度T2
上に上昇したとき、高温再生器における燃焼を第1段階
の燃焼とし、 温度Trが前記温度T2より高い温度T4を超えたとき
高温再生器における燃焼を前記第1段階の燃焼より入熱
量の大きい第2段階の燃焼とし、 温度Trが前記温度T2より高く温度T4より低い温度
3を超えて低下したとき、高温再生器における燃焼を
前記第1段階の燃焼とするように構成することによって
も達成される。
The above object is also achieved in each of the above means.
It includes a refrigerant liquid temperature sensor for detecting the temperature Tr of the evaporator outlet of the phase change to a secondary refrigerant circulates between the cooling load, when the drop in temperature T 1 of less temperature Tr is set in advance is higher than 0 ℃ the stop combustion in the high temperature regenerator when the temperature Tr is increased to increase the set temperature T 2 higher than the temperature T 1, the combustion in the high-temperature regenerator and the combustion of the first stage, the temperature Tr is the temperature the combustion in the high temperature regenerator when exceeding the high temperature T 4 from T 2 to the combustion of the larger second stage of heat input from the combustion of the first stage, the temperature Tr temperature is lower than the high temperature T 4 from the temperature T 2 when reduced by more than T 3, also achieved by configuring the combustion in the high temperature regenerator to the combustion of the first stage.

【0022】上記高温再生器の制御に加え、溶液バイパ
ス弁22を、温度Trが温度T2とT3の間の予め設定さ
れた温度T5以上のとき全閉し、温度Trが温度T1以下
のとき全開し、その間では(温度T5−温度T1)と(温
度T5−温度Tr)との比に比例した開度となるように開
度調整されるものとしてもよい。
[0022] The addition to the control of the high-temperature regenerator, a solution bypass valve 22, fully closed when the temperature T 5 or more set in advance between the temperature Tr of temperature T 2 and T 3, the temperature temperature Tr is T 1 fully open when the following is in between (the temperature T 5 - temperature T 1) - may alternatively be opening adjustment such that the opening in proportion to the ratio between the (temperature Tr temperature T 5).

【0023】また、上記高温再生器の制御に加え、溶液
バイパス弁22が、温度Trが温度T2とT3の間の温度
5以上のとき全閉し、温度Trが温度T1以下のとき全
開し、溶液バイパス弁22の全閉状態において温度Tr
が温度T1とT2の間に設定された温度T6以下に低下し
たとき所定の間隔で間歇的に開閉状態を繰り返す間歇開
閉状態となり、溶液バイパス弁22の全開状態において
温度Trが温度T6とT5の間に設定された温度T7以上に
上昇したとき前記間歇開閉状態となるように開度調整さ
れるものとしてもよい。
Further, in addition to the control of the high-temperature regenerator, a solution bypass valve 22, temperature Tr is fully closed when the temperature T 5 or more between the temperature T 2 and T 3, the temperature Tr is temperature T 1 of the following Fully open and the temperature Tr in the fully closed state of the solution bypass valve 22.
There becomes intermittent opening and closing state of repeated intermittently opened and closed states at predetermined intervals when the lowering of the temperature T 6 or less that is set between the temperatures T 1 and T 2, the temperature Tr is the temperature T in the fully opened state of a solution bypass valve 22 or as being opening adjustment so that the intermittent opening and closing state when raised to a temperature T 7 or more, which is set between 6 and T 5.

【0024】さらに、吸収器入り口における冷却水温度
を検出して出力する冷却水入口温度センサを設け、吸収
器及び凝縮器に送られる冷却水を駆動する冷却水ポンプ
を、冷却水ポンプ運転状態で前記検出された冷却水入口
温度が予め設定された温度TWCより低下したとき停止
され、冷却水ポンプ停止状態で前記検出された冷却水入
口温度が予め設定された温度TWHより上昇したとき運
転開始されるようにすると効果的である。
Further, a cooling water inlet temperature sensor for detecting and outputting a cooling water temperature at the inlet of the absorber is provided, and a cooling water pump for driving the cooling water sent to the absorber and the condenser is operated in a cooling water pump operating state. The operation is stopped when the detected cooling water inlet temperature is lower than a predetermined temperature TWC, and is started when the detected cooling water inlet temperature is higher than a predetermined temperature TWH in a cooling water pump stopped state. This is effective.

【0025】冷房運転立上り時は、室外機が冷房サイク
ルを始める(GPH以上で溶液ポンプが運転される)と
室外機内の水冷媒が蒸発器コイル表面に滴下し、蒸発し
た蒸気冷媒は吸収器の方に誘引され、溶液に吸収され
る。立上り時は水冷媒量が少なく、かつ吸収器を流れる
冷却水温度が低いため吸収器の吸収能力が過大であり、
結果として蒸発器の圧力を低下させる。冷媒自然循環シ
ステムでは、冷房運転開始後、予め設定された時間(例
えば13分間)、室内機の膨張弁は全閉になっている。
つまり、冷媒ガス管内の飽和冷媒蒸気と、冷媒液管中に
滞留している飽和冷媒蒸気が同時に室外機蒸発器の蒸発
コイル内に導かれて凝縮液化し、液ヘッドを形成してい
く。前記設定された時間経過後は、室内機の出口、入り
口の温度差に応じて膨張弁の開度が自動調整され、室内
機で蒸発した二次冷媒の冷媒蒸気が順次室外機の蒸発器
に送られ、室外機の蒸発器と室内機の間で自然循環を行
う。実際には、膨張弁が開き、二次冷媒が室内機で蒸発
して冷媒蒸気が室外機へ送られてから数分後に冷房サイ
クルの自然循環が始まる。そのため、さきにのべたよう
に、冷房運転立上り時に吸収器の吸収能力が過大とな
り、蒸発器の圧力を計画以上に低下させ、蒸発器の温度
低下を招くのである。
At the start of the cooling operation, when the outdoor unit starts a cooling cycle (when the solution pump is operated at GPH or more), the water refrigerant in the outdoor unit drops on the surface of the evaporator coil, and the evaporated vapor refrigerant flows into the absorber. Is attracted to and absorbed by the solution. At startup, the amount of water refrigerant is small, and the cooling water temperature flowing through the absorber is low, so the absorption capacity of the absorber is excessive,
As a result, the evaporator pressure is reduced. In the refrigerant natural circulation system, the expansion valve of the indoor unit is fully closed for a preset time (for example, 13 minutes) after the start of the cooling operation.
In other words, the saturated refrigerant vapor in the refrigerant gas pipe and the saturated refrigerant vapor retained in the refrigerant liquid pipe are simultaneously guided into the evaporation coil of the outdoor unit evaporator and condensed and liquefied to form a liquid head. After the lapse of the set time, the opening of the expansion valve is automatically adjusted according to the temperature difference between the outlet and the inlet of the indoor unit, and the refrigerant vapor of the secondary refrigerant evaporated in the indoor unit is sequentially sent to the evaporator of the outdoor unit. It is sent and performs natural circulation between the evaporator of the outdoor unit and the indoor unit. Actually, natural circulation of the cooling cycle starts several minutes after the expansion valve is opened, the secondary refrigerant evaporates in the indoor unit, and the refrigerant vapor is sent to the outdoor unit. Therefore, as described above, the absorption capacity of the absorber becomes excessive at the start of the cooling operation, so that the pressure of the evaporator is reduced more than planned and the temperature of the evaporator is reduced.

【0026】蒸発器温度が蒸発器の計画運転温度よりも
低い、予め設定された温度になった時点で溶液バイパス
弁が開き始め、濃溶液が吸収器の底部にバイパスされ始
める。濃溶液の吸収器底部へのバイパスにより吸収器の
吸収能力が低下し始める。吸収器の吸収能力低下に伴っ
て吸収器の圧力が高まり、蒸発器での水冷媒の蒸発量が
低下する。水冷媒の蒸発量が低下すると、蒸発器の温度
降下も少なくなる。濃溶液のバイパスが始まっても蒸発
器の温度降下が続くと、温度降下の勾配に比例して溶液
バイパス弁の開度が増加され、凍結防止弁が開くように
設定された蒸発器温度よりもやや高い温度、例えば1℃
高い温度で全開する。このように濃溶液のバイパス量を
制御することで、蒸発器温度の計画以上の低下に対応す
る吸収器の吸収能力を低下させ、冷房運転開始時のLT
1作動(凍結防止弁開)を回避することができる。
When the evaporator temperature reaches a preset temperature lower than the planned operation temperature of the evaporator, the solution bypass valve starts to open, and the concentrated solution starts to be bypassed to the bottom of the absorber. By-passing the concentrated solution to the bottom of the absorber begins to reduce the absorption capacity of the absorber. As the absorption capacity of the absorber decreases, the pressure of the absorber increases and the amount of evaporation of the water refrigerant in the evaporator decreases. When the amount of evaporation of the water refrigerant decreases, the temperature drop of the evaporator also decreases. If the evaporator temperature continues to drop even when the concentrated solution bypass starts, the opening of the solution bypass valve is increased in proportion to the gradient of the temperature drop, and the evaporator temperature is set lower than the evaporator temperature set so that the antifreeze valve opens. Slightly higher temperature, eg 1 ° C
Fully open at high temperature. By controlling the bypass amount of the concentrated solution in this way, the absorption capacity of the absorber corresponding to a decrease in the evaporator temperature beyond the plan is reduced, and the LT at the start of the cooling operation is reduced.
One operation (freezing prevention valve opening) can be avoided.

【0027】また、LT1作動温度よりも高い蒸発器温
度でLT2を動作させ、凍結防止弁を開いて濃溶液を冷
媒分配器に混入させる前に、高温再生器の燃焼を停止す
ると同時に冷却水循環ポンプの運転を停止すれば、吸収
器の吸収能力は急激に低下し、蒸発器の温度降下が抑制
され、蒸発器の温度がLT1作動温度(凍結防止弁が開
かれて濃溶液が冷媒分配器に混入される温度)にまで低
下するのを防止できる。この場合、溶液バイパス弁によ
る濃溶液の吸収器底部へのバイパスを、LT2作動温度
よりもさらに高い蒸発器温度で2段階(中間開度と全
開)に分けて行うことにより、蒸発器の温度降下を効果
的に行うことができる。本来、LT2は、蒸発コイル内
を流れる流体の凍結防止を主目的として行われている。
しかし、本発明の対象となる吸収式冷熱発生装置におい
ては、蒸発コイル内を流れる二次冷媒として沸点の低
い、使用条件において相変化する流体が用いられるの
で、蒸発コイル内を流れる流体の凍結防止を考慮する必
要がなく、LT2の作動温度をLT1の作動温度より高
い温度にしても不都合は生じない。
Further, before the LT2 is operated at an evaporator temperature higher than the LT1 operating temperature and the antifreezing valve is opened to mix the concentrated solution into the refrigerant distributor, the combustion of the high-temperature regenerator is stopped and, at the same time, the cooling water circulation pump is operated. When the operation is stopped, the absorption capacity of the absorber rapidly decreases, the temperature drop of the evaporator is suppressed, and the temperature of the evaporator reaches the LT1 operating temperature (the antifreeze valve is opened and the concentrated solution is supplied to the refrigerant distributor). (Mixed temperature) can be prevented. In this case, the bypass of the concentrated solution to the bottom of the absorber by the solution bypass valve is performed in two stages (intermediate opening degree and full opening) at the evaporator temperature higher than the LT2 operating temperature, thereby lowering the evaporator temperature. Can be performed effectively. Originally, LT2 is mainly performed to prevent the fluid flowing in the evaporating coil from freezing.
However, in the absorption-type cold heat generating apparatus to which the present invention is applied, since a fluid having a low boiling point and a phase change under use conditions is used as the secondary refrigerant flowing in the evaporating coil, the fluid flowing in the evaporating coil is prevented from freezing. Does not need to be considered, and no inconvenience occurs even if the operating temperature of LT2 is higher than the operating temperature of LT1.

【0028】冬期及び中間期(春・秋)の冷房運転にて
室内機1台の冷房運転を行うと、LT制御でも凍結防止
弁の作動域まで蒸発器の温度が低下し、室外機が変動の
大きい運転となり、室内機の制御が追随できない場合が
ある。特に負荷率が30%以下の場合に起こりやすい。
蒸発器の温度に基づく溶液バイパス弁の制御に加え、蒸
発器出口での二次冷媒温度Trを検出して、この冷媒液
温度Trに基づいて溶液バイパス弁の制御を行うことに
より、蒸発器の極端な温度降下を事前に回避し、凍結防
止弁の作動による変動の大きな不安定運転を防止でき
る。
When one indoor unit is operated in the cooling operation in winter and in the middle period (spring / autumn), the temperature of the evaporator drops to the operation range of the antifreeze valve even in the LT control, and the outdoor unit fluctuates. And the operation of the indoor unit may not be able to follow. This is particularly likely to occur when the load factor is 30% or less.
In addition to the control of the solution bypass valve based on the temperature of the evaporator, the secondary refrigerant temperature Tr at the outlet of the evaporator is detected, and the solution bypass valve is controlled based on the refrigerant liquid temperature Tr. An extreme temperature drop can be avoided in advance, and unstable operation with large fluctuation due to the operation of the antifreeze valve can be prevented.

【0029】[0029]

【発明の実施の形態】以下、本発明の第1の実施例を図
1を参照して説明する。図1の実施例が図6に示したも
のと異なるのは、溶液バイパス弁22が、蒸発器温度セ
ンサ17の出力に基づいて無段階に開度制御される構成
としてある点、コントローラ59は、溶液バイパス弁2
2を蒸発器温度センサ17の出力に基づいて無段階に開
度制御するように構成されている点、及び、冷媒蒸気管
51の蒸発コイル出側立上り部と冷媒液管50の蒸発コ
イル接続部とを電磁弁60を介して連通する点であり、
他の構成は図6のものと同じであるので、構成の詳細説
明を省略する。本実施例における蒸発器の計画運転温度
は5℃であり、LT1,LT2は前記図4により説明し
たものと同じである。本実施例におけるLT0制御の温
度条件を図2に示す。図2は横軸に蒸発器温度、縦軸に
溶液バイパス弁開度をとり、蒸発器温度と溶液バイパス
弁開度の関係を示しており、コントローラ59はこの関
係を満たすように溶液バイパス弁22の開度を制御す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIG. The difference between the embodiment of FIG. 1 and the embodiment shown in FIG. 6 is that the solution bypass valve 22 is configured such that the opening is controlled steplessly based on the output of the evaporator temperature sensor 17. Solution bypass valve 2
2 is configured to control the opening in a stepless manner based on the output of the evaporator temperature sensor 17, and the evaporating coil outlet side rising portion of the refrigerant vapor pipe 51 and the evaporating coil connection portion of the refrigerant liquid pipe 50. Are communicated via the solenoid valve 60.
The other configuration is the same as that of FIG. 6, and a detailed description of the configuration will be omitted. The planned operating temperature of the evaporator in this embodiment is 5 ° C., and LT1 and LT2 are the same as those described with reference to FIG. FIG. 2 shows temperature conditions for LT0 control in this embodiment. FIG. 2 shows the relationship between the evaporator temperature and the degree of opening of the solution bypass valve by taking the evaporator temperature on the horizontal axis and the degree of opening of the solution bypass valve on the vertical axis. Control the opening degree.

【0030】図1に示す実施例の冷房運転開始時の動作
を説明する。まず、冷房運転が開始されると蒸発器温度
が低下し始める。蒸発器の計画運転温度は5℃である
が、冷房運転開始時には、二次冷媒(HFC−134
a)の自然循環の条件が十分ではないため、循環量が少
なく、蒸発器に供給される熱負荷に比較して吸収器の吸
収能力が大きく、蒸発器温度は5℃よりもさらに低下す
る。蒸発器温度が4℃になったら、溶液バイパス弁22
が開き始める。これで濃溶液管8Aを流れる濃溶液の一
部が吸収器5の底部に流入し始め、吸収器5の上部から
吸収器5に内装されている冷却水コイル上に散布される
濃溶液の量が少なくなる。冷却水コイル上に散布される
濃溶液の量が少なくなることで吸収器の吸収能力が低下
し、蒸発器6での水冷媒の蒸発量が少なくなって、吸収
器の吸収能力が低下し、蒸発器の温度低下も少なくな
る。
The operation of the embodiment shown in FIG. 1 when the cooling operation is started will be described. First, when the cooling operation is started, the evaporator temperature starts to decrease. The planned operating temperature of the evaporator is 5 ° C, but at the start of the cooling operation, the secondary refrigerant (HFC-134
Since the conditions of the natural circulation in a) are not sufficient, the circulation amount is small, the absorption capacity of the absorber is large as compared with the heat load supplied to the evaporator, and the evaporator temperature is further lowered than 5 ° C. When the evaporator temperature reaches 4 ° C., the solution bypass valve 22
Begins to open. Thus, a part of the concentrated solution flowing through the concentrated solution pipe 8A starts flowing into the bottom of the absorber 5, and the amount of the concentrated solution sprayed from above the absorber 5 onto the cooling water coil provided in the absorber 5 Is reduced. The absorption capacity of the absorber is reduced by reducing the amount of the concentrated solution sprayed on the cooling water coil, the amount of water refrigerant evaporated in the evaporator 6 is reduced, and the absorption capacity of the absorber is reduced. Evaporator temperature drop is also reduced.

【0031】濃溶液のバイパス開始にもかかわらず蒸発
器温度がさらに低下すると、低下量に応じて溶液バイパ
ス弁22の開度が増加され、吸収器の吸収能力も低下す
る。2℃になると、溶液バイパス弁22の開度は100
%(全開)となり、4℃と2℃の間では、溶液バイパス
弁22の開度は直線的に変化する。蒸発器の冷却能力と
循環される二次冷媒(HFC−134a)の量がバラン
スすると、蒸発器温度はそれ以上低下せず、溶液バイパ
ス弁22の開度はその位置に保持される。冷媒循環量が
次第に増加して蒸発器に供給される熱負荷が蒸発器のそ
の時点での冷却能力を上回るようになると、蒸発器の温
度が上昇し始め、それに応じて図2に示されるように、
溶液バイパス弁22の開度が小さくなる。4℃になる
と、溶液バイパス弁22の開度は0%(全閉)となり、
正常運転が開始される。
If the evaporator temperature further decreases despite the start of the concentrated solution bypass, the opening of the solution bypass valve 22 is increased in accordance with the decrease, and the absorption capacity of the absorber is also reduced. At 2 ° C., the opening degree of the solution bypass valve 22 becomes 100
% (Fully open), and between 4 ° C. and 2 ° C., the opening of the solution bypass valve 22 changes linearly. When the cooling capacity of the evaporator and the amount of circulated secondary refrigerant (HFC-134a) are balanced, the evaporator temperature does not further decrease, and the opening of the solution bypass valve 22 is maintained at that position. As the amount of circulating refrigerant gradually increases so that the heat load supplied to the evaporator exceeds the current cooling capacity of the evaporator, the temperature of the evaporator begins to rise, and accordingly, as shown in FIG. To
The opening degree of the solution bypass valve 22 decreases. At 4 ° C., the opening of the solution bypass valve 22 becomes 0% (fully closed),
Normal operation starts.

【0032】蒸発器の温度低下が続き、溶液バイパス弁
22の開度が100%(蒸発器温度2℃)になっても、
蒸発器の温度低下が止まらないと、溶液バイパス弁22
の開度はそのまま100%に維持され、ついに1℃にま
で低下するとLT1が作動して凍結防止弁12が開く。
凍結防止弁12が開くと濃溶液が蒸発器6の冷媒分配器
に流入する。濃溶液の冷媒分配器流入により、蒸発器に
おける水冷媒の蒸発はなくなる。蒸発器温度が凍結防止
弁12が開く温度にまで低下したら、溶液バイパス弁2
2は閉じられる。これは、溶液バイパス弁22が全開し
たままにしておいて凍結防止弁12が開いても濃溶液が
冷媒分配器に流れないようなことになるのを防ぐためで
あり、必ずしも全閉しなくてもよい。
Even if the temperature of the evaporator continues to drop and the degree of opening of the solution bypass valve 22 becomes 100% (evaporator temperature 2 ° C.),
If the evaporator temperature does not stop decreasing, the solution bypass valve 22
Is maintained at 100% as it is, and when the temperature finally drops to 1 ° C., the LT1 operates and the antifreeze valve 12 opens.
When the antifreeze valve 12 opens, the concentrated solution flows into the refrigerant distributor of the evaporator 6. Due to the flow of the concentrated solution into the refrigerant distributor, the evaporation of the water refrigerant in the evaporator is stopped. When the evaporator temperature drops to a temperature at which the antifreeze valve 12 opens, the solution bypass valve 2
2 is closed. This is to prevent the concentrated solution from flowing to the refrigerant distributor even when the anti-freezing valve 12 is opened while the solution bypass valve 22 is kept fully open. Is also good.

【0033】蒸発器温度が凍結防止弁12が開く温度に
なって溶液バイパス弁22が閉じられたら、蒸発器温度
が4℃以上に一旦上昇し、それからまた下降して4℃以
下になるまでは溶液バイパス弁22は閉じたままとな
る。
When the evaporator temperature reaches the temperature at which the antifreeze valve 12 opens and the solution bypass valve 22 is closed, the evaporator temperature once rises to 4 ° C. or more, and then drops again until it falls to 4 ° C. or less. The solution bypass valve 22 remains closed.

【0034】なお、上記の蒸発器温度に基づく制御は、
冷媒液温度センサ21で検出される二次冷媒液(HFC
−134a)の温度が5℃以上を条件とし、HFC−1
34aの温度が5℃未満の場合、高温再生器1の燃焼が
停止され、冷却水循環ポンプ14も停止される。
The control based on the evaporator temperature is as follows.
The secondary refrigerant liquid (HFC) detected by the refrigerant liquid temperature sensor 21
-134a) at a temperature of 5 ° C. or higher, and HFC-1
When the temperature of 34a is lower than 5 ° C., the combustion of the high temperature regenerator 1 is stopped, and the cooling water circulation pump 14 is also stopped.

【0035】本実施例によれば、溶液バイパス弁22
が、従来の開設定温度(3℃)よりも高い温度(4℃)
で開き始め、蒸発器温度の低下に応じてその開度が増加
されて吸収器5の吸収能力を低めるので、冷房運転開始
時の蒸発器温度の急激な低下が抑止され、LT1が作動
する温度まで蒸発器温度が低下するのが防止される。そ
の結果、冷媒自然循環に必要な液ヘッド形成に要する時
間、つまり、冷房運転立上りに要する時間が、従来のL
T制御のままだと約45分要したのに対し、本実施例の
場合、約15分程度に短縮することができた。
According to the present embodiment, the solution bypass valve 22
However, the temperature (4 ° C) higher than the conventional open set temperature (3 ° C)
, The opening degree is increased in accordance with the decrease in the evaporator temperature, and the absorption capacity of the absorber 5 is reduced, so that a rapid decrease in the evaporator temperature at the start of the cooling operation is suppressed, and the temperature at which the LT1 operates. The evaporator temperature is prevented from lowering. As a result, the time required for forming the liquid head required for the natural circulation of the refrigerant, that is, the time required for starting the cooling operation is reduced by the conventional L.
In the case of the present embodiment, the time could be reduced to about 15 minutes, while the time required for the T control was about 45 minutes.

【0036】上記実施例では、冷房運転立上り時に、蒸
発器の冷却能力と蒸発器に供給される熱負荷がアンバラ
ンスになることを述べたが、さらに、吸収器に内装され
た冷却水コイルに流れる冷却水の温度が計画温度以下の
低温である場合も、蒸発器の冷却能力と蒸発器に供給さ
れる熱負荷がアンバランスになることがある。冷却水の
温度が計画温度以下の低温であると、吸収器での冷媒蒸
気(水冷媒の蒸気)吸収の効率が良くなり、蒸発器圧力
が低下して蒸発器の冷却能力が吸収器への濃溶液供給量
に比較して大きくなる。冷房運転起動時の冷房負荷自体
が定格負荷に比べて低い場合も同様に、蒸発器の冷却能
力と蒸発器に供給される熱負荷がアンバランスになる。
このような条件下においても、本実施例の制御を適用す
ることにより、効果的にLT1作動を防止できる。
In the above embodiment, the cooling capacity of the evaporator and the heat load supplied to the evaporator are unbalanced when the cooling operation is started. Even when the temperature of the flowing cooling water is lower than the planned temperature, the cooling capacity of the evaporator and the heat load supplied to the evaporator may be unbalanced. If the temperature of the cooling water is lower than the planned temperature, the absorption efficiency of the refrigerant vapor (water refrigerant vapor) in the absorber is improved, the evaporator pressure is reduced, and the cooling capacity of the evaporator is reduced. It is larger than the supply amount of the concentrated solution. Similarly, also when the cooling load at the time of starting the cooling operation is lower than the rated load, the cooling capacity of the evaporator and the heat load supplied to the evaporator are unbalanced.
Even under such conditions, LT1 operation can be effectively prevented by applying the control of this embodiment.

【0037】次に、図3を参照して本発明の第2の実施
例を説明する。本実施例が前記第1の実施例と異なるの
は、溶液バイパス弁22が、全閉、中間開度及び全開の
3位置制御弁であり、コントローラ59は、図3に示す
ごときLT制御を行うものである点である。他の構成は
前記第1の実施例と同じであるので説明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIG. This embodiment is different from the first embodiment in that the solution bypass valve 22 is a three-position control valve of fully closed, intermediate opening, and fully opened, and the controller 59 performs LT control as shown in FIG. That is the thing. The other configuration is the same as that of the first embodiment, and the description is omitted.

【0038】コントローラ59は、次に述べるようなL
T制御を行う。
The controller 59 has an L as described below.
T control is performed.

【0039】LT1:蒸発器温度が予め設定された水冷
媒の凍結温度よりも高い第1の温度(1℃)以下に低下
したとき、前記凍結防止弁12を開くとともに前記溶液
バイパス弁22を全閉して溶液循環ポンプ9を間歇運転
し、凍結防止弁12の開状態で蒸発器温度が第2の温度
(2℃)以上に上昇したとき前記凍結防止弁12を閉じ
る。
LT1: When the evaporator temperature drops below a first temperature (1 ° C.) higher than the preset freezing temperature of the water refrigerant, the antifreeze valve 12 is opened and the solution bypass valve 22 is fully turned off. When the evaporator temperature rises to a second temperature (2 ° C.) or higher with the antifreeze valve 12 open, the antifreeze valve 12 is closed.

【0040】LT2:蒸発器温度が第3の温度(1.5
℃)以下に低下したとき、高温再生器1での燃焼及び前
記冷却水循環ポンプ14の運転を停止し、溶液循環ポン
プ9を間歇運転する。蒸発器温度が、高温再生器1での
燃焼及び前記冷却水循環ポンプ14の運転が停止された
状態で、第4の温度(3℃)以上に上昇したとき、高温
再生器1での燃焼、前記冷却水循環ポンプ14および溶
液循環ポンプ9の正常運転を開始する。
LT2: The evaporator temperature is the third temperature (1.5
When the temperature falls below (° C), the combustion in the high-temperature regenerator 1 and the operation of the cooling water circulation pump 14 are stopped, and the solution circulation pump 9 is operated intermittently. When the evaporator temperature rises to a fourth temperature (3 ° C.) or higher in a state where the combustion in the high-temperature regenerator 1 and the operation of the cooling water circulation pump 14 are stopped, the combustion in the high-temperature regenerator 1 The normal operation of the cooling water circulation pump 14 and the solution circulation pump 9 is started.

【0041】LT02:蒸発器の温度が、前記第2の温
度より高く前記第4の温度より低い予め設定された第5
の温度(2.5℃)以下に低下したとき、溶液バイパス
弁22を全開し、蒸発器の温度が、溶液バイパス弁22
全開状態で、前記第4の温度より高く、蒸発器の計画運
転温度より低い予め設定された第6の温度(3.5℃)
以上に上昇したとき、溶液バイパス弁22の開度を予め
設定された中間開度(流量50%となる開度)に縮小す
る。
[0041] LT0 2: fifth temperature of the evaporator has been set the advance second lower higher than the fourth temperature than the temperature
When the temperature of the evaporator drops below 2.5 ° C. (2.5 ° C.), the solution bypass valve 22 is fully opened,
In a fully open state, a preset sixth temperature (3.5 ° C.) higher than the fourth temperature and lower than the planned operating temperature of the evaporator.
When it rises as described above, the opening degree of the solution bypass valve 22 is reduced to a preset intermediate opening degree (an opening degree at which the flow rate becomes 50%).

【0042】LT01:蒸発器の温度が、溶液バイパス
弁22中間開度状態で、前記第6の温度より高く、蒸発
器の計画運転温度より低い予め設定された第8の温度
(4℃)以上に上昇したとき、溶液バイパス弁22を全
閉し、蒸発器の温度が、溶液バイパス弁22全閉状態
で、前記第6の温度より低く、前記第5の温度より高い
予め設定された第7の温度(3℃)以下に低下したと
き、溶液バイパス弁22の開度を前記中間開度に開く。
[0042] LT0 1: temperature of the evaporator is in solution bypass valve 22 intermediate opening state, the sixth higher than the temperature of the set lower than the planned operating temperature of the evaporator advance has been the eighth temperature (4 ° C.) When the temperature rises as described above, the solution bypass valve 22 is fully closed, and the temperature of the evaporator is lower than the sixth temperature and higher than the fifth temperature in the preset state when the solution bypass valve 22 is fully closed. When the temperature drops below the temperature of 7 (3 ° C.), the opening of the solution bypass valve 22 is opened to the intermediate opening.

【0043】先にも述べたように、上記LT制御は、冷
媒液温度センサ21で検出される冷媒液の温度が燃焼開
始設定値(本実施例の場合、5℃)以上であることを条
件としており、冷媒液の温度が5℃未満であれば、蒸発
器温度がどうであろうと、高温再生器1での燃焼及び前
記冷却水循環ポンプ14の運転が停止され、溶液循環ポ
ンプ9は間歇運転される。
As described above, the LT control requires that the temperature of the refrigerant liquid detected by the refrigerant liquid temperature sensor 21 be equal to or higher than the combustion start set value (5 ° C. in this embodiment). If the temperature of the refrigerant liquid is less than 5 ° C., the combustion in the high-temperature regenerator 1 and the operation of the cooling water circulation pump 14 are stopped and the solution circulation pump 9 is operated intermittently, regardless of the evaporator temperature. Is done.

【0044】本実施例によれば、蒸発器温度が計画運転
温度よりも低下した場合、まず、溶液バイパス弁22が
中間開度、全開の順に2段階に分けて開かれて濃溶液が
吸収器底部にバイパスされる。濃溶液のバイパスによっ
ても蒸発器の温度低下が進行する場合、LT1制御が作
動する前にLT2が作動し、高温再生器1での燃焼及び
前記冷却水循環ポンプ14の運転が停止され、溶液循環
ポンプ9が間歇運転される。LT2作動により、吸収器
5の吸収能力が急激に低下し、それに伴って蒸発器6の
温度低下が抑制され、LT1が作動するのが防止され
る。したがって冷媒分配器6Bに濃溶液が混入されない
から、蒸発器の急激な圧力変動がなく、溶液バイパス弁
22の開度を比例制御しなくても二次冷媒の自然循環に
必要な冷媒の液ヘッドを形成するのに必要な時間を短縮
することができる。
According to the present embodiment, when the evaporator temperature is lower than the planned operation temperature, first, the solution bypass valve 22 is opened in two stages in the order of intermediate opening and full opening, and the concentrated solution is absorbed. Bypassed to the bottom. When the temperature of the evaporator further decreases due to the bypass of the concentrated solution, LT2 is activated before the LT1 control is activated, the combustion in the high-temperature regenerator 1 and the operation of the cooling water circulation pump 14 are stopped, and the solution circulation pump is operated. 9 is operated intermittently. By the LT2 operation, the absorption capacity of the absorber 5 is sharply reduced, and accordingly, the temperature of the evaporator 6 is suppressed from being reduced, and the operation of the LT1 is prevented. Therefore, since the concentrated solution is not mixed into the refrigerant distributor 6B, there is no sudden pressure fluctuation of the evaporator, and the liquid head of the refrigerant required for the natural circulation of the secondary refrigerant without proportionally controlling the opening of the solution bypass valve 22. Can be shortened.

【0045】冬期や春・秋などの中間期の冷房負荷の小
さい時期に、室内機1台の冷房運転を行うと、上述の実
施例のLT制御でも凍結防止弁12の作動域まで蒸発器
温度が低下し、室外機の運転状態の変動が大きくなって
二次側(室内機)の制御がその変動に追随できなくなる
恐れがある。特に室外機の負荷率が30%以下の場合に
顕著である。次に示す第3の実施例は、そのような場合
に対応可能なものである。
When the cooling operation of one indoor unit is performed during the cooling period of the middle period such as winter or spring / autumn, the evaporator temperature can be increased to the operating range of the antifreeze valve 12 even in the LT control of the above-described embodiment. And the fluctuation of the operation state of the outdoor unit may increase, and the control of the secondary side (indoor unit) may not be able to follow the fluctuation. This is particularly noticeable when the load factor of the outdoor unit is 30% or less. The third embodiment described below can cope with such a case.

【0046】上記第1、第2の実施例においては、溶液
バイパス弁22は蒸発器温度に基づいて開閉動作の制御
が行われるが、本実施例はこの制御に、冷媒液温度セン
サ21により検出された冷媒液温度Trに基づいて溶液
バイパス弁22の開閉を行う制御をOR論理で追加した
ものである。
In the first and second embodiments, the opening / closing operation of the solution bypass valve 22 is controlled based on the evaporator temperature. In this embodiment, the control is performed by the refrigerant liquid temperature sensor 21. The control for opening and closing the solution bypass valve 22 based on the refrigerant liquid temperature Tr is added by OR logic.

【0047】第3の実施例では、コントローラ59は冷
媒液温度Trに基づいて溶液バイパス弁22の開閉を行
う機能を備えている。他の構成は前記第1の実施例と同
じであるので、説明を省略する。本実施例においては、
高温再生器1の燃焼は、図7に示すように、冷媒液温度
Trに応じて3段階(高−低−オフ)に制御される。す
なわち、冷媒液温度Trが9℃(T4)以上であれば高燃
焼となり、高燃焼状態で液冷媒温度Trが7℃(T3)以
下に低下すれば入熱量が高燃焼より小さい低燃焼とな
る。低燃焼状態で冷媒液温度Trが5℃(T1)以下に低
下すれば燃焼が停止(オフ)され、燃焼停止状態で冷媒
液温度Trが6℃(T2)以上に上昇すれば低燃焼で燃焼
が開始される。低燃焼状態で冷媒液温度Trが9℃
(T4)以上に上昇すれば燃焼状態は高燃焼に切り替え
られる。負荷が少ない場合、燃焼状態は低燃焼と燃焼停
止が繰り返される。この条件下で溶液バイパス弁22の
制御が行われる。
In the third embodiment, the controller 59 has a function of opening and closing the solution bypass valve 22 based on the refrigerant liquid temperature Tr. The other configuration is the same as that of the first embodiment, and the description is omitted. In this embodiment,
As shown in FIG. 7, the combustion of the high-temperature regenerator 1 is controlled in three stages (high-low-off) according to the refrigerant liquid temperature Tr. That is, if the refrigerant liquid temperature Tr is 9 ° C. (T 4 ) or higher, high combustion occurs. If the liquid refrigerant temperature Tr drops to 7 ° C. (T 3 ) or lower in a high combustion state, the heat input is lower than the high combustion. Becomes If the refrigerant liquid temperature Tr drops below 5 ° C. (T 1 ) in the low combustion state, the combustion is stopped (turned off). If the refrigerant liquid temperature Tr rises above 6 ° C. (T 2 ) in the combustion stopped state, low combustion occurs. Then, combustion is started. Refrigerant liquid temperature Tr of 9 ° C in low combustion state
If it rises above (T 4 ), the combustion state is switched to high combustion. When the load is small, the combustion state is such that low combustion and combustion stop are repeated. Under these conditions, the control of the solution bypass valve 22 is performed.

【0048】溶液バイパス弁22は、比例弁を用いて図
8に示す制御を行ってもよいし、オン−オフ弁を用いて
図9に示す制御を行ってもよい。図8においては、溶液
バイパス弁22は、冷媒液温度Trがほぼ6.5℃
(T5)以上のとき全閉され、冷媒液温度Trが5℃(T
1)以下のとき全開される。冷媒液温度Trが6.5℃
(T5)と5℃(T1)の間では、溶液バイパス弁22の
開度は、{(6.5−Tr)/(6.5−5)}×10
0%に制御される。この制御によれば、高温再生器1が
低燃焼状態である、冷媒液温度が7℃以下の設定温度
(T5)から溶液バイパス弁22が開き始め、燃焼が停
止される5℃(T1)で全開される。
The solution bypass valve 22 may perform the control shown in FIG. 8 using a proportional valve, or may perform the control shown in FIG. 9 using an on-off valve. In FIG. 8, the solution bypass valve 22 has a refrigerant liquid temperature Tr of approximately 6.5 ° C.
When the temperature is equal to or higher than (T 5 ), it is fully closed, and the refrigerant liquid temperature Tr is 5 ° C. (T
1 ) It is fully opened in the following cases. Refrigerant liquid temperature Tr is 6.5 ° C
Between (T 5 ) and 5 ° C. (T 1 ), the opening degree of the solution bypass valve 22 is {(6.5-Tr) / (6.5-5)} × 10
It is controlled to 0%. According to this control, the solution bypass valve 22 starts to open from the set temperature (T 5 ) in which the high temperature regenerator 1 is in the low combustion state and the refrigerant liquid temperature is 7 ° C. or less, and the combustion is stopped at 5 ° C. (T 1). ) Is fully opened.

【0049】このように、冷媒液温度Trに基づいて溶
液バイパス弁22の開度を制御することにより、蒸発器
の温度降下を事前に回避することができ、低負荷時、凍
結防止弁12の作動によって室外機の運転状態が変動し
て不安定になるのを防止できる。また、低負荷時の冷房
運転の立上りを安定させ、立上りに要する時間を短縮で
きる。
As described above, by controlling the opening of the solution bypass valve 22 based on the refrigerant liquid temperature Tr, the temperature drop of the evaporator can be avoided in advance, and when the load is low, the freezing prevention valve 12 It is possible to prevent the operation state of the outdoor unit from fluctuating and becoming unstable due to the operation. In addition, the rise of the cooling operation under a low load is stabilized, and the time required for the rise can be shortened.

【0050】図9に示す制御は、溶液バイパス弁22と
して全開または全閉の2位置制御弁を用いた例である。
この場合も、冷媒液温度Trが6.5℃(T5)以上のと
き全閉(常時閉)され、冷媒液温度Trが5℃(T1)以
下のとき全開(常時開)される。そして、溶液バイパス
弁22が全閉状態で冷媒液温度Trが5.5℃(T6)以
下に低下すると、溶液バイパス弁22は予め設定された
時間間隔で開状態と閉状態を繰り返すように制御される
(間歇開閉状態)。間歇開閉状態で冷媒液温度Trがさ
らに低下し5℃(T1)以下になると、溶液バイパス弁
22は全開(常時開)になる。溶液バイパス弁22の全
開(常時開)状態で冷媒液温度Trが上昇し6℃(T7
を超えると、溶液バイパス弁22は前記間歇開閉状態に
制御され、間歇開閉状態で冷媒液温度Trがさらに上昇
し6.5℃(T5)を超えると、溶液バイパス弁22は
全閉(常時閉)になる。間歇開閉状態としては、例えば
図10に示すように、10秒間開、20秒間閉を繰り返
せばよい。この開閉の時間間隔は、コントローラ59に
格納したプログラムの中の値を適宜選択させることで変
更可能である。この制御によっても前記図8に示した制
御と同様の効果が得られる。なお、温度T5は温度T2
3の間、温度T6は温度T2とT1の間、温度T7は温度
5とT6の間に、それぞれ設定するのが望ましい。
The control shown in FIG. 9 is an example in which a two-position control valve that is fully open or fully closed is used as the solution bypass valve 22.
In this case as well, when the refrigerant liquid temperature Tr is 6.5 ° C. (T 5 ) or higher, it is fully closed (normally closed), and when the refrigerant liquid temperature Tr is 5 ° C. (T 1 ) or lower, it is fully opened (normally open). When the refrigerant liquid temperature Tr drops below 5.5 ° C. (T 6 ) with the solution bypass valve 22 fully closed, the solution bypass valve 22 repeats the open state and the closed state at preset time intervals. It is controlled (intermittent opening / closing state). When the refrigerant liquid temperature Tr is further reduced to 5 ° C. (T 1 ) or less in the intermittent opening / closing state, the solution bypass valve 22 is fully opened (normally opened). With the solution bypass valve 22 fully open (normally open), the refrigerant liquid temperature Tr rises to 6 ° C. (T 7 ).
Is exceeded, the solution bypass valve 22 is controlled to the intermittent open / closed state. When the refrigerant liquid temperature Tr further rises in the intermittent open / closed state and exceeds 6.5 ° C. (T 5 ), the solution bypass valve 22 is fully closed (normally). (Closed). As the intermittent opening / closing state, for example, as shown in FIG. 10, opening and closing for 10 seconds and closing for 20 seconds may be repeated. The opening and closing time interval can be changed by appropriately selecting a value in a program stored in the controller 59. With this control, the same effect as the control shown in FIG. 8 can be obtained. Incidentally, during the temperature T 5 is temperature T 2 and T 3, while the temperature T 6 is the temperature T 2 and T 1, the temperature T 7 between the temperature T 5 and T 6, to set each desired.

【0051】上記第1〜3の実施例においては、冷却水
循環ポンプ14の制御については特に述べなかったが、
冷却水の吸収器入り口温度を冷却水入り口温度センサ
(図示せず)により検出し、検出結果に基づいて冷却水
循環ポンプ14の発停を制御することにより、上記各弁
の制御を一層活かすことができ、変動の大きな不安定運
転を防止することができる。図11に、冷却水の吸収器
入り口温度に基づく冷却水循環ポンプ14の発停制御の
例を示す。この例では、冷却水循環ポンプ14が停止し
ている状態で冷却水入り口温度が24℃(TWH)を超
えると冷却水循環ポンプ14が起動され、冷却水循環ポ
ンプ14が運転されている状態で冷却水入り口温度が2
0℃(TWC)より低下すると冷却水循環ポンプ14が
停止される。このように冷却水の吸収器入り口温度に応
じて冷却水循環ポンプ14を発停させることにより、凝
縮器、吸収器の能力の変動幅を少なくすることができ、
室外機の運転を安定化させる作用がある。
In the first to third embodiments, the control of the cooling water circulation pump 14 is not particularly described.
By detecting the inlet temperature of the cooling water with a cooling water inlet temperature sensor (not shown) and controlling the start and stop of the cooling water circulation pump 14 based on the detection result, the control of each valve can be further utilized. As a result, unstable operation with large fluctuations can be prevented. FIG. 11 shows an example of the start / stop control of the cooling water circulation pump 14 based on the cooling water absorber inlet temperature. In this example, when the cooling water circulating pump 14 is stopped and the cooling water inlet temperature exceeds 24 ° C. (TWH), the cooling water circulating pump 14 is activated, and the cooling water inlet is operated while the cooling water circulating pump 14 is operating. Temperature 2
When the temperature falls below 0 ° C. (TWC), the cooling water circulation pump 14 is stopped. By starting and stopping the cooling water circulation pump 14 according to the inlet temperature of the cooling water as described above, it is possible to reduce the fluctuation range of the capacity of the condenser and the absorber,
It has the effect of stabilizing the operation of the outdoor unit.

【0052】[0052]

【発明の効果】本発明によれば、蒸発器で冷却される二
次側冷媒として相変化する流体を自然循環させる場合で
も、冷房運転起動時に蒸発器の温度の過大な降下が抑止
され、蒸発器に供給される水冷媒への濃溶液の混入が防
がれるので、冷房の立上りに要する時間が長くなるのを
回避できる。特に、低負荷時や冷却水温度が計画温度に
比べて低い時に効果的である。また、冷房負荷が低い時
に室外機の運転を安定化させる効果がある。
According to the present invention, even when the phase-changing fluid is naturally circulated as the secondary-side refrigerant cooled by the evaporator, an excessive drop in the temperature of the evaporator at the time of starting the cooling operation is suppressed, and the evaporator is evaporated. Since the mixture of the concentrated solution into the water refrigerant supplied to the vessel is prevented, it is possible to avoid an increase in the time required for the rise of the cooling. This is particularly effective when the load is low or when the cooling water temperature is lower than the planned temperature. Further, there is an effect that the operation of the outdoor unit is stabilized when the cooling load is low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の要部構成を示す系統図
である。
FIG. 1 is a system diagram showing a configuration of a main part of a first embodiment of the present invention.

【図2】図1に示す実施例の制御動作の例を示すグラフ
である。
FIG. 2 is a graph showing an example of a control operation of the embodiment shown in FIG.

【図3】本発明の第2の実施例の制御動作の例を示す概
念図である。
FIG. 3 is a conceptual diagram illustrating an example of a control operation according to a second embodiment of the present invention.

【図4】従来技術の制御動作の例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a conventional control operation.

【図5】従来技術の例を示す系統図である。FIG. 5 is a system diagram showing an example of the related art.

【図6】従来技術の他の例を示す系統図である。FIG. 6 is a system diagram showing another example of the related art.

【図7】本発明の第3の実施例の高温再生器制御動作の
例を示す概念図である。
FIG. 7 is a conceptual diagram showing an example of a high-temperature regenerator control operation according to a third embodiment of the present invention.

【図8】本発明の第3の実施例の溶液バイパス弁の制御
動作の例を示す概念図である。
FIG. 8 is a conceptual diagram illustrating an example of a control operation of a solution bypass valve according to a third embodiment of the present invention.

【図9】本発明の第3の実施例の溶液バイパス弁の制御
動作の他の例を示す概念図である。
FIG. 9 is a conceptual diagram showing another example of the control operation of the solution bypass valve according to the third embodiment of the present invention.

【図10】図9に示す制御動作の詳細の例を示す概念図
である。
FIG. 10 is a conceptual diagram showing an example of details of the control operation shown in FIG. 9;

【図11】本発明の実施例の制御動作の例を示す概念図
である。
FIG. 11 is a conceptual diagram illustrating an example of a control operation according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 分離器 3 低温再生器 4 凝縮器 5 吸収器 6 蒸発器 6B 冷媒分配器 7 高温溶液熱交
換器 8 低温溶液熱交換器 8A 濃溶液管 9 溶液循環ポンプ 10 冷暖切換弁 10A 管路 11 水冷媒比例
弁 11A 管路 12 凍結防止弁 12A 管路 13 溶液バイパ
ス弁 13A 管路 14 冷却水循環
ポンプ 15 冷温水循環ポンプ 16 冷水出口温
度センサ 17 蒸発器温度センサ 21 冷媒液温度
センサ 22 溶液バイパス弁 40,41 冷却
水管 42 クーリングタワー 43,44 冷温
水管 50 冷媒液管 51 冷媒蒸気管 52,53 室内機 54,55 膨張
弁 56 冷暖切換弁 57 冷媒ポンプ 58 逆止弁 59 コントロー
ラ 60 電磁弁
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Separator 3 Low temperature regenerator 4 Condenser 5 Absorber 6 Evaporator 6B Refrigerant distributor 7 High temperature solution heat exchanger 8 Low temperature solution heat exchanger 8A Concentrated solution pipe 9 Solution circulation pump 10 Cooling / heating switching valve 10A pipe Channel 11 Water refrigerant proportional valve 11A Line 12 Freezing prevention valve 12A Line 13 Solution bypass valve 13A Line 14 Cooling water circulation pump 15 Cold and hot water circulation pump 16 Cold water outlet temperature sensor 17 Evaporator temperature sensor 21 Refrigerant liquid temperature sensor 22 Solution bypass valve 40, 41 Cooling water pipe 42 Cooling tower 43, 44 Cold / hot water pipe 50 Refrigerant liquid pipe 51 Refrigerant vapor pipe 52, 53 Indoor unit 54, 55 Expansion valve 56 Cooling / heating switching valve 57 Refrigerant pump 58 Check valve 59 Controller 60 Solenoid valve

フロントページの続き (72)発明者 小林 昇 大阪府大阪市中央区平野町四丁目1番2 号 大阪瓦斯株式会社内 (72)発明者 奥村 剛 大阪府大阪市中央区平野町四丁目1番2 号 大阪瓦斯株式会社内 (56)参考文献 特開 平5−288424(JP,A) 特開 平6−2982(JP,A) 特開 平8−247568(JP,A) 実開 昭63−168771(JP,U) 実開 平2−52062(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 Continuation of the front page (72) Inventor Noboru Kobayashi 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Inside Osaka Gas Co., Ltd. (72) Inventor Tsuyoshi Okumura 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka No. Osaka Gas Co., Ltd. (56) References JP-A-5-288424 (JP, A) JP-A-6-2982 (JP, A) JP-A 8-247568 (JP, A) (JP, U) JP-A-2-52062 (JP, U) (58) Fields studied (Int. Cl. 7 , DB name) F25B 15/00 306

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃焼熱によって吸収溶液が加熱される高
温再生器を備え、吸収器上部に濃溶液を導く濃溶液管と
蒸発器に内装された冷媒分配器とが凍結防止弁を介して
連通されるとともに、前記濃溶液管と吸収器底部が溶液
バイパス弁を介して連通されており、負荷との間で循環
する二次冷媒として相変化する流体を用いる吸収式冷熱
発生装置において、前記溶液バイパス弁が蒸発器温度に
応じて開度制御される開度調整可能な弁であることと、
前記溶液バイパス弁が、蒸発器の計画運転温度よりも低
いあらかじめ設定された第1の温度で開き始め、凍結防
止弁が開く温度よりも高い予め設定された第2の温度で
全開し、その間では(前記第1の温度−第2の温度)と
(前記第1の温度−蒸発器温度)との比に比例した開度
となるように開度調整されるものであることを特徴とす
る吸収式冷熱発生装置。
1. A high-temperature regenerator for heating an absorbing solution by combustion heat, wherein a concentrated solution pipe for guiding a concentrated solution at an upper portion of the absorber and a refrigerant distributor provided in an evaporator communicate with each other via an antifreeze valve. The concentrated solution pipe and the bottom of the absorber are communicated via a solution bypass valve, and the absorption-type cold heat generating device uses a phase-change fluid as a secondary refrigerant circulating between the solution and the load. That the bypass valve is an opening-adjustable valve whose opening is controlled according to the evaporator temperature ,
The solution bypass valve is below the planned operating temperature of the evaporator.
Start to open at the preset first temperature,
At a preset second temperature higher than the temperature at which the stop valve opens
Fully open, during which (the first temperature-the second temperature)
(The first temperature-the evaporator temperature) and the opening degree in proportion to the ratio
The degree of opening is adjusted so as to be as follows .
【請求項2】 第1の温度が4℃、第2の温度が2℃で
あることを特徴とする請求項2に記載の吸収式冷熱発生
装置。
2. The absorption type cold heat generator according to claim 2, wherein the first temperature is 4 ° C. and the second temperature is 2 ° C.
【請求項3】 吸収溶液を燃焼熱によって加熱する高温
再生器と、吸収器に冷却水を循環させる冷却水循環ポン
プと、吸収器上部に濃溶液を導く濃溶液管と蒸発器に内
装された冷媒分配器とを接続する管路を開閉する凍結防
止弁と、前記濃溶液管と吸収器底部を接続する管路を開
閉する溶液バイパス弁と、前記高温再生器の燃焼、冷却
水循環ポンプ、凍結防止弁、及び溶液バイパス弁を制御
するコントローラを含んでなり、負荷との間で循環する
二次冷媒として相変化する流体を用い、前記コントロー
ラは、蒸発器温度が0℃より高い予め設定された第1の
温度以下に低下したとき、前記凍結防止弁を開くととも
に前記溶液バイパス弁を全閉し、凍結防止弁の開状態で
蒸発器温度が前記第1の温度より高く設定された第2の
温度以上に上昇したとき前記凍結防止弁を閉じるもので
ある吸収式冷熱発生装置において、前記コントローラ
は、 蒸発器温度が前記第1の温度と第2の温度の間の予め
設定された第3の温度以下に低下したとき、高温再生器
での燃焼及び前記冷却水循環ポンプの運転を停止し、 蒸発器温度が、高温再生器での燃焼及び前記冷却水循
環ポンプの運転が停止された状態で、前記第2の温度よ
り高く、蒸発器の計画運転温度よりも低い予め設定され
た第4の温度以上に上昇したとき、高温再生器での燃焼
及び前記冷却水循環ポンプの運転を開始し、 蒸発器の温度が前記第2の温度より高く前記第4の温
度より低い予め設定された第5の温度以下に低下したと
き、溶液バイパス弁の開度を全開し、 蒸発器の温度が、溶液バイパス弁全開状態で、前記第
4の温度より高く、蒸発器の計画運転温度より低い予め
設定された第6の温度以上に上昇したとき、溶液バイパ
ス弁の開度を予め設定された中間開度に設定し、 蒸発器の温度が、溶液バイパス弁中間開度状態で、前
記第6の温度より高く、蒸発器の計画運転温度より低い
予め設定された第8の温度以上に上昇したとき、溶液バ
イパス弁を全閉し、 蒸発器の温度が、溶液バイパス弁全閉状態で、前記第
6の温度より低く、前記第5の温度より高い予め設定さ
れた第7の温度以下に低下したとき、溶液バイパス弁の
開度を中間開度に設定する、 ように構成されたものであることを特徴とする吸収式冷
熱発生装置。
3. A high-temperature regenerator for heating an absorption solution by combustion heat, a cooling water circulating pump for circulating cooling water through the absorber, a concentrated solution pipe for guiding the concentrated solution to the upper part of the absorber, and a refrigerant built in the evaporator. A freeze prevention valve for opening and closing a pipe connecting the distributor; a solution bypass valve for opening and closing a pipe connecting the concentrated solution pipe and the bottom of the absorber; a combustion and cooling water circulation pump for the high temperature regenerator; A controller that controls a valve and a solution bypass valve, using a phase-changing fluid as a secondary refrigerant circulating between the load and the controller, wherein the controller has a predetermined second evaporator temperature higher than 0 ° C. When the temperature drops below the first temperature, the antifreeze valve is opened and the solution bypass valve is fully closed, and the second temperature at which the evaporator temperature is set higher than the first temperature when the antifreeze valve is open. Rose above When in the absorption-type cold heat generating device that closes the antifreeze valve, the controller determines that the evaporator temperature has dropped below a preset third temperature between the first temperature and the second temperature. When the combustion in the high-temperature regenerator and the operation of the cooling water circulation pump are stopped, the evaporator temperature is lower than the second temperature in a state where the combustion in the high-temperature regenerator and the operation of the cooling water circulation pump are stopped. When the temperature rises above a preset fourth temperature that is higher than the planned operating temperature of the evaporator, the combustion in the high-temperature regenerator and the operation of the cooling water circulation pump are started, and the temperature of the evaporator is reduced to the second temperature. When the temperature drops below a predetermined fifth temperature lower than the fourth temperature and higher than the predetermined temperature, the opening degree of the solution bypass valve is fully opened. Higher than the temperature of 4 When the temperature of the evaporator rises above a predetermined sixth temperature lower than the planned operating temperature of the evaporator, the opening of the solution bypass valve is set to a predetermined intermediate opening, and the temperature of the evaporator is set to In the intermediate opening state, when the temperature rises to a preset eighth temperature or higher that is higher than the sixth temperature and lower than the planned operating temperature of the evaporator, the solution bypass valve is fully closed, and the temperature of the evaporator is In the fully closed state of the solution bypass valve, when the temperature is lower than the sixth temperature and lower than a predetermined seventh temperature higher than the fifth temperature, the opening of the solution bypass valve is set to the intermediate opening. An absorption-type cold heat generator characterized by having the following configuration.
【請求項4】 第1の温度が1℃、第2の温度が2℃、
第3の温度が1.5℃、第4の温度が3℃、第5の温度
が2.5℃、第6の温度が3.5℃、第7の温度が3
℃、第8の温度が4℃に、それぞれ設定されていること
を特徴とする請求項3に記載の吸収式冷熱発生装置。
4. The method according to claim 1, wherein the first temperature is 1 ° C., the second temperature is 2 ° C.,
The third temperature is 1.5 ° C., the fourth temperature is 3 ° C., the fifth temperature is 2.5 ° C., the sixth temperature is 3.5 ° C., and the seventh temperature is 3
4. The absorption-type cold heat generator according to claim 3 , wherein the first temperature and the eighth temperature are set to 4 ° C, respectively.
【請求項5】 冷房負荷との間で循環する相変化する二
次冷媒の蒸発器出口における温度Trを検出する冷媒液
温度センサを有し、 温度Trが0℃より高い予め設定された温度T1以下に
低下したとき、前記高温再生器における燃焼を停止し、 温度Trが前記温度T1より高く設定された温度T2以
上に上昇したとき、高温再生器における燃焼を第1段階
の燃焼とし、 温度Trが前記温度T2より高い温度T4を超えたとき
高温再生器における燃焼を前記第1段階の燃焼より入熱
量の大きい第2段階の燃焼とし、 温度Trが前記温度T2より高く温度T4より低い温度
T3を超えて低下したとき、高温再生器における燃焼を
前記第1段階の燃焼とするように構成されたものである
ことを特徴とする請求項1乃至2のいずれかに記載の吸
収式冷熱発生装置。
5. A cooling liquid temperature sensor for detecting a temperature Tr at an outlet of an evaporator of a phase-changed secondary refrigerant circulating between a cooling load and a preset temperature T1 at which the temperature Tr is higher than 0 ° C. When the temperature falls below, the combustion in the high-temperature regenerator is stopped, and when the temperature Tr rises above a temperature T2 set higher than the temperature T1, the combustion in the high-temperature regenerator is regarded as first-stage combustion, and the temperature Tr When the temperature exceeds the temperature T4 higher than the temperature T2, the combustion in the high-temperature regenerator is regarded as the second stage combustion having a larger heat input than the first stage combustion, and the temperature T3 is higher than the temperature T2 and lower than the temperature T4. The absorption-type cold heat generator according to any one of claims 1 to 2 , wherein the combustion in the high-temperature regenerator is configured to be the first-stage combustion when the temperature falls below the limit. .
【請求項6】 冷房負荷との間で循環する相変化する二
次冷媒の蒸発器出口における温度Trを検出する冷媒液
温度センサを有し、前記コントローラは、 温度Trが0℃より高い予め設定された温度T1以下に
低下したとき、前記高温再生器における燃焼を停止し、 温度Trが前記温度T1より高く設定された温度T2以
上に上昇したとき、高温再生器における燃焼を第1段階
の燃焼とし、 温度Trが前記温度T2より高い温度T4を超えたとき
高温再生器における燃焼を前記第1段階の燃焼より入熱
量の大きい第2段階の燃焼とし、 温度Trが前記温度T2より高く温度T4より低い温度
T3を超えて低下したとき、高温再生器における燃焼を
前記第1段階の燃焼とするように構成されたものである
ことを特徴とする請求項3または4のいずれかに記載の
吸収式冷熱発生装置。
6. A refrigerant liquid temperature sensor for detecting a temperature Tr at an outlet of an evaporator of a phase-changed secondary refrigerant circulating with a cooling load, wherein the controller sets a preset temperature at which the temperature Tr is higher than 0 ° C. When the temperature falls below the set temperature T1, the combustion in the high-temperature regenerator is stopped, and when the temperature Tr rises above a temperature T2 set higher than the temperature T1, the combustion in the high-temperature regenerator is started in the first stage. When the temperature Tr exceeds a temperature T4 higher than the temperature T2, the combustion in the high-temperature regenerator is regarded as a second-stage combustion having a larger heat input than the first-stage combustion, and the temperature Tr is higher than the temperature T2 and the temperature T4 is higher. when reduced by more than a lower temperature T3, absorption according to claim 3 or 4, characterized in that the combustion in the high-temperature regenerator is configured to the combustion of the first stage Formula cold generator.
【請求項7】 溶液バイパス弁が、温度Trが温度T2
とT3の間の予め設定された温度T5以上のとき全閉し、
温度Trが温度T1以下のとき全開し、その間では(温度
T5−温度T1)と(温度T5−温度Tr)との比に比例し
た開度となるように開度調整されるものであることを特
徴とする請求項5または6に記載の吸収式冷熱発生装
置。
7. The solution bypass valve, when the temperature Tr is equal to the temperature T2.
Fully closed when the temperature is equal to or higher than a preset temperature T5 between
When the temperature Tr is equal to or lower than the temperature T1, the opening is adjusted so that the opening is proportional to the ratio of (temperature T5-temperature T1) to (temperature T5-temperature Tr). The absorption-type cold heat generator according to claim 5 or 6 , wherein:
【請求項8】 溶液バイパス弁が、温度Trが温度T2
とT3の間の予め設定された温度T5以上のとき全閉し、
温度Trが温度T1以下のとき全開し、溶液バイパス弁の
全閉状態において温度Trが予め温度T1とT2の間に設
定された温度T6以下に低下したとき所定の間隔で間歇
的に開閉状態を繰り返す間歇開閉状態となり、溶液バイ
パス弁の全開状態において温度Trが予め温度T6とT5
の間に設定された温度T7以上に上昇したとき前記間歇
開閉状態となるように開度調整されるものであることを
特徴とする請求項5または6に記載の吸収式冷熱発生装
置。
8. The solution bypass valve, when the temperature Tr is equal to the temperature T2.
Fully closed when the temperature is equal to or higher than a preset temperature T5 between
When the temperature Tr is lower than the temperature T1, the valve is fully opened. When the temperature Tr drops below the temperature T6 previously set between the temperatures T1 and T2 in the fully closed state of the solution bypass valve, the open / close state is intermittently opened at predetermined intervals. When the solution bypass valve is in the fully opened state, the temperature Tr is previously set to the temperatures T6 and T5.
7. The absorption-type cold heat generating apparatus according to claim 5, wherein the opening is adjusted so that the intermittent opening / closing state is established when the temperature rises to a temperature T7 or more set between the above.
【請求項9】 吸収器及び凝縮器に送られる冷却水を駆
動する冷却水循環ポンプと、吸収器入り口における冷却
水温度を検出して出力する冷却水入口温度センサと、を
含んで構成され、該冷却水循環ポンプは、冷却水循環ポ
ンプ運転状態で前記検出された冷却水入口温度が予め設
定された温度TWCより低下したとき停止され、冷却水
循環ポンプ停止状態で前記検出された冷却水入口温度が
予め設定された温度TWHより上昇したとき運転開始さ
れるものであることを特徴とする請求項1乃至8のいず
れかに記載の吸収式冷熱発生装置。
9. A cooling water circulating pump for driving cooling water sent to the absorber and the condenser, and a cooling water inlet temperature sensor for detecting and outputting a cooling water temperature at an inlet of the absorber. The cooling water circulation pump is stopped when the detected cooling water inlet temperature is lower than a preset temperature TWC in the cooling water circulation pump operating state, and the detected cooling water inlet temperature is set in advance when the cooling water circulation pump is stopped. The absorption-type cold heat generator according to any one of claims 1 to 8 , wherein the operation is started when the temperature rises above the set temperature TWH.
JP10082096A 1995-07-14 1996-04-23 Absorption type cold heat generator Expired - Fee Related JP3289235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10082096A JP3289235B2 (en) 1995-07-14 1996-04-23 Absorption type cold heat generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-178358 1995-07-14
JP17835895 1995-07-14
JP10082096A JP3289235B2 (en) 1995-07-14 1996-04-23 Absorption type cold heat generator

Publications (2)

Publication Number Publication Date
JPH0989410A JPH0989410A (en) 1997-04-04
JP3289235B2 true JP3289235B2 (en) 2002-06-04

Family

ID=26441780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10082096A Expired - Fee Related JP3289235B2 (en) 1995-07-14 1996-04-23 Absorption type cold heat generator

Country Status (1)

Country Link
JP (1) JP3289235B2 (en)

Also Published As

Publication number Publication date
JPH0989410A (en) 1997-04-04

Similar Documents

Publication Publication Date Title
KR20120010034A (en) Heat pump type speed heating apparatus
JP2000018762A (en) Absorption refrigerating machine
JP3289235B2 (en) Absorption type cold heat generator
JP2985513B2 (en) Absorption cooling and heating system and its control method
JP3175040B2 (en) Absorption type cold heat generator
JP3075944B2 (en) Absorption chiller / heater
JP3448680B2 (en) Absorption air conditioner
JP2001099474A (en) Air conditioner
JP3451539B2 (en) Absorption type cold heat generator
JP3240344B2 (en) Refrigerant temperature controller for gas absorption heat source equipment
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
JP2720996B2 (en) Engine heat pump defroster
JP3393398B2 (en) Absorption type cold heat generator
JP3289236B2 (en) Absorption type cold heat generator
JP3451538B2 (en) Absorption type cold heat generator
JP3407182B2 (en) Absorption type cold heat generator
JP3448681B2 (en) Absorption type cold heat generator
JP2008170045A (en) Air-conditioning system and its operation method
JP3139099B2 (en) Heat transfer device
JPH11257782A (en) Absorption cold heat generator
JP3383898B2 (en) Absorption type cold heat generator
JP3081490B2 (en) Absorption refrigerator
JP2004028373A (en) Refrigerating equipment combined with absorption type and compression type
JP3434279B2 (en) Absorption refrigerator and how to start it
JP2984459B2 (en) Absorption chiller / heater

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees