JP3286371B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine

Info

Publication number
JP3286371B2
JP3286371B2 JP02523793A JP2523793A JP3286371B2 JP 3286371 B2 JP3286371 B2 JP 3286371B2 JP 02523793 A JP02523793 A JP 02523793A JP 2523793 A JP2523793 A JP 2523793A JP 3286371 B2 JP3286371 B2 JP 3286371B2
Authority
JP
Japan
Prior art keywords
fuel supply
supply pressure
current
fuel injection
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02523793A
Other languages
Japanese (ja)
Other versions
JPH06241137A (en
Inventor
滋 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP02523793A priority Critical patent/JP3286371B2/en
Publication of JPH06241137A publication Critical patent/JPH06241137A/en
Application granted granted Critical
Publication of JP3286371B2 publication Critical patent/JP3286371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、作動コイルへの励磁電
流供給に応じて弁体が開弁方向に吸引作動せしめられる
燃料噴射用電磁弁が、燃料供給圧を可変とした燃料供給
圧変更手段を介して燃料供給源に接続され、弁体をその
閉弁状態から開弁方向に作動せしめる吸引初期時には高
目標電流で前記作動コイルの励磁電流が制御され、弁体
を開弁状態に保持する吸引保持時には低目標電流で前記
作動コイルの励磁電流が制御される内燃機関の燃料噴射
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection solenoid valve in which a valve element is operated in a valve-opening direction in response to an excitation current supplied to an operating coil. Connected to the fuel supply source through the means, and the valve body is operated in the valve opening direction from the closed state.At the initial stage of suction, the exciting current of the operating coil is controlled with a high target current, and the valve body is maintained in the valve open state. The present invention relates to a fuel injection control device for an internal combustion engine in which the exciting current of the working coil is controlled by a low target current during suction holding.

【0002】[0002]

【従来の技術】従来、吸引初期時には高目標電流で作動
コイルの励磁電流を制御して燃料噴射用電磁弁の開弁応
答性を高め、開弁後の吸引保持時には低目標電流で前記
作動コイルの励磁電流を制御して、作動コイルの発熱を
抑えるとともに電力の浪費を回避するようにしたもの
が、たとえば特公昭49−45248号公報および特公
昭50−7211号公報等により知られている。
2. Description of the Related Art Conventionally, at the initial stage of suction, the excitation current of the working coil is controlled with a high target current to enhance the valve opening response of the solenoid valve for fuel injection. Are known, for example, Japanese Patent Publication No. 49-45248 and Japanese Patent Publication No. 50-7211, in which the exciting current is controlled to suppress the heat generation of the working coil and to avoid wasting power.

【0003】[0003]

【発明が解決しようとする課題】ところで、燃料噴射量
制御を広範囲かつ微妙に行なうこと、ならびにダイナミ
ックレンジを広げる等の目的から、燃料噴射用電磁弁へ
の燃料供給圧を機関の運転状態に応じて可変制御するこ
とが検討されている。
In order to control the fuel injection amount in a wide range and delicately, and to widen the dynamic range, the fuel supply pressure to the solenoid valve for fuel injection is changed according to the operating state of the engine. It is being considered to perform variable control.

【0004】しかるに上記従来のものでは、吸引初期時
の高目標電流ならびに吸引保持時の低目標電流はそれぞ
れ一定に設定されるものであり、燃料供給圧の可変制御
を行なう場合には、燃料圧が最も高い状態での弁体の吸
引および保持を可能として上記高目標電流および低目標
電流を設定する必要があり、そうすると燃料圧が低く変
化したときには高い燃料圧に対応した励磁電流が作動コ
イルに供給されることになる。したがって弁体が必要以
上に大きな力で作動することによる衝突により燃料噴射
用電磁弁の作動劣化を早めて耐久信頼性の低下を招くだ
けでなく、必要以上の励磁電流を供給することになって
効率が低下する。
However, in the above conventional apparatus, the high target current at the beginning of suction and the low target current at the time of suction holding are respectively set to be constant. It is necessary to set the high target current and the low target current so that the valve element can be sucked and held in the highest state, and when the fuel pressure changes low, an exciting current corresponding to the high fuel pressure is applied to the working coil. Will be supplied. Therefore, a collision caused by the valve element operating with an unnecessarily large force not only accelerates the deterioration of the operation of the fuel injection solenoid valve, lowers the durability reliability, but also supplies an unnecessary excitation current. Efficiency decreases.

【0005】本発明は、かかる事情に鑑みてなされたも
のであり、燃料供給圧の変化に応じた励磁電流制御によ
り燃料噴射用電磁弁の耐久信頼性および効率の向上を図
った内燃機関の燃料噴射制御装置を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and has been developed in order to improve the durability reliability and efficiency of a fuel injection solenoid valve by controlling an excitation current in accordance with a change in fuel supply pressure. It is an object to provide an injection control device.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明に従う装置は、燃料供給圧変更
手段から燃料噴射用電磁弁への燃料供給圧を検出する燃
料供給圧検出器と、該燃料供給圧に基づいて吸引初期時
の高目標電流を定める吸引初期用目標値設定手段と、前
記燃料供給圧に基づいて吸引保持時の低目標電流を定め
る吸引保持用目標値設定手段とを備える。
According to a first aspect of the present invention, there is provided a fuel supply pressure detecting device for detecting a fuel supply pressure from a fuel supply pressure changing means to a fuel injection solenoid valve. Device, a suction initial target value setting means for determining a high target current at the beginning of suction based on the fuel supply pressure, and a suction holding target value setting for determining a low target current during suction holding based on the fuel supply pressure. Means.

【0007】また請求項2記載の発明に従う装置は、上
記請求項1記載の発明の構成に加えて、内燃機関の吸気
負圧を検出する吸気負圧検出器と、該吸気負圧および燃
料供給圧の相対値を演算する相対値演算手段とを備え、
両目標値設定手段は、前記相対値に応じて高および低目
標電流を設定すべく構成される。
According to a second aspect of the present invention, in addition to the configuration of the first aspect, an intake negative pressure detector for detecting an intake negative pressure of an internal combustion engine, and the intake negative pressure and fuel supply are provided. Relative value calculating means for calculating a relative value of the pressure,
Both target value setting means are configured to set the high and low target currents according to the relative value.

【0008】さらに請求項3記載の発明に従う装置は、
燃料供給圧変更手段から燃料噴射用電磁弁への燃料供給
圧を検出する燃料供給圧検出器と、吸引初期時の高目標
電流による励磁電流制御時間を前記燃料供給圧に基づい
て定める時間設定手段と、前記燃料供給圧に基づいて吸
引保持時の低目標電流を定める目標値設定手段とを備え
る。
[0008] The device according to the third aspect of the present invention further comprises:
A fuel supply pressure detector for detecting a fuel supply pressure from the fuel supply pressure changing means to the fuel injection solenoid valve; and a time setting means for determining an exciting current control time based on the high target current at the beginning of suction based on the fuel supply pressure. And target value setting means for determining a low target current during suction holding based on the fuel supply pressure.

【0009】[0009]

【実施例】以下、図面により本発明の実施例について説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1ないし図6は本発明の第1実施例を示
すものであり、図1は燃料噴射制御装置の構成を示す
図、図2は燃料噴射用電磁弁の縦断面図、図3は駆動ユ
ニットの回路構成図、図4はタイミングチャート、図5
は吸気負圧および燃料供給圧の相対値に応じた高目標電
流を示す図、図6は吸気負圧および燃料供給圧の相対値
に応じた低目標電流を示す図である。
FIGS. 1 to 6 show a first embodiment of the present invention. FIG. 1 is a view showing the structure of a fuel injection control device, FIG. 2 is a longitudinal sectional view of a fuel injection solenoid valve, and FIG. Is a circuit configuration diagram of the drive unit, FIG. 4 is a timing chart, and FIG.
FIG. 6 shows a high target current according to the relative values of the intake negative pressure and the fuel supply pressure, and FIG. 6 shows a low target current according to the relative values of the intake negative pressure and the fuel supply pressure.

【0011】先ず図1において、たとえば4気筒内燃機
関の機関本体Eには、各気筒1…に摺動自在に嵌合され
ているピストン2…の上面を臨ませる燃焼室3…が形成
されるとともに、開閉自在の吸気弁4…を介して各燃焼
室3…に接続される吸気ポート5…が設けられており、
各吸気ポート5…には吸気マニホールド6が連結され
る。而して吸気マニホールド6の機関本体E寄りの部分
には、各吸気ポート5…に向けてガス燃料を噴射するた
めの燃料噴射用電磁弁7…が取付けられる。
In FIG. 1, for example, a combustion chamber 3 is formed in an engine body E of a four-cylinder internal combustion engine so as to face an upper surface of a piston 2 slidably fitted to each cylinder 1. At the same time, there are provided intake ports 5 connected to the respective combustion chambers 3 via openable and closable intake valves 4.
An intake manifold 6 is connected to each of the intake ports 5. A fuel injection solenoid valve 7 for injecting gas fuel toward each intake port 5 is attached to a portion of the intake manifold 6 near the engine body E.

【0012】燃料噴射用電磁弁7…には燃料供給圧変更
手段としての電磁制御弁8を介して燃料供給源9が接続
されており、電磁制御弁8の作動は燃料供給圧制御ユニ
ットUP で制御される。また各燃料噴射用電磁弁7…は
駆動ユニットUD1で駆動されるものであり、駆動ユニッ
トUD1からは各燃料噴射用電磁弁7…に対応して#1〜
#4の駆動信号が出力され、該駆動ユニットUD1には機
関作動制御ユニットU F から各燃料噴射用電磁弁7…に
それぞれ対応した4つの指令信号が入力される。
The fuel supply pressure is changed for the fuel injection solenoid valves 7.
A fuel supply source 9 is connected via an electromagnetic control valve 8 as a means.
The operation of the electromagnetic control valve 8 is controlled by the fuel supply pressure control unit.
UPIs controlled by Each fuel injection solenoid valve 7 ...
Drive unit UD1Drive unit.
UD1From # 1 to # 1 corresponding to each fuel injection solenoid valve 7.
The drive signal of # 4 is output and the drive unit UD1The machine
Seki operation control unit U FFrom each fuel injection solenoid valve 7 ...
Four corresponding command signals are input.

【0013】電磁制御弁8および各燃料噴射用電磁弁7
…間の燃料供給系にはチャンバ10が介設されており、
該チャンバ10には、燃料温度TF を検出する温度検出
器11、燃料供給圧PF を検出する燃料供給圧検出器1
2、ならびに燃料成分IF を検出する成分検出器13が
付設される。また吸気マニホールド6には吸気負圧P B
を検出する吸気負圧検出器14が付設される。而して温
度検出器11、燃料供給圧検出器12、成分検出器13
および吸気負圧検出器14は燃料供給圧制御ユニットU
P に接続されており、燃料供給圧制御ユニットUP は、
燃料温度TF 、燃料供給圧PF および燃料成分IF で代
表される燃料状態情報、ならびに吸気負圧PB および機
関回転数等の機関運転状態情報に基づいて、燃料供給圧
F を変更すべく電磁制御弁8の作動を制御する。
Electromagnetic control valve 8 and each fuel injection electromagnetic valve 7
The chamber 10 is interposed in the fuel supply system between
The chamber 10 has a fuel temperature TFDetecting the temperature detection
Unit 11, fuel supply pressure PFSupply pressure detector 1 for detecting pressure
2, and fuel component IFIs detected by the component detector 13
It is attached. The intake manifold 6 has an intake negative pressure P B
Is provided. So warm
Degree detector 11, fuel supply pressure detector 12, component detector 13
And the intake negative pressure detector 14 are connected to the fuel supply pressure control unit U.
PAnd the fuel supply pressure control unit UPIs
Fuel temperature TF, Fuel supply pressure PFAnd fuel component IFWith
Fuel condition information to be represented, and intake negative pressure PBAnd machine
Fuel supply pressure based on engine operating state information such as engine speed
PFThe operation of the electromagnetic control valve 8 is controlled in order to change.

【0014】機関作動制御ユニットUF は、吸気負圧P
B および機関回転数等の機関運転状態情報に基づいて燃
料噴射および点火時期等の制御を行なうものであり、駆
動ユニットUD1は、機関作動制御ユニットUF から入力
される燃料噴射指令信号と、燃料供給圧検出器12から
入力される燃料供給圧PF と、吸気負圧検出器14から
入力される吸気負圧PB とに基づいて、各燃料噴射用電
磁弁7…を駆動する。
The engine operation control unit U F has an intake negative pressure P
Based on the engine operating state information of B and the engine speed or the like and performs the fuel injection and ignition timing control of such drive unit U D1 includes a fuel injection command signal inputted from the engine operation control unit U F, a fuel supply pressure P F is inputted from the fuel supply pressure detector 12, based on the intake negative pressure P B supplied from the intake negative pressure detector 14, and drives the solenoid valve 7 ... for each fuel injector.

【0015】図2において、燃料噴射用電磁弁7のハウ
ジング15は、大径円筒部15aと、小径円筒部15b
とが段部15cを介して同軸に連設されて磁性金属によ
り形成されるものであり、小径円筒部15bの先端部に
は弁座部材16が嵌合、固着され、該弁座部材16の後
端には、弁孔17を中央部に開口させる弁座18が設け
られる。また大径円筒部15a内には、小径円筒部15
bにその内面を連ならせて一端部が連設される非磁性材
料製の案内筒19が同軸に配置されており、磁性金属に
より円筒状に形成される固定コア20の一端部が案内筒
19の他端部に同軸に嵌合され、半径方向外方に張り出
して固定コア20に一体に設けられるフランジ21が、
前記大径円筒部15aの開口端にかしめ結合される。
In FIG. 2, a housing 15 of the fuel injection solenoid valve 7 has a large-diameter cylindrical portion 15a and a small-diameter cylindrical portion 15b.
Are formed coaxially and continuously through a step portion 15c, and are formed of magnetic metal. A valve seat member 16 is fitted and fixed to the distal end of the small-diameter cylindrical portion 15b. At the rear end, a valve seat 18 that opens the valve hole 17 to the center is provided. In the large-diameter cylindrical portion 15a, a small-diameter cylindrical portion 15 is provided.
A guide tube 19 made of a non-magnetic material, one end of which is connected to the inner surface thereof, is coaxially arranged, and one end of a fixed core 20 formed of a magnetic metal in a cylindrical shape is connected to the guide tube. A flange 21 fitted coaxially with the other end of the fixed core 19 and extending outward in the radial direction and provided integrally with the fixed core 20 is provided.
It is caulked to the open end of the large-diameter cylindrical portion 15a.

【0016】ハウジング15の大径円筒部15a内に
は、段部15cおよびフランジ21間で挟持されるよう
にして案内筒19を同軸に囲繞するボビン22が収納さ
れており、該ボビン22には作動コイル23が巻装され
る。
In the large-diameter cylindrical portion 15a of the housing 15, a bobbin 22 that coaxially surrounds the guide tube 19 so as to be sandwiched between the step portion 15c and the flange 21 is accommodated. The working coil 23 is wound.

【0017】固定コア20および弁座部材16間には、
小径円筒部15bおよび案内筒19で軸方向移動を案内
される可動コア24が収容されており、該可動コア24
および弁座部材16間には弁室26が形成される。この
可動コア24には、弁座18に着座可能な弁体25が一
体に設けられるとともに、弁室26に通じる連通路27
が後端を固定コア20側に開口させて穿設される。
Between the fixed core 20 and the valve seat member 16,
A movable core 24 guided in the axial direction by the small-diameter cylindrical portion 15b and the guide cylinder 19 is accommodated therein.
A valve chamber 26 is formed between the valve seat 16 and the valve seat member 16. The movable core 24 is integrally provided with a valve body 25 that can be seated on the valve seat 18, and a communication passage 27 communicating with a valve chamber 26.
Is drilled with its rear end opened toward the fixed core 20.

【0018】固定コア20には、フランジ21よりも後
方側(図2の右側)に延びる延長筒28が一体にかつ同
軸に設けられており、固定コア20および延長筒28に
はスリーブ29が圧入される。また可動コア24と前記
スリーブ29との間には戻しばね30が縮設される。し
たがって可動コア24すなわち弁体25は戻しばね30
のばね力により前方すなわち弁体25が弁座18に着座
する方向に付勢される。さらに可動コア24の後端部に
は、可動コア24の固定コア20側への吸引作動時に固
定コア20に接触して可動コア24の固定コア20側へ
の移動限を規制するストッパ31が装着される。
The fixed core 20 is provided integrally and coaxially with an extension tube 28 extending rearward (to the right in FIG. 2) from the flange 21. A sleeve 29 is press-fitted into the fixed core 20 and the extension tube 28. Is done. A return spring 30 is contracted between the movable core 24 and the sleeve 29. Therefore, the movable core 24, that is, the valve body 25 is
, The valve body 25 is urged in the direction in which the valve body 25 is seated on the valve seat 18. Further, a stopper 31 is attached to the rear end of the movable core 24 so as to come into contact with the fixed core 20 during the suction operation of the movable core 24 toward the fixed core 20 and to limit the movement limit of the movable core 24 toward the fixed core 20. Is done.

【0019】延長筒28の後部にはフィルタ32が装着
されており、図1で示した電磁制御弁8からの燃料は、
フィルタ32からスリーブ29および固定コア20内を
経て、連通路27から弁室26に供給されることにな
る。
A filter 32 is mounted at the rear of the extension cylinder 28, and the fuel from the electromagnetic control valve 8 shown in FIG.
The fluid is supplied from the filter 32 to the valve chamber 26 through the communication passage 27 through the sleeve 29 and the fixed core 20.

【0020】このような燃料噴射用電磁弁7において
は、作動コイル23の励磁に応じて可動コア24が戻し
ばね30のばね力に抗して固定コア20側に吸引され、
弁体25が弁座18から離反して弁室26が弁孔17に
連通され、作動コイル23を消磁すると、可動コア24
が戻しばね30のばね力により固定コア20から離反す
る方向に移動して弁体25が弁座18に着座し、弁室2
6および弁孔17間が遮断されることになる。
In the fuel injection solenoid valve 7, the movable core 24 is attracted to the fixed core 20 against the spring force of the return spring 30 in response to the excitation of the operating coil 23.
When the valve body 25 is separated from the valve seat 18 and the valve chamber 26 is communicated with the valve hole 17 and the operating coil 23 is demagnetized, the movable core 24
Is moved in a direction away from the fixed core 20 by the spring force of the return spring 30, and the valve body 25 is seated on the valve seat 18 so that the valve chamber 2
6 and the valve hole 17 are shut off.

【0021】図3において、燃料噴射用電磁弁7を駆動
するための駆動ユニットUD1は、たとえば12Vの外部
電源35に接続される電源端子36と、機関作動制御ユ
ニットUF からの指令信号が入力される入力端子37
と、燃料供給圧検出器12からの燃料供給圧PF に応じ
た信号を受ける入力端子38と、吸気負圧検出器14か
らの吸気負圧PB に応じた信号を受ける入力端子39
と、作動コイル23の一端に接続される出力端子40
と、作動コイル23の他端に接続される出力端子41
と、接地される接地端子42とを備える。
[0021] In FIG. 3, the drive unit U D1 for driving the solenoid valve 7 for the fuel injection, for example, a power supply terminal 36 connected to an external power supply 35 of 12V, the command signal from the engine operation control unit U F Input terminal 37 to be input
When an input terminal 38 for receiving a signal corresponding to the fuel supply pressure P F from the fuel supply pressure detector 12, an input terminal receiving a signal corresponding to the intake negative pressure P B from the intake negative pressure detector 14 39
And an output terminal 40 connected to one end of the operating coil 23
And an output terminal 41 connected to the other end of the operating coil 23
And a ground terminal 42 to be grounded.

【0022】外部電源35に接続される電源端子36
と、作動コイル23の一端に接続される出力端子40と
の間には、ダイオード43と、スイッチ回路45の構成
要素たるトランジスタ44とが直列に接続され、作動コ
イル23の他端に接続される出力端子41は電流検出用
抵抗46を介して接地端子42に接続される。また外部
電源35からの電圧をたとえば12Vから70Vに昇圧
する昇圧回路47とスイッチング素子としての電界効果
トランジスタ48とから成る直列回路がダイオード43
に並列に接続されており、昇圧回路47および電界効果
トランジスタ48間にはコンデンサ49が接続される。
さらに駆動ユニットUD1内の基準電源としてたとえば5
Vの一定電圧を得るための定電圧回路51が電源端子3
6に接続される。
Power supply terminal 36 connected to external power supply 35
A diode 43 and a transistor 44 which is a component of a switch circuit 45 are connected in series between the output coil 40 and an output terminal 40 connected to one end of the operation coil 23, and are connected to the other end of the operation coil 23. The output terminal 41 is connected to the ground terminal 42 via the current detection resistor 46. A diode 43 is connected in series with a booster circuit 47 for boosting the voltage from the external power supply 35 from, for example, 12 V to 70 V, and a field effect transistor 48 as a switching element.
, And a capacitor 49 is connected between the booster circuit 47 and the field-effect transistor 48.
Further, as a reference power supply in the drive unit U D1 , for example, 5
A constant voltage circuit 51 for obtaining a constant voltage of V
6 is connected.

【0023】作動コイル23の両端に接続される出力端
子40,41間には、逆起電力吸収回路52の構成要素
たる電界効果トランジスタ53が接続されており、逆起
電力吸収回路52には、機関作動制御ユニットUF から
入力端子37に入力された指令信号が増幅器54で増幅
されて与えられる。而して機関作動制御ユニットUF
ら入力端子37には、燃料噴射用電磁弁7を開弁せしめ
るときにローレベルとなる指令信号が入力されるもので
あり、逆起電力吸収回路52は、機関作動制御ユニット
F からの指令信号の立ち上がり、すなわち作動コイル
23への励磁電流供給停止に応じて電界効果トランジス
タ53をオンさせて、作動コイル23の逆起電力を吸収
する働きをする。
A field effect transistor 53, which is a component of the back electromotive force absorbing circuit 52, is connected between the output terminals 40, 41 connected to both ends of the working coil 23. engine operation control unit command signals input from the U F to the input terminal 37 is supplied is amplified by an amplifier 54. Thus the type terminals 37 from the engine operation control unit U F and is for command signal which becomes low when allowed to open the fuel injection solenoid valve 7 is input, the counter electromotive force absorbing circuit 52, the rise of the command signal from the engine operation control unit U F, i.e. by turning on the field effect transistor 53 in response to the exciting current supply is stopped to the working coil 23, serves to absorb the counter electromotive force of the exciting coil 23.

【0024】燃料供給圧検出器12が接続される入力端
子38と、吸気負圧検出器14が接続される入力端子3
9とは、吸気負圧PB および燃料供給圧PF の相対値を
演算する相対値演算手段としての差動増幅器57に接続
されており、燃料供給圧PFおよび吸気負圧PB 間の差
圧(PF −PB )が差動増幅器57で演算されることに
なる。この差動増幅器57の出力は、吸引初期用目標値
設定手段としての差動増幅器58の非反転入力端子なら
びに吸引保持用目標値設定手段としての差動増幅器59
の非反転入力端子にそれぞれ入力される。一方、差動増
幅器58,59の反転入力端子には一定の基準値がそれ
ぞれ入力されている。これにより差動増幅器58から
は、差圧(PF −PB )が大きくなるのに応じて大とな
るハイレベルの電圧信号が出力され、また差動増幅器5
9からは、差圧(PF −PB )が大きくなるのに応じて
大となるハイレベルの電圧信号が出力されることにな
る。
An input terminal 38 to which the fuel supply pressure detector 12 is connected, and an input terminal 3 to which the intake negative pressure detector 14 is connected
9 and the intake negative pressure P is connected to the differential amplifier 57 of the B and the relative value of the fuel supply pressure P F as a relative value calculating means for calculating a fuel supply pressure P F and the intake negative transmembrane pressure P B of The differential pressure (P F -P B ) is calculated by the differential amplifier 57. The output of the differential amplifier 57 is supplied to a non-inverting input terminal of a differential amplifier 58 as a suction initial target value setting means and a differential amplifier 59 as a suction holding target value setting means.
, Respectively. On the other hand, fixed reference values are input to the inverting input terminals of the differential amplifiers 58 and 59, respectively. As a result, the differential amplifier 58 outputs a high-level voltage signal which increases as the differential pressure (P F -P B ) increases.
From 9, a high-level voltage signal that increases as the differential pressure (P F −P B ) increases is output.

【0025】スイッチ回路45におけるトランジスタ4
4は、低電流制御回路60からハイレベルの信号が入力
されるのに応じて導通するものであり、該低電流制御回
路60は、スイッチ回路45におけるトランジスタ44
を導通させる際にハイレベルの信号を出力する比較器6
1と、分圧抵抗62とを備える。比較器61の非反転入
力端子には、差動増幅器59がダイオード63を介して
接続されるとともに分圧抵抗62の中間部が接続され、
比較器61の反転入力端子には、出力端子41および電
流検出用抵抗46間が抵抗72を介して接続され、定電
圧回路51に連なる基準電源ライン73が抵抗74を介
して比較器61の反転入力端子および抵抗72間に接続
される。また前記分圧抵抗62の一端にはインバータ5
5を介して増幅器54が接続され、分圧抵抗62の他端
には高電流制御回路641 が接続される。
Transistor 4 in switch circuit 45
4 conducts in response to the input of a high level signal from the low current control circuit 60. The low current control circuit 60
6 that outputs a high-level signal when conducting
1 and a voltage dividing resistor 62. A differential amplifier 59 is connected to a non-inverting input terminal of the comparator 61 via a diode 63, and an intermediate portion of a voltage dividing resistor 62 is connected to the comparator 61.
The output terminal 41 and the current detecting resistor 46 are connected to the inverting input terminal of the comparator 61 via a resistor 72, and a reference power supply line 73 connected to the constant voltage circuit 51 is connected to the inverting input terminal of the comparator 61 via a resistor 74. It is connected between the input terminal and the resistor 72. An inverter 5 is connected to one end of the voltage dividing resistor 62.
The high-current control circuit 64 1 is connected to the other end of the voltage dividing resistor 62 via the amplifier 54.

【0026】高電流制御回路641 は、比較器66、抵
抗67、NORゲート68およびフリップフロップ69
を有するものである。而して比較器66の非反転入力端
子には出力端子41および電流検出用抵抗46間が抵抗
75を介して接続され、反転入力端子には差動増幅器5
8がダイオード70を介して接続されるとともに抵抗6
7を介して接地される。またNORゲート68には、比
較器66の出力および増幅器54の出力が並行して入力
され、該NORゲート68の出力はフリップフロップ6
9に入力される。
The high current control circuit 64 1 includes a comparator 66, a resistor 67, a NOR gate 68, and a flip-flop 69
It has. The non-inverting input terminal of the comparator 66 is connected between the output terminal 41 and the current detecting resistor 46 via the resistor 75, and the differential amplifier 5 is connected to the inverting input terminal.
8 is connected via a diode 70 and a resistor 6
7 is grounded. The output of the comparator 66 and the output of the amplifier 54 are input to the NOR gate 68 in parallel, and the output of the NOR gate 68 is
9 is input.

【0027】この高電流制御回路641 では、燃料噴射
用電磁弁7を開弁せしめるべく機関作動制御ユニットU
F から入力端子37にローレベルの指令信号が入力され
たときには、そのローレベルの信号の立ち下がりに応じ
て立ち上がるとともに、作動コイル23を流れる電流が
差動増幅器67の出力で定まる電流以上となるのに応じ
て立ち下がるハイレベルの電圧信号が、フリップフロッ
プ69から出力されることになる。
In the high current control circuit 64 1 , the engine operation control unit U is operated to open the fuel injection solenoid valve 7.
When a low-level command signal is input from F to the input terminal 37, the signal rises in response to the fall of the low-level signal, and the current flowing through the working coil 23 becomes equal to or greater than the current determined by the output of the differential amplifier 67. Is output from the flip-flop 69.

【0028】電界効果トランジスタ48は、フォトカプ
ラ70を構成要素の1つとする駆動回路71でオン・オ
フ駆動されるものであり、該駆動回路71は高電流制御
回路641 の出力に応じて作動する。而して駆動回路7
1は、高電流制御回路641からハイレベルの電圧信号
が入力されたときに電界効果トランジスタ48を導通さ
せ、高電流制御回路641 の出力がローレベルとなるの
に応じて電界効果トランジスタ48を遮断させることに
なる。
The field effect transistor 48 is driven on and off by a drive circuit 71 having a photocoupler 70 as one of the constituent elements. The drive circuit 71 operates according to the output of the high current control circuit 64 1. I do. Thus, the driving circuit 7
1, to conduct a field effect transistor 48 when the high-level voltage signal from the high current control circuit 64 1 is input, field effect transistor according to an output of the high-current control circuit 64 1 is at low level 48 Will be cut off.

【0029】このような駆動ユニットUD1によると、図
4(a)で示すように、燃料噴射用電磁弁7を開弁せし
めるべく機関作動制御ユニットUF から入力端子37に
ローレベルの指令信号が入力されたときには、高電流制
御回路641 からは図4(b)で示すように指令信号の
立ち下がりに応じたハイレベルの信号が出力され、それ
により電界効果トランジスタ48が図4(c)で示すよ
うにオン・オフ作動するとともに、スイッチ回路45が
図4(d)で示すようにオン・オフ作動する。その結
果、作動コイル23の励磁電流が図4(e)で示すよう
に制御されることになる。すなわち入力端子37へのロ
ーレベルの指令信号入力に応じて、高電流制御回路64
1 からハイレベルの信号が出力されるのに応じて、電界
効果トランジスタ48およびスイッチ回路45がオン作
動することにより昇圧回路47からの高電圧による高電
流が作動コイル23に供給されるが、作動コイル23を
流れる電流が差動増幅器67の出力で定まる電流以上と
なったときに高電流制御回路641 の出力がローレベル
となるのに応じて電界効果トランジスタ48およびスイ
ッチ回路45がオフ状態となり、作動コイル23への励
磁電流供給が遮断される。而してその励磁電流供給遮断
後には電流検出用抵抗46および作動コイル23間の電
位が低下するが、その電位が差動増幅器59の出力で定
まる電位未満となるのに応じた低電流制御回路60から
のハイレベル信号出力により、スイッチ回路45がオン
作動して外部電源35のみが作動コイル23に接続され
た状態となる。而して励磁電流がわずかに増加し、電流
検出用抵抗46および作動コイル23間の電位が差動増
幅器59の出力で定まる電位以上となるのに応じた低電
流制御回路60からのローレベル信号出力により、スイ
ッチ回路45がオフ状態となる。したがってスイッチ回
路45はオン・オフ作動を繰り返し、作動コイル23へ
の供給励磁電流は比較的低いレベルでほぼ一定に保たれ
ることになる。
[0029] According to such a drive unit U D1, as shown in FIG. 4 (a), the command signal of a low level to the engine operation control unit U input from the F terminal 37 to allowed to open the fuel injection solenoid valve 7 when There is input, from the high current control circuit 64 1 is output a high level signal in response to the falling edge of the command signal as shown in FIG. 4 (b), whereby the field effect transistor 48 in FIG. 4 (c 4), the switch circuit 45 is turned on and off as shown in FIG. 4D. As a result, the exciting current of the working coil 23 is controlled as shown in FIG. That is, in response to the input of a low-level command signal to the input terminal 37, the high current control circuit 64
In response to the output of a high-level signal from 1 , the field effect transistor 48 and the switch circuit 45 are turned on to supply a high current due to a high voltage from the booster circuit 47 to the operating coil 23. field effect transistor 48 and the switching circuit 45 is turned off in response to the output of the high current control circuit 64 1 becomes low level when the current through the coil 23 is equal to or larger than the current determined by the output of the differential amplifier 67 , The supply of the exciting current to the working coil 23 is cut off. After the supply of the exciting current is cut off, the potential between the current detecting resistor 46 and the operating coil 23 decreases, but the low current control circuit responds to the fact that the potential becomes lower than the potential determined by the output of the differential amplifier 59. The switch circuit 45 is turned on by the output of the high level signal from 60, and only the external power supply 35 is connected to the operating coil 23. Thus, the low level signal from the low current control circuit 60 corresponding to the fact that the exciting current slightly increases and the potential between the current detecting resistor 46 and the working coil 23 becomes higher than the potential determined by the output of the differential amplifier 59 By the output, the switch circuit 45 is turned off. Therefore, the switch circuit 45 repeats the ON / OFF operation, and the exciting current supplied to the operating coil 23 is maintained at a relatively low level and substantially constant.

【0030】次にこの第1実施例の作用について説明す
ると、燃料噴射用電磁弁7の開弁時においてその弁体2
5を吸引作動せしめる吸引初期時には高電流制御回路6
1により励磁電流が制御されるものであるが、その励
磁電流の最大値は、高電流制御回路641 の出力がハイ
レベルからローレベルに変化する時期、すなわち差動増
幅器58の出力に応じた高目標電流IH で制御されるこ
とになり、また吸引保持時には低電流制御回路60によ
るスイッチ回路45のオン・オフ制御により制御される
ものであるが、その励磁電流の最大値は、差動増幅器5
9の出力に応じた低目標電流IL で制御されることにな
る。しかも差動増幅器58,59の出力は差動増幅器5
7すなわち燃料供給圧PF および吸気負圧PB 間の差圧
(PF −PB )に応じて定まるものであり、高目標電流
H および低目標電流IL は、図5および図6でそれぞ
れ示すように、燃料供給圧PF および吸気負圧PB 間の
差圧(PF −PB )に応じて定まることになる。これに
より、燃料供給圧PF および吸気負圧PB 間の差圧(P
F −PB )が比較的小さいときに定まる高目標電流IH1
および低目標電流IL1に応じて作動コイル23の励磁電
流が図4(e)の実線で示すように制御されるのに対
し、燃料供給圧PF および吸気負圧PB 間の差圧(PF
−PB )が比較的大きいときに定まる高目標電流IH2
よび低目標電流IL2に応じて作動コイル23の励磁電流
が図4(e)の破線で示すように制御されることにな
る。
Next, the operation of the first embodiment will be described. When the fuel injection solenoid valve 7 is opened, the valve body 2 is opened.
High-current control circuit 6 at the initial stage of suction for causing suction operation of
4 1 by but exciting current and is controlled, the maximum value of the exciting current, the time the output of the high-current control circuit 64 1 is changed from the high level to the low level, i.e. corresponding to the output of the differential amplifier 58 Is controlled by the high target current I H , and is controlled by the on / off control of the switch circuit 45 by the low current control circuit 60 at the time of suction holding. The maximum value of the excitation current is Dynamic amplifier 5
9 is controlled by the low target current I L according to the output of FIG. Moreover, the outputs of the differential amplifiers 58 and 59 are
7 ie those determined according to the fuel supply pressure P F and the pressure difference between the intake negative pressure P B (P F -P B) , a high target current I H and a low target current I L, 5 and 6 in as shown respectively, it will be determined according to the fuel supply pressure P F and the pressure difference between the intake negative pressure P B (P F -P B) . Thus, the fuel supply pressure P F and the pressure difference between the intake negative pressure P B (P
F− P B ) is a high target current I H1 determined when it is relatively small.
And the exciting current of the exciting coil 23 in response to a low target current I L1 is controlled as shown by the solid line shown in FIG. 4 (e) to the fuel supply pressure P F and the pressure difference between the intake negative pressure P B ( P F
The exciting current of the working coil 23 is controlled as indicated by the broken line in FIG. 4E according to the high target current I H2 and the low target current I L2 determined when −P B ) is relatively large.

【0031】このようにして、燃料噴射量制御を広範囲
かつ微妙に行なうため、ならびにダイナミックレンジを
広げるために、燃料噴射用電磁弁7への燃料供給圧を機
関の運転状態に応じて可変制御した際に、吸引初期時の
高目標電流IH ならびに吸引保持時の低目標電流I
L が、燃料供給圧PF および吸気負圧PB 間の差圧に応
じてそれぞれ設定されることになるので、燃料噴射用電
磁弁7の耐久信頼性および効率の向上を図ることが可能
となる。
In this way, the fuel supply pressure to the fuel injection solenoid valve 7 is variably controlled in accordance with the operating state of the engine in order to perform the fuel injection amount control over a wide range and delicately, and to widen the dynamic range. At this time, the high target current I H at the beginning of suction and the low target current I
L is, it means that are respectively set in accordance with the differential pressure between the fuel supply pressure P F and the intake negative pressure P B, and possible to improve the durability and reliability and efficiency of the fuel injection solenoid valve 7 Become.

【0032】すなわち燃料噴射用電磁弁7の弁体25が
弁座18に着座している状態では、可動コア24および
弁体25には、戻しばね30のばね力に加えて燃料供給
圧P F および吸気負圧PB 間の差圧に応じた閉弁方向の
力が作用しているが、弁体25を開弁方向に作動させる
励磁力を発揮させるための励磁電流を、前記差圧に応じ
て制御することにより、充分な作動応答性を確保しつつ
弁体25が必要以上の力で開弁作動することを回避し
て、ストッパ31の固定コア20への衝突に伴う変形を
防止して耐久信頼性の低下を防止することができるとと
もに、必要充分な励磁電流によって弁体25を作動させ
ることにより効率の向上を図ることが可能となる。
That is, the valve body 25 of the fuel injection solenoid valve 7 is
In the state of sitting on the valve seat 18, the movable core 24 and
Fuel is supplied to the valve body 25 in addition to the spring force of the return spring 30.
Pressure P FAnd intake negative pressure PBValve closing direction according to the differential pressure between
Operates the valve body 25 in the valve opening direction although a force is acting
The exciting current for exerting the exciting force depends on the differential pressure.
Control to ensure sufficient operation responsiveness.
Avoid opening the valve 25 with excessive force.
The deformation caused by the collision of the stopper 31 with the fixed core 20
To prevent a drop in durability reliability.
In addition, the valve body 25 is operated by the necessary and sufficient exciting current.
This makes it possible to improve efficiency.

【0033】なお、燃料供給圧PF に比べて吸気負圧P
B は小さいものであるので、吸気負圧PB の変化を無視
し、燃料供給圧PF の変化のみに追随して励磁電流を制
御するようにしてもよい。
It should be noted, intake as compared to the fuel supply pressure P F negative pressure P
Since B is small, ignoring the change in the intake negative pressure P B, it may control the excitation current to follow only the change in the fuel supply pressure P F.

【0034】図7、図8および図9は本発明の第2実施
例を示すものであり、上記第1実施例に対応する部分に
は同一の参照符号を付す。
FIGS. 7, 8 and 9 show a second embodiment of the present invention, in which parts corresponding to those of the first embodiment are denoted by the same reference numerals.

【0035】先ず図7において、この駆動ユニットUD2
の高電流制御回路642 は、比較器66、分圧抵抗76
およびNORゲート69を備えるものであり、比較器6
6の反転入力端子には高目標電流に対応する基準値を定
めるための分圧抵抗76が接続され、比較器66および
時間設定手段77の出力がNORゲート68に並行して
入力され、該NORゲート68の出力は駆動回路71に
与えられる。また低電流制御回路60における分圧抵抗
62の一端がインバータ55を介して増幅器54に接続
されるのは第1実施例と同様であるが、分圧抵抗62の
他端は時間設定手段77に接続される。
First, in FIG. 7, this drive unit U D2
The high current control circuit 64 2 includes a comparator 66 and a voltage dividing resistor 76.
And a NOR gate 69.
6 is connected to a voltage-dividing resistor 76 for determining a reference value corresponding to the high target current. The outputs of the comparator 66 and the time setting means 77 are input to the NOR gate 68 in parallel. The output of gate 68 is provided to drive circuit 71. Also, one end of the voltage dividing resistor 62 in the low current control circuit 60 is connected to the amplifier 54 via the inverter 55 as in the first embodiment, but the other end of the voltage dividing resistor 62 is connected to the time setting means 77. Connected.

【0036】時間設定手段77は、燃料噴射用電磁弁7
を開弁せしめるべく機関作動制御ユニットUF から入力
端子37にローレベルの指令信号が入力されたときに、
増幅器54から入力される信号の立ち下がりに応じて、
差動増幅器57の出力、すなわち燃料供給圧PF および
吸気負圧PB 間の差圧(PF −PB )に応じて図8で定
まる時間Tだけ持続するハイレベルの信号を出力するも
のであり、NORゲート68は、燃料噴射用電磁弁7の
開弁初期に時間Tだけ持続するハイレベルの信号を出力
することになる。
The time setting means 77 includes the fuel injection solenoid valve 7.
When the command signal of a low level is input to the input terminal 37 from the engine operation control unit U F to allowed to open,
In response to the fall of the signal input from the amplifier 54,
The output of the differential amplifier 57, i.e., outputs a high level signal that lasts for a time T which is determined in FIG. 8 according to the fuel supply pressure P F and the pressure difference between the intake negative pressure P B (P F -P B) The NOR gate 68 outputs a high-level signal that lasts for the time T at the beginning of the opening of the fuel injection solenoid valve 7.

【0037】而して、燃料噴射用電磁弁7の開弁時にお
いて図9(a)で示すように、燃料噴射用電磁弁7を開
弁せしめるべく機関作動制御ユニットUF から入力端子
37にローレベルの指令信号が入力されたときには、高
電流制御回路642 からは図9(b)で示すように指令
信号の立ち下がりに応じたハイレベルの信号が出力さ
れ、それにより電界効果トランジスタ48が図9(c)
で示すようにオン・オフ作動するとともに、スイッチ回
路45が図9(d)で示すようにオン・オフ作動する。
その結果、作動コイル23の励磁電流が図9(e)で示
すように制御されることになる。
[0037] In Thus, at the time of valve opening of the fuel injection solenoid valve 7 as shown in FIG. 9 (a), the fuel injection solenoid valve 7 in the engine operation control unit U input from the F terminal 37 to allowed to open when the command signal of a low level is input, a high level signal in response to the falling edge of the command signal as shown in Figure 9 from the high current control circuit 64 2 (b) is output, whereby the field effect transistor 48 Is shown in FIG. 9 (c).
In addition to the on / off operation shown in FIG. 9, the switch circuit 45 is turned on / off as shown in FIG.
As a result, the exciting current of the working coil 23 is controlled as shown in FIG.

【0038】しかも吸引初期時には、燃料供給圧PF
よび吸気負圧PB 間の差圧(PF −PB )が比較的小さ
いときに定まる設定時間T1 だけの高目標電流IH によ
る制御に応じて作動コイル23の励磁電流が図9(e)
の実線で示すように制御されるのに対し、燃料供給圧P
F および吸気負圧PB 間の差圧(PF −PB )が比較的
大きいときに定まる設定時間T2 だけの高目標電流IH
による制御に応じて作動コイル23の励磁電流が図9
(e)の破線で示すように制御されることになる。
[0038] Moreover when the suction initially, controlled by the high target current I H of only differential pressure (P F -P B) is determined when a relatively small set time T 1 of the inter-fuel supply pressure P F and the intake negative pressure P B As shown in FIG. 9 (e),
Is controlled as shown by the solid line, while the fuel supply pressure P
A high target current I H for a set time T 2 determined when the pressure difference (P F −P B ) between F and the intake negative pressure P B is relatively large.
The exciting current of the working coil 23 is
The control is performed as shown by the broken line in (e).

【0039】このようにして、吸引初期時に弁体25を
開弁方向に作動させる励磁力を発揮させるための励磁電
流供給時間を、前記差圧に応じて制御することにより、
充分な作動応答性を確保しつつ弁体25が必要以上の力
で開弁作動することを回避して、耐久信頼性の低下を防
止することができるとともに効率の向上を図ることが可
能となる。
As described above, the excitation current supply time for exerting the excitation force for operating the valve body 25 in the valve opening direction at the initial stage of suction is controlled according to the differential pressure.
It is possible to prevent the valve body 25 from opening with excessive force while ensuring sufficient operation responsiveness, to prevent a reduction in durability reliability and to improve efficiency. .

【0040】上記実施例では、アナログ的に構成された
駆動ユニットUD1,UD2により燃料噴射用電磁弁7の作
動を制御するようにしたが、コンピュータのプログラム
により励磁電流を制御するようにしてもよく、また吸気
負圧および燃料供給圧の相対値を演算する手段、該相対
値に応じて高および低目標電流を設定する手段、ならび
に前記相対値に応じて吸引初期時の高目標電流による励
磁電流制御時間を定める手段は、駆動ユニット内になく
ても機関の運転制御にかかわるシステム中に設けられて
いればよい。
In the above-described embodiment, the operation of the fuel injection solenoid valve 7 is controlled by the drive units U D1 and U D2 configured in an analog manner. However, the excitation current is controlled by a computer program. Means for calculating relative values of the intake negative pressure and the fuel supply pressure, means for setting high and low target currents according to the relative values, and high target current at the beginning of suction according to the relative values. The means for determining the exciting current control time need not be provided in the drive unit, but may be provided in a system relating to the operation control of the engine.

【0041】以上、本発明の実施例を詳述したが、本発
明は上記実施例に限定されるものではなく、特許請求の
範囲に記載された本発明を逸脱することなく種々の設計
変更を行なうことが可能である。
Although the embodiments of the present invention have been described in detail, the present invention is not limited to the above embodiments, and various design changes can be made without departing from the present invention described in the appended claims. It is possible to do.

【0042】[0042]

【発明の効果】以上のように請求項1記載の発明に従う
装置は、燃料供給圧変更手段から燃料噴射用電磁弁への
燃料供給圧を検出する燃料供給圧検出器と、該燃料供給
圧に基づいて吸引初期時の高目標電流を定める吸引初期
用目標値設定手段と、前記燃料供給圧に基づいて吸引保
持時の低目標電流を定める吸引保持用目標値設定手段と
を備えるので、燃料供給圧に応じて励磁電流を制御し
て、燃料噴射用電磁弁の作動劣化を回避し、効率の向上
を図ることが可能となる。
As described above, the apparatus according to the first aspect of the present invention comprises a fuel supply pressure detector for detecting the fuel supply pressure from the fuel supply pressure changing means to the fuel injection solenoid valve, and a fuel supply pressure detector for detecting the fuel supply pressure. A suction initial target value setting means for determining a high target current at the time of initial suction based on the fuel supply pressure; and a suction holding target value setting means for determining a low target current during suction holding based on the fuel supply pressure. By controlling the exciting current in accordance with the pressure, it is possible to avoid the operation deterioration of the fuel injection solenoid valve and to improve the efficiency.

【0043】また請求項2記載の発明に従う装置は、上
記請求項1記載の発明の構成に加えて、内燃機関の吸気
負圧を検出する吸気負圧検出器と、該吸気負圧および燃
料供給圧の相対値を演算する相対値演算手段とを備え、
両目標値設定手段は、前記相対値に応じて高および低目
標電流を設定すべく構成されるので、より精密な制御が
可能となる。
According to a second aspect of the present invention, in addition to the configuration of the first aspect, an intake negative pressure detector for detecting an intake negative pressure of an internal combustion engine, and the intake negative pressure and fuel supply are provided. Relative value calculating means for calculating a relative value of the pressure,
Since both target value setting means are configured to set the high and low target currents according to the relative values, more precise control is possible.

【0044】さらに請求項3記載の発明に従う装置は、
燃料供給圧変更手段から燃料噴射用電磁弁への燃料供給
圧を検出する燃料供給圧検出器と、吸引初期時の高目標
電流による励磁電流制御時間を前記燃料供給圧に基づい
て定める時間設定手段と、前記燃料供給圧に基づいて吸
引保持時の低目標電流を定める目標値設定手段とを備え
るので、燃料供給圧に応じて吸引初期時の励磁電流時間
を制御するとともに吸引保持時の励磁電流を制御して、
燃料噴射用電磁弁の作動劣化を回避し、効率を向上する
ことができる。
An apparatus according to a third aspect of the present invention comprises:
A fuel supply pressure detector for detecting a fuel supply pressure from the fuel supply pressure changing means to the fuel injection solenoid valve; and a time setting means for determining an exciting current control time based on the high target current at the beginning of suction based on the fuel supply pressure. And target value setting means for setting a low target current during suction holding based on the fuel supply pressure, so that the excitation current time at the beginning of suction is controlled according to the fuel supply pressure and the excitation current during suction holding is controlled. Control the
Deterioration of operation of the fuel injection solenoid valve can be avoided, and efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例の燃料噴射制御装置の構成を示す図
である。
FIG. 1 is a diagram illustrating a configuration of a fuel injection control device according to a first embodiment.

【図2】燃料噴射用電磁弁の縦断面図である。FIG. 2 is a vertical sectional view of a fuel injection solenoid valve.

【図3】駆動ユニットの回路構成図である。FIG. 3 is a circuit configuration diagram of a drive unit.

【図4】タイミングチャートである。FIG. 4 is a timing chart.

【図5】吸気負圧および燃料供給圧の相対値に応じた高
目標電流を示す図である。
FIG. 5 is a diagram showing a high target current according to the relative values of the intake negative pressure and the fuel supply pressure.

【図6】吸気負圧および燃料供給圧の相対値に応じた低
目標電流を示す図である。
FIG. 6 is a diagram showing a low target current according to the relative values of the intake negative pressure and the fuel supply pressure.

【図7】第2実施例の駆動ユニットの回路構成図であ
る。
FIG. 7 is a circuit configuration diagram of a drive unit according to a second embodiment.

【図8】吸気負圧および燃料供給圧の相対値に応じた設
定時間を示す図である。
FIG. 8 is a diagram showing a set time according to a relative value of an intake negative pressure and a fuel supply pressure.

【図9】タイミングチャートである。FIG. 9 is a timing chart.

【符号の説明】[Explanation of symbols]

7 燃料噴射用電磁弁 8 燃料供給圧変更手段としての電磁制御弁 9 燃料供給源 12 燃料供給圧検出器 23 作動コイル 25 弁体 57 相対値演算手段としての差動増幅器 58 吸引初期用目標値設定手段としての差動
増幅器 59 吸引保持用目標値設定手段としての差動
増幅器 77 時間設定手段
7 Solenoid valve for fuel injection 8 Electromagnetic control valve as fuel supply pressure changing means 9 Fuel supply source 12 Fuel supply pressure detector 23 Operating coil 25 Valve 57 Differential amplifier as relative value calculation means 58 Target value setting for initial suction Differential amplifier as means 59 Differential amplifier as suction holding target value setting means 77 Time setting means

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F02M 51/00 F02D 41/20 330 F02D 41/32 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) F02M 51/00 F02D 41/20 330 F02D 41/32

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 作動コイル(23)への励磁電流供給に
応じて弁体(25)が開弁方向に吸引作動せしめられる
燃料噴射用電磁弁(7)が、燃料供給圧を可変とした燃
料供給圧変更手段(8)を介して燃料供給源(9)に接
続され、弁体(25)をその閉弁状態から開弁方向に作
動せしめる吸引初期時には高目標電流で前記作動コイル
(23)の励磁電流が制御され、弁体(25)を開弁状
態に保持する吸引保持時には低目標電流で前記作動コイ
ル(23)の励磁電流が制御される内燃機関の燃料噴射
制御装置において、燃料供給圧変更手段(8)から燃料
噴射用電磁弁(7)への燃料供給圧を検出する燃料供給
圧検出器(12)と、該燃料供給圧に基づいて吸引初期
時の高目標電流を定める吸引初期用目標値設定手段(5
8)と、前記燃料供給圧に基づいて吸引保持時の低目標
電流を定める吸引保持用目標値設定手段(59)とを備
えることを特徴とする内燃機関の燃料噴射制御装置。
1. A fuel injection solenoid valve (7) in which a valve body (25) is operated to be attracted in an opening direction in response to an excitation current supply to an operation coil (23), wherein a fuel supply pressure is varied. The operation coil (23) is connected to the fuel supply source (9) via the supply pressure changing means (8) and operates at a high target current at the initial stage of suction for operating the valve body (25) from the closed state to the valve opening direction. In the fuel injection control device for an internal combustion engine, the exciting current of the operating coil (23) is controlled with a low target current at the time of suction holding for holding the valve body (25) in the valve open state. A fuel supply pressure detector (12) for detecting a fuel supply pressure from the pressure changing means (8) to the fuel injection solenoid valve (7), and a suction for determining a high target current at the beginning of suction based on the fuel supply pressure; Initial target value setting means (5
8) and a suction holding target value setting means (59) for determining a low target current during suction holding based on the fuel supply pressure.
【請求項2】 内燃機関の吸気負圧を検出する吸気負圧
検出器(14)と、該吸気負圧および燃料供給圧の相対
値を演算する相対値演算手段(57)とを備え、両目標
値設定手段(58,59)は、前記相対値に応じて高お
よび低目標電流を設定すべく構成されることを特徴とす
る請求項1記載の内燃機関の燃料噴射制御装置。
2. An intake negative pressure detector (14) for detecting an intake negative pressure of an internal combustion engine, and relative value calculating means (57) for calculating a relative value of the intake negative pressure and a fuel supply pressure. 2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the target value setting means (58, 59) is configured to set a high and a low target current according to the relative value.
【請求項3】 作動コイル(23)への励磁電流供給に
応じて弁体(25)が開弁方向に吸引作動せしめられる
燃料噴射用電磁弁(7)が、燃料供給圧を可変とした燃
料供給圧変更手段(8)を介して燃料供給源(9)に接
続され、弁体(25)をその閉弁状態から開弁方向に作
動せしめる吸引初期時には高目標電流で前記作動コイル
(23)の励磁電流が制御され、弁体(25)を開弁状
態に保持する吸引保持時には低目標電流で前記作動コイ
ル(23)の励磁電流が制御される内燃機関の燃料噴射
制御装置において、燃料供給圧変更手段(8)から燃料
噴射用電磁弁(7)への燃料供給圧を検出する燃料供給
圧検出器(12)と、吸引初期時の高目標電流による励
磁電流制御時間を前記燃料供給圧に基づいて定める時間
設定手段(77)と、前記燃料供給圧に基づいて吸引保
持時の低目標電流を定める目標値設定手段(59)とを
備えることを特徴とする内燃機関の燃料噴射制御装置。
3. A fuel injection solenoid valve (7) in which a valve body (25) is attracted in a valve opening direction in response to an excitation current supply to an operation coil (23), wherein a fuel supply pressure is varied. The operation coil (23) is connected to the fuel supply source (9) via the supply pressure changing means (8) and operates at a high target current at the initial stage of suction for operating the valve body (25) from the closed state to the valve opening direction. In the fuel injection control device for an internal combustion engine, the exciting current of the operating coil (23) is controlled with a low target current at the time of suction holding for holding the valve body (25) in the valve open state. A fuel supply pressure detector (12) for detecting a fuel supply pressure from the pressure changing means (8) to the fuel injection solenoid valve (7), and an excitation current control time based on a high target current at the beginning of suction. Time setting means (77) determined based on And a target value setting means (59) for determining a low target current at the time of suction holding based on the fuel supply pressure.
JP02523793A 1993-02-15 1993-02-15 Fuel injection control device for internal combustion engine Expired - Fee Related JP3286371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02523793A JP3286371B2 (en) 1993-02-15 1993-02-15 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02523793A JP3286371B2 (en) 1993-02-15 1993-02-15 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH06241137A JPH06241137A (en) 1994-08-30
JP3286371B2 true JP3286371B2 (en) 2002-05-27

Family

ID=12160382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02523793A Expired - Fee Related JP3286371B2 (en) 1993-02-15 1993-02-15 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3286371B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148439A (en) 1997-06-26 1999-06-02 Hitachi Ltd Electromagnetic fuel injection valve and its fuel injection method
DE19833830A1 (en) 1998-07-28 2000-02-03 Bosch Gmbh Robert System for energizing magnetic valves controlling fuel injection in IC engine, using increased starting voltage and engine operating characteristic(s)
JP3768723B2 (en) * 1999-04-20 2006-04-19 三菱電機株式会社 Fuel injection control device
JP3932474B2 (en) 1999-07-28 2007-06-20 株式会社日立製作所 Electromagnetic fuel injection device and internal combustion engine
JP4110751B2 (en) 2001-06-18 2008-07-02 株式会社日立製作所 Injector drive control device
JP4037632B2 (en) * 2001-09-28 2008-01-23 株式会社日立製作所 Control device for internal combustion engine provided with fuel injection device
JP2004092573A (en) 2002-09-03 2004-03-25 Hitachi Ltd Fuel injection device and control method
JP2008291778A (en) * 2007-05-25 2008-12-04 Denso Corp Solenoid valve control device
JP4917556B2 (en) * 2008-01-07 2012-04-18 日立オートモティブシステムズ株式会社 Fuel injection control device for internal combustion engine
JP5542884B2 (en) * 2012-08-30 2014-07-09 三菱電機株式会社 In-vehicle engine controller
JP5815590B2 (en) * 2013-04-05 2015-11-17 本田技研工業株式会社 Solenoid valve drive
JP7110736B2 (en) * 2018-05-31 2022-08-02 株式会社デンソー Control device for fuel injection valve and fuel injection system

Also Published As

Publication number Publication date
JPH06241137A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
JP3286371B2 (en) Fuel injection control device for internal combustion engine
US5209453A (en) Laminated type piezoelectric apparatus
US5892649A (en) Process for controlling a movement of an armature of an electromagnetic switching element
US6129073A (en) Electromagnetic fuel injector and control method thereof
US5775278A (en) Energization control method, and electromagnetic control system in electromagnetic driving device
JP2758064B2 (en) Fuel injection valve
JPH0742644A (en) Solenoid valve
EP1199458B1 (en) Internal combustion engine fuel injection apparatus and control method thereof
JPH02191865A (en) Fuel injection device
US4478199A (en) Method of controlling exhaust-gas recirculation in internal combustion engine
JP3268245B2 (en) Solenoid valve drive circuit
JP4196151B2 (en) Fuel injection device
JP4389140B2 (en) Fuel injection apparatus and fuel injection valve control method
JP4228254B2 (en) Electromagnetically driven valve device
JPH1113583A (en) Fuel injection device for engine
JPH11141381A (en) Solenoid valve drive circuit
JPH0821220A (en) Electromagnetic driving device of engine valve for internal combustion engine
JP2001165014A (en) Fuel injection device
JP3767079B2 (en) Fuel injection valve
JP2001132579A (en) Unit injector and fuel injection control device for internal combustion engine
JP2958604B2 (en) Combustion pressure detector for direct injection engines
EP1371820A2 (en) Control apparatus for electromagnetically driven valve
JP3988192B2 (en) Fuel injection valve
JPH01105084A (en) Trouble detecting device for solenoid valve
JP2000265921A (en) Fuel injector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees