JP3284953B2 - Metal member for continuous hot-dip galvanizing apparatus, method for producing the same, and continuous hot-dip galvanizing apparatus - Google Patents

Metal member for continuous hot-dip galvanizing apparatus, method for producing the same, and continuous hot-dip galvanizing apparatus

Info

Publication number
JP3284953B2
JP3284953B2 JP34468197A JP34468197A JP3284953B2 JP 3284953 B2 JP3284953 B2 JP 3284953B2 JP 34468197 A JP34468197 A JP 34468197A JP 34468197 A JP34468197 A JP 34468197A JP 3284953 B2 JP3284953 B2 JP 3284953B2
Authority
JP
Japan
Prior art keywords
metal member
dip galvanizing
galvanizing apparatus
continuous hot
boride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34468197A
Other languages
Japanese (ja)
Other versions
JPH11172393A (en
Inventor
修 下タ村
武久 木村
師夫 中川
淳次 酒井
幸雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34468197A priority Critical patent/JP3284953B2/en
Publication of JPH11172393A publication Critical patent/JPH11172393A/en
Application granted granted Critical
Publication of JP3284953B2 publication Critical patent/JP3284953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続溶融亜鉛めっ
き装置用金属部材及びその製造方法並びに連続溶融亜鉛
めっき装置に関する。
The present invention relates to a metal member for a continuous hot-dip galvanizing apparatus, a method for producing the same, and a continuous hot-dip galvanizing apparatus.

【0002】[0002]

【従来の技術】一般的に、溶融亜鉛めっき浴中で使用さ
れる部品は、長時間連続使用されるので、亜鉛による溶
損が激しい。また、連続溶融亜鉛めっき装置のシンクロ
ール等の回転部に使用する軸受部は、スラッジ等によっ
て摩耗が激しい。このような溶損や摩耗によって、溶融
亜鉛めっき浴の汚染が生じたり、スラッジ発生によるめ
っき製品不良が発生しやすくなる。
2. Description of the Related Art Generally, components used in a hot-dip galvanizing bath are used continuously for a long period of time, so that they are severely damaged by zinc. Further, a bearing used for a rotating part such as a sink roll of a continuous galvanizing apparatus is severely worn by sludge or the like. Such erosion and abrasion tend to cause contamination of the hot-dip galvanizing bath and to cause defective plating products due to generation of sludge.

【0003】また、従来から、連続溶融亜鉛めっき装置
用部品として、鋳鉄,ステンレス鋼,高クロム鋼などの
鉄鋼材料が用いられたが、金属部品は、腐食作用により
長時間使用することが困難であった。
Conventionally, steel materials such as cast iron, stainless steel, and high chromium steel have been used as components for continuous hot-dip galvanizing equipment. However, metal components are difficult to use for a long time due to corrosive action. there were.

【0004】その対策として、特開昭61−37955 号及び
特開昭62−127457号に記載のようなセラミックスを金属
部材表面に形成させる技術がある。また、特開昭61−15
9261号,特開昭62−93053 号,特開平2−30310号,特開
平5−44002号に記載のようなセラミックス部材を構造材
として金属部材に取り付ける方法が実用化されてきた。
更に、特開平7−188884 号に記載のように、大型部品に
も適用できるセラミックス被膜形成法が提案されてき
た。
As a countermeasure, there is a technique of forming ceramics on the surface of a metal member as described in JP-A-61-37955 and JP-A-62-127457. Also, JP-A-61-15
No. 9261, JP-A-62-93053, JP-A-2-30310, and JP-A-5-44002 have been put to practical use as a method of attaching a ceramic member as a structural material to a metal member.
Further, as described in JP-A-7-18884, a method of forming a ceramic film which can be applied to large parts has been proposed.

【0005】[0005]

【発明が解決しようとする課題】特開昭61−37955 号及
び特開昭62−127457号に記載の技術では、セラミックス
表面被膜には、その製法上から避けがたいピンホール等
の欠陥があり、特に連続溶融亜鉛めっき装置用部材とし
ては不安定で信頼性に乏しく実用化に至っていない。
According to the techniques described in JP-A-61-37955 and JP-A-62-127457, the ceramic surface coating has defects, such as pinholes, which are unavoidable due to the production method. In particular, as a member for a continuous hot-dip galvanizing apparatus, it is unstable and poor in reliability and has not been put to practical use.

【0006】また、特開昭61−159261号,特開昭62−93
053 号,特開平2−30310号,特開平5−44002号に見られ
るセラミックス部材は、シンクロール等の大型部品には
不向きであり、適用できていない。
Also, Japanese Patent Application Laid-Open Nos. 61-159261 and 62-93
The ceramic members disclosed in Japanese Patent Application No. 053, JP-A-2-30310 and JP-A-5-44002 are not suitable for large parts such as sink rolls and cannot be applied.

【0007】上記従来技術では適切な金属部材の選定に
十分な配慮がなく、また硼化処理時の不可避的な大物品
の曲がり等によるセラミックス被膜の不均一性による信
頼性の欠如により十分な実用化に至っていないのが現状
である。従来の金属材料,セラミックス表面被服の摩耗
損傷,信頼性向上,使用上のハンドリングの困難さを解
決することが望まれている。また、溶融亜鉛めっき装置
部品、特にシンクロール,サポートロール等の細長い円
柱又は円筒状の長尺形状では、硼化処理時の曲がり防止
及びロール強度の確保の双方を得ることが困難であり、
硼化物の厚さが不均一で必要な厚さが得られないという
課題があった。
In the above prior art, there is no sufficient consideration in selecting an appropriate metal member, and there is insufficient reliability due to lack of reliability due to inhomogeneity of the ceramic film due to inevitable bending of large articles during boring. At present, it has not been converted. It is desired to solve the conventional wear and damage of metal and ceramic surface coatings, the improvement of reliability, and the difficulty of handling in use. In addition, in the case of a hot-dip galvanizing apparatus component, particularly in the case of an elongated columnar or cylindrical long shape such as a sink roll and a support roll, it is difficult to obtain both bending prevention and roll strength during boration treatment,
There is a problem that the thickness of the boride is not uniform and a required thickness cannot be obtained.

【0008】本発明の第一の目的は、長期間にわたって
耐食性を維持することができる連続溶融亜鉛めっき装置
用金属部品を得ることにある。
A first object of the present invention is to provide a metal part for a continuous hot-dip galvanizing apparatus capable of maintaining corrosion resistance for a long period of time.

【0009】本発明の第二の目的は、表面に硼化物系セ
ラミックス層を有する連続溶融亜鉛めっき装置用金属部
品を用いた場合の耐食性を向上することにある。
A second object of the present invention is to improve the corrosion resistance when using a metal part for a continuous galvanizing apparatus having a boride-based ceramic layer on the surface.

【0010】本発明の第三の目的は、表面に硼化物系セ
ラミックス層を有する連続溶融亜鉛めっき装置用金属部
品を製造する場合における曲がり変形を抑制し、硼化物
の層の厚さの均一化を図ることにある。
A third object of the present invention is to suppress bending deformation in the production of a metal part for a continuous galvanizing apparatus having a boride-based ceramic layer on the surface and to make the thickness of the boride layer uniform. It is to plan.

【0011】[0011]

【課題を解決するための手段】本発明の第一の目的は、
連続溶融亜鉛めっき装置用金属部材において、残留歪を
除去するための焼鈍処理が施され、該金属部材の表面層
に耐食性を有する硼化物系セラミックスである50μm
以上の厚さの化合物層が拡散処理によって形成された部
とすることにより達成される。
SUMMARY OF THE INVENTION A first object of the present invention is to provide:
In metal parts for continuous hot-dip galvanizing equipment, residual strain
Annealing treatment for removal is performed, and the surface layer of the metal member is removed.
Boride-based ceramics having a corrosion resistance of 50 μm
The part where the compound layer with the above thickness was formed by the diffusion process
This is achieved by using a material .

【0012】本発明の第二の目的は、溶融亜鉛めっき浴
に浸漬して使用される金属部材を備えた連続溶融亜鉛め
っき装置において、該金属部材を、残留歪を除去するた
めの焼鈍処理が施され、該金属部材の表面層に耐食性を
有する硼化物系セラミックスである50μm以上の厚さ
の化合物層が拡散処理された部材とすることにより達成
される。
A second object of the present invention is to provide a continuous hot-dip galvanizing apparatus provided with a metal member which is used by being immersed in a hot-dip galvanizing bath .
Annealing treatment to impart corrosion resistance to the surface layer of the metal member.
Boride-based ceramics having a thickness of 50 μm or more
This can be achieved by forming a member in which the compound layer is subjected to a diffusion treatment .

【0013】本発明の第三の目的は、連続溶融亜鉛めっ
き装置用金属部材の製造方法において、該金属部材の表
面層に耐食性を有する硼化物系セラミックスである50
μm以上の厚さの化合物層を形成し、次いで、残留歪を
除去するための焼鈍処理を施した後に、機械加工によっ
て成形することにより達成される。
A third object of the present invention is to provide a method for producing a metal member for a continuous hot-dip galvanizing apparatus, wherein the surface layer of the metal member is a boride-based ceramic having corrosion resistance.
This is achieved by forming a compound layer having a thickness of μm or more, then performing an annealing treatment for removing residual strain, and then forming by machining.

【0014】また、本発明の第三の目的は、円柱状若し
くは円筒状の連続溶融亜鉛めっき装置用金属部材の製造
方法において、該金属部材の長さがその外直径の3倍以
上の長尺である場合、該金属部材を軸方向に吊り下げた
状態で硼化物処理を行って、その曲がりを50μ以内に
することにより達成される。
A third object of the present invention is to provide a method for producing a columnar or cylindrical metal member for a continuous hot-dip galvanizing apparatus, wherein the length of the metal member is at least three times as long as its outer diameter. In this case, the metal member is suspended in the axial direction, and is subjected to boride treatment to achieve a bend of 50 μm or less.

【0015】[0015]

【発明の実施の形態】(1)本発明では、連続溶融亜鉛
めっき装置用部材を金属部材として、溶融亜鉛めっき浴
に対して耐食性を有する硼化物系セラミックスを拡散処
理によって金属部材表面に生成させる。その拡散生成さ
れた硼化物系セラミックスの化合物が均一に、しかも部
材としての後加工範囲以上の厚さが望ましい。具体的に
は50μm以上にすることが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (1) In the present invention, a member for a continuous hot-dip galvanizing apparatus is used as a metal member, and boride-based ceramics having corrosion resistance to a hot-dip galvanizing bath are formed on the surface of the metal member by diffusion treatment. . It is desirable that the boride-based ceramic compound generated by diffusion be uniform and have a thickness greater than the post-processing range as a member. Specifically, the thickness is desirably 50 μm or more.

【0016】このように、金属部材の表面層を、耐食性
を有する硼化物系セラミックスである化合物層とし、且
つ化合物層の厚さを50μm以上とすることにより、長
期間にわたって耐食性を維持することができる。
As described above, by setting the surface layer of the metal member to a compound layer which is a boride-based ceramic having corrosion resistance, and by setting the thickness of the compound layer to 50 μm or more, the corrosion resistance can be maintained for a long period of time. it can.

【0017】特に、円柱状又は円筒状で、長尺品の場合
には、処理温度,処理時間,処理方法によって曲がりや
偏心等が生じてしまい、せっかくの拡散生成硼化物系セ
ラミックスの化合物層が後加工により除去されてしま
う。従って、処理温度は出来るだけ低く、短時間でしか
も前処理時の残留応力が最小に出来る金属部材、具体的
には構造用炭素鋼が望ましい。
In particular, in the case of a columnar or cylindrical, long product, bending or eccentricity may occur depending on the processing temperature, processing time, and processing method, and the compound layer of the boride-based ceramics produced by diffusion may be difficult. It is removed by post-processing. Therefore, it is desirable to use a metal member, specifically a structural carbon steel, capable of treating at a temperature as low as possible and in a short time with a minimum residual stress during pretreatment.

【0018】(2)この構造用炭素鋼の成分範囲につい
て、以下に説明する。成分範囲は重量%である。
(2) The component range of the structural carbon steel will be described below. Component ranges are% by weight.

【0019】金属部材の炭素C量は、材料強度と硼化物
厚さとの双方を考慮して決定する。その状況を図1に示
す。図1は炭素量を変化させた場合の材料強度と硼化物
厚さを示したものである。ここで、試験片サイズが直径
20mm,長さ200mmの試験片を用いた。また、900
℃で5時間炉冷したものを用いた。0.05% 未満であ
ると、その部材の材料強度が200Mpaを下回ってし
まい、必要とする材料強度が不足して、部材としての使
用に耐えることができない。また、0.6% を越える
と、硼化厚さが100μmを下回ってしまい、さらに硼
化処理時、硼化処理層下に炭素Cが集中してしまい、脆
くなってしまう。また、更に炭素量が多くなると、大物
部品は素材製造時に巨大炭化物の偏析がでやすい。従っ
て、溶融亜鉛めっき用部材の素材成分炭素量は0.05
〜0.6%が有効である。なお、0.1〜0.5%がより好
ましく、0.3%程度が望ましい。
The carbon C content of the metal member is determined in consideration of both material strength and boride thickness. The situation is shown in FIG. FIG. 1 shows the material strength and the boride thickness when the amount of carbon is changed. Here, a test piece having a diameter of 20 mm and a length of 200 mm was used. Also, 900
A furnace cooled at 5 ° C. for 5 hours was used. If the content is less than 0.05%, the material strength of the member is lower than 200 MPa, and the required material strength is insufficient, so that the member cannot be used as a member. On the other hand, if it exceeds 0.6%, the boride thickness is less than 100 μm, and further, during the boride treatment, carbon C concentrates under the boride treatment layer, resulting in brittleness. In addition, when the carbon content is further increased, large-sized parts are liable to segregate in a large carbide at the time of material production. Accordingly, the material carbon content of the hot-dip galvanizing member is 0.05.
~ 0.6% is effective. In addition, 0.1-0.5% is more preferable, and about 0.3% is desirable.

【0020】金属部材のSi量は、0.5% を越える
と、硼化処理層下にフェライトがでやすく、硼化層が剥
離しやすくなる。また、0.1% 未満になると、素材製
造時に脱酸が不十分になり、健全な素材製造が出来なく
なる。従って、Siの成分範囲は0.1%〜0.5%が有
効である。
When the amount of Si in the metal member exceeds 0.5%, ferrite easily forms under the boride-treated layer, and the boride layer is easily peeled. On the other hand, if it is less than 0.1%, deoxidation becomes insufficient during the production of the raw material, so that a sound raw material cannot be produced. Therefore, the effective range of the Si component is 0.1% to 0.5%.

【0021】金属部材のAl量は、0.5% を越える
と、硼化処理層の下にフェライトが出やすく、硼化層が
剥離しやすくなる。最小値としては通常の脱酸材として
の使用量である。従って、Alは0.5% 未満が有効で
ある。
When the amount of Al in the metal member exceeds 0.5%, ferrite easily appears under the boride-treated layer, and the boride layer is easily peeled. The minimum value is the amount used as a normal deoxidizer. Therefore, it is effective that Al is less than 0.5%.

【0022】このように、金属部材の成分を、重量%
で、C:0.05〜0.6%,Si:0.1〜0.5%,A
l:0.5% 未満とし、且つ残部を不可避不純物及びF
eとすることにより、連続溶融亜鉛めっき装置用金属部
材の耐食性向上及び硼化物系セラミックスである化合物
層の健全性向上を図ることができる。
As described above, the components of the metal member are
C: 0.05 to 0.6%, Si: 0.1 to 0.5%, A
l: less than 0.5%, and the remainder is unavoidable impurities and F
By setting e, it is possible to improve the corrosion resistance of the metal member for the continuous galvanizing apparatus and the soundness of the compound layer that is a boride-based ceramic.

【0023】金属部材の清浄度は、図3に示すように、
溶損量に影響を及ぼすことが分かった。清浄度が0.5
% では、溶損量は0.07〜0.08mm程度と多く、清
浄度が0.01〜0.10%では、溶損量は0.02〜0.
03mm程度であり、非常に少ないことが分かる。つま
り、金属素材の清浄度が低くないと、介在物が量,寸法
とも大きくなり、その介在物はSiO2 ,Al23,M
nS等でありZn浴との反応により損耗が激しくなる。
特に、清浄度が0.1% 以下であると溶損量が0.03mmよ
り少なく、耐食性が優れている。
As shown in FIG. 3, the cleanliness of the metal member is as follows.
It was found to affect the amount of erosion. 0.5 cleanliness
%, The erosion amount is as large as about 0.07 to 0.08 mm, and when the cleanness is 0.01 to 0.10%, the erosion amount is from 0.02 to 0.08 mm.
It is about 03 mm, which is very small. That is, if the cleanliness of the metal material is not low, the amount and size of the inclusions are large, and the inclusions are SiO 2 , Al 2 O 3 , M
nS and the like, and the reaction with the Zn bath causes severe wear.
In particular, when the cleanliness is 0.1% or less, the amount of erosion is less than 0.03 mm, and the corrosion resistance is excellent.

【0024】また、O2 量は、清浄度を0.1% 以下に
するために、50ppm 以下が望ましい。
The amount of O 2 is desirably 50 ppm or less in order to reduce the cleanliness to 0.1% or less.

【0025】従って、金属部材の清浄度(JIS G
0555)を清浄度d:0.1% 以下,O2 :50ppm
以下とすることにより、耐食性を向上することができ
る。
Therefore, the cleanliness of the metal member (JIS G)
0555) with cleanliness d: 0.1% or less, O 2 : 50 ppm
By performing the following, the corrosion resistance can be improved.

【0026】(3)溶融亜鉛めっき浴中のAl量は、1
0%未満が望ましい。図2に溶融亜鉛めっき浴中のAl
量と溶損量との関係を示す。つまり、図2に示すよう
に、Alと硼化物系セラミックスが反応して耐食性が著
しく悪化する。Al量が10%未満であると、溶損量は
0.02mm 程度でほぼ一定で少ない量である。しかし、
Al量が10%以上になると、急激に耐食性が悪化し
て、溶損量が0.02mm から1mmに迄なってしまう。従
って、溶融亜鉛めっき浴中のAl量を10%未満にする
ことが望ましい。
(3) The amount of Al in the hot dip galvanizing bath is 1
Less than 0% is desirable. Figure 2 shows the Al in the hot dip galvanizing bath.
The relationship between the amount and the amount of erosion is shown. In other words, as shown in FIG. 2, Al reacts with the boride-based ceramic to significantly deteriorate the corrosion resistance. When the amount of Al is less than 10%, the amount of erosion is approximately 0.02 mm, which is almost constant and small. But,
When the Al content is 10% or more, the corrosion resistance is rapidly deteriorated, and the erosion amount is reduced from 0.02 mm to 1 mm. Therefore, it is desirable that the amount of Al in the hot-dip galvanizing bath be less than 10%.

【0027】以上のように、溶融亜鉛めっき浴の成分
を、重量%で、Al:10%未満とし、残部を不可避的
な不純物ならびにZnとすることにより、耐食性向上を
図ることができる。
As described above, the corrosion resistance can be improved by setting the components of the hot-dip galvanizing bath to be less than 10% by weight of Al and the balance being unavoidable impurities and Zn.

【0028】(4)金属部材が硼化処理により、部材表
面に硼化物系セラミックスを生成するが、この硼化処理
温度は、金属部材のA1変態点以上の高温加熱であり、
曲がり,偏心を生じやすい。この曲がり等の変形量を少
なくするには、硼化物の均一性、さらには硼化処理前に
金属部材を焼鈍して残留応力を除去しておくことが望ま
しい。焼鈍処理による残留応力除去によって、後工程で
の曲がり発生を抑制することができる。そしてその焼鈍
温度は変態点以上が望ましい。図4に焼鈍温度(前処理
温度)と曲がりとの関係を示す。ここでは、材質:S4
5C,長さL:500mm,直径D:50mm,L/D:1
0の材料で焼鈍(前処理)を実施した。保持時間を5時
間として、種々の温度で実験して曲がり量を測定した。
その結果、焼鈍温度が500℃〜600℃程度では、曲
がりが50μm以上の75μm程度発生する。これに対
して700℃を越えるとともに、発生する曲がり量は減
少し50μm以下になることがわかった。
(4) A boride-based ceramic is formed on the surface of the metal member by the boring treatment, and the boring temperature is a high temperature heating not lower than the A1 transformation point of the metal member.
Bending and eccentricity are likely to occur. In order to reduce the amount of deformation such as bending, it is desirable to uniformize the boride and to remove the residual stress by annealing the metal member before the boride treatment. By removing the residual stress by the annealing process, it is possible to suppress the occurrence of bending in a subsequent process. The annealing temperature is desirably equal to or higher than the transformation point. FIG. 4 shows the relationship between the annealing temperature (pretreatment temperature) and the bending. Here, the material: S4
5C, length L: 500 mm, diameter D: 50 mm, L / D: 1
Annealing (pretreatment) was performed with the material No. 0. The bending amount was measured by conducting experiments at various temperatures with the holding time being 5 hours.
As a result, when the annealing temperature is about 500 ° C. to 600 ° C., bending occurs about 50 μm or more and about 75 μm. On the other hand, it was found that as the temperature exceeded 700 ° C., the amount of bending generated decreased to 50 μm or less.

【0029】従って、金属部材の表面層に耐食性を有す
る硼化物系セラミックスである50μm以上の厚さの化
合物層を形成し、次いで、残留歪を除去するための焼鈍
処理を施した後に、機械加工によって成形することによ
り、製造時の曲がり変形抑制ができ、硼化物層の均一化
を図ることができる。
Therefore, a compound layer having a thickness of 50 μm or more, which is a boride-based ceramic having corrosion resistance, is formed on the surface layer of the metal member, and then subjected to an annealing treatment for removing residual strain, followed by machining. By performing the molding, bending deformation can be suppressed at the time of manufacturing, and the boride layer can be made uniform.

【0030】特に、長尺円柱,円筒品の場合、硼化処理
により、曲がり,偏心等の変形が生じやすい。この解決
には、上述した金属組成やその清浄度とする金属素材、
さらには上述した前処理が重要である。しかし、これと
同時に金属部材の硼化処理作業方法にも大きく依存す
る。すなわち、金属部材が加熱中、伸びを拘束しないよ
うな作業方法が望ましい。この作業方法として、図7に
示すような吊り下げ方式が望ましい。
Particularly, in the case of a long cylinder or a cylindrical product, deformation such as bending and eccentricity is apt to occur due to the boring treatment. In order to solve this problem, the above-mentioned metal composition and a metal material for its cleanliness,
Furthermore, the pre-processing described above is important. However, at the same time, it greatly depends on the boring treatment method of the metal member. That is, it is desirable to use a working method in which the metal member does not restrain the elongation during heating. As a working method, a hanging method as shown in FIG. 7 is desirable.

【0031】図7は、円柱状若しくは円筒状の長尺材料
を吊り下げ方式で硼化処理する装置構成を示す。ここで
は、円柱状若しくは円筒状の長尺材料として、ロール1
2の片側を固定して軸方向に吊り下げた状態とする。そ
のロール12の周辺に顆粒状硼化処理材11が備えら
れ、縦型熱処理炉10によって、ロール12が硼化処理
される。つまり、吊り下げた状態で硼化処理されるの
で、加熱中に伸びが拘束されずに、曲がり等を防止する
ことができる。従来の静置法では、伸びが拘束されるの
で、図5に示すように、曲がりが200μmも発生して
しまう。これに対し、吊下法では、50μm以下に抑制
することができる。なお、図5において、処理条件は、
前述の図4における条件と同様である。ここで、円柱状
若しくは円筒状の長尺材料とは、金属部材の長さがその
外直径の3倍程度以上の長尺である場合を示す。これ以
外の場合にも効果は得られるが、金属部材の長さがその
外直径の3倍程度以上の長尺である場合に顕著な効果を
得ることができる。
FIG. 7 shows an apparatus for boring a columnar or cylindrical long material in a suspended manner. Here, a roll 1 is used as a columnar or cylindrical long material.
2 is fixed and suspended in the axial direction. A granular boring material 11 is provided around the roll 12, and the roll 12 is borated by the vertical heat treatment furnace 10. That is, since the boring treatment is performed in a suspended state, the bending or the like can be prevented without restricting the elongation during the heating. In the conventional stationary method, since the elongation is restricted, as shown in FIG. 5, bending occurs as much as 200 μm. On the other hand, in the suspension method, it can be suppressed to 50 μm or less. In FIG. 5, the processing conditions are as follows:
This is the same as the condition in FIG. Here, the columnar or cylindrical long material indicates a case where the length of the metal member is about three times or more the outer diameter thereof. The effect can be obtained in other cases, but a remarkable effect can be obtained when the length of the metal member is about three times or more the outer diameter thereof.

【0032】従って、円柱状若しくは円筒状の連続溶融
亜鉛めっき装置用金属部材の製造方法において、該金属
部材の長さがその外直径の3倍以上の長尺である場合、
該金属部材を軸方向に吊り下げた状態で硼化物処理を行
って、その曲がりを50μ以内にすることにより、製造
中の曲がりを抑制して硼化物層を均一にすることができ
る。
Therefore, in the method of manufacturing a columnar or cylindrical metal member for a continuous hot-dip galvanizing apparatus, when the length of the metal member is three times or more the outer diameter thereof,
By performing boride treatment in a state where the metal member is suspended in the axial direction and controlling the bend to 50 μm or less, the bend during manufacturing can be suppressed and the boride layer can be made uniform.

【0033】(5)以下、本発明の金属部材の製造及び
使用の実施例について記載する。
(5) Examples of the production and use of the metal member of the present invention will be described below.

【0034】まず、連続溶融亜鉛めっき装置用の部品と
して、シンクロール用軸受部材を製造した。この際の金
属部材の化学成分は、C:0.05〜0.6%,Si:0.
15〜0.35%,Mn:0.60〜0.90%,P:0.0
30%以下,S:0.035%以下の炭素鋼とし、表1
のような試験片1〜3を製造した。
First, a sink roll bearing member was manufactured as a component for a continuous galvanizing apparatus. At this time, the chemical components of the metal member are as follows: C: 0.05 to 0.6%;
15 to 0.35%, Mn: 0.60 to 0.90%, P: 0.0
30% or less, S: 0.035% or less of carbon steel.
Test pieces 1 to 3 were manufactured.

【0035】[0035]

【表1】 [Table 1]

【0036】試験片1は、C:0.10%,Si:0.2
0%,Mn:0.70%,P:0.003%,S:0.004
%の炭素鋼、試験片2は、C:0.32%,Si:0.2
0%,Mn:0.70%,P:0.002%,S:0.00
3% の炭素鋼、試験片3は、C:0.50%,Si:
0.30%,Mn:0.70%,P:0.002%,S:
0.003% の炭素鋼とした。このように、炭素量Cを
0.05〜0.6%の範囲内としているので、構造材とし
て必要とされる十分な材料強度と、所望する硼化層厚さ
との双方を得ることができる。
Specimen 1 was C: 0.10%, Si: 0.2.
0%, Mn: 0.70%, P: 0.003%, S: 0.004
% Carbon steel, test piece 2 was C: 0.32%, Si: 0.2
0%, Mn: 0.70%, P: 0.002%, S: 0.00
3% carbon steel, test piece 3 is C: 0.50%, Si:
0.30%, Mn: 0.70%, P: 0.002%, S:
0.003% of carbon steel. As described above, since the carbon content C is in the range of 0.05 to 0.6%, both the sufficient material strength required for the structural material and the desired boride layer thickness can be obtained. .

【0037】このような化学成分の試験片1〜3の軸受
部材の寸法形状は、外直径180mm,内直径120mm,
長さ100mmの円筒状とした。
The dimensions and shape of the bearing members of the test pieces 1 to 3 having such a chemical component are 180 mm in outer diameter, 120 mm in inner diameter,
It was cylindrical with a length of 100 mm.

【0038】この炭素鋼からなる試験片1〜3の軸受部
材を、縦型熱処理炉10を用いて、硼化処理を行った。
この硼化処理では、前記軸受部材を顆粒状硼化処理材1
1に埋没させ、900℃で5時間保持して、その後、徐
冷した。
The bearing members of the test pieces 1 to 3 made of carbon steel were subjected to a boride treatment using a vertical heat treatment furnace 10.
In this boring treatment, the bearing member is made of granular borated material 1.
1 and kept at 900 ° C. for 5 hours, and then gradually cooled.

【0039】この硼化処理された軸受部材を、切断して
調査した結果、円周上、軸方向断面での硼化層の厚さは
150μm〜170μmとなっており、十分な厚さで均
一な硼化物系セラミックス層が得られることがわかっ
た。つまり、50μm以上の均一な硼化物系セラミック
スの化合物層を形成することができ、十分な材料強度を
有し、且つ十分な硼化層厚さを得ることができる。
As a result of cutting and examining the borated bearing member, the thickness of the boride layer in the cross section along the circumference and in the axial direction was 150 μm to 170 μm. It was found that a boride-based ceramic layer could be obtained. In other words, a uniform boride-based ceramic compound layer having a thickness of 50 μm or more can be formed, sufficient material strength can be obtained, and a sufficient boride layer thickness can be obtained.

【0040】また、この硼化処理後の状態で、軸受部材
全体の寸法は、外直径で100μm増、内直径で50μ
m小さくなっていた。これは硼化処理による膨張と思わ
れる。
Further, in the state after the boring treatment, the dimensions of the entire bearing member are increased by 100 μm in outer diameter and 50 μm in inner diameter.
m was smaller. This is considered to be expansion due to the boride treatment.

【0041】この軸受部材を連続溶融亜鉛めっき装置の
シンクロール用軸受に適用した結果、100時間連続使
用でも全く損傷が無かった。つまり、十分な材料強度を
有し、且つ十分な硼化層厚さを備えているため、長期間
にわたって耐食性を維持することができた。
As a result of applying this bearing member to a sink roll bearing of a continuous galvanizing apparatus, there was no damage even after continuous use for 100 hours. That is, since the material has a sufficient material strength and a sufficient boride thickness, the corrosion resistance can be maintained for a long period of time.

【0042】更に、大物品での本発明の結果を確認する
ために、本発明を連続溶融亜鉛めっき用シンクロール及
びサポートロールに適用した結果について述べる。その
使用素材の化学成分を表2に示す。
Further, in order to confirm the results of the present invention for large articles, the results of applying the present invention to a sink roll and a support roll for continuous galvanizing will be described. Table 2 shows the chemical components of the materials used.

【0043】[0043]

【表2】 [Table 2]

【0044】試験片4は、C:0.25% ,Si:0.
10% ,Mn:0.40% ,Al:0.001%,P:
0.020%,S:0.030%,清浄度d:0.1,O
2 :45ppm の炭素鋼、試験片5は、C:0.30%,
Si:0.30%,Mn:0.40%,Al:0.050%,
P:0.015%,S:0.025%,清浄度d:0.07,
2 :25ppm の炭素鋼、試験片6は、C:0.35
%,Si:0.50%,Mn:0.40%,Al:0.5
00%,P:0.020%,S:0.030%,清浄度
d:0.01,O2 :20ppm の炭素鋼とした。
Test piece 4 contained 0.25% C and 0.2% Si.
10%, Mn: 0.40%, Al: 0.001%, P:
0.020%, S: 0.030%, cleanliness d: 0.1, O
2 : Carbon steel of 45 ppm, test piece 5 has C: 0.30%,
Si: 0.30%, Mn: 0.40%, Al: 0.050%,
P: 0.015%, S: 0.025%, cleanliness d: 0.07,
O 2 : 25 ppm carbon steel, test piece 6 has C: 0.35
%, Si: 0.50%, Mn: 0.40%, Al: 0.5
Carbon steel of 00%, P: 0.020%, S: 0.030%, cleanliness d: 0.01, and O 2 : 20 ppm.

【0045】シンクロール2の胴径Dを700mm、サポ
ートロール4の胴径Dを250mmとし、胴長を両ロール
とも1600mmとし、それぞれの全長Lを2500mmと
した。ここで、長さと径の比は、シンクロール2の場
合、L/D=3.57 であり、サポートロール4の場
合、L/D=10である。
The diameter D of the sink roll 2 was 700 mm, the diameter D of the support roll 4 was 250 mm, the length of both rolls was 1600 mm, and the total length L of each roll was 2500 mm. Here, the ratio between the length and the diameter is L / D = 3.57 for the sink roll 2 and L / D = 10 for the support roll 4.

【0046】硼化処理の前処理として、次に、焼鈍処理
を実施した。この焼鈍処理では、900℃で10時間保
持して、炉冷による徐冷を行った。この焼鈍処理によっ
て、残留歪みを除去することができ、L/Dが3以上の
ような長尺物に、A1変態点以上の硼化処理を行って
も、曲がりや偏心等が発生しづらくなる。
Next, as a pretreatment of the boride treatment, an annealing treatment was performed. In this annealing treatment, the temperature was held at 900 ° C. for 10 hours, and the furnace was gradually cooled. By this annealing treatment, residual strain can be removed, and even if a long object having an L / D of 3 or more is subjected to boride treatment at the A1 transformation point or more, bending or eccentricity is unlikely to occur. .

【0047】その後、機械加工によって表面の錆,スケ
ール異物付着等を除去し、且つ洗浄した。
Thereafter, rust on the surface, adhesion of scale foreign matter, and the like were removed by machining, followed by washing.

【0048】そして、図7に示すように、縦型熱処理炉
10によって、拡散方法による硼化処理を実施した。サ
ポートロール4やシンクロール2等のロール12を吊り
下げた状態で、そのロール12の周辺を顆粒状硼化処理
材11で囲み、900℃で7時間保持して、その後炉冷
により徐冷した。なお、この際、顆粒状硼化処理材11
の厚さは25mmとした。このように、ロール12を吊り
下げた状態(一端を固定して他端を開放状態)で硼化処
理をするので、加熱中にロール12の伸びが拘束されず
に、曲がりや偏心等が抑制される。
Then, as shown in FIG. 7, boring treatment was carried out in a vertical heat treatment furnace 10 by a diffusion method. In a state where the rolls 12 such as the support roll 4 and the sink roll 2 are suspended, the periphery of the roll 12 is surrounded by the granular borated material 11, kept at 900 ° C. for 7 hours, and then gradually cooled by furnace cooling. . At this time, the granular borated material 11
Was 25 mm in thickness. As described above, the boring treatment is performed in a state where the roll 12 is suspended (one end is fixed and the other end is opened), so that the elongation of the roll 12 is not restricted during heating, and bending and eccentricity are suppressed. Is done.

【0049】その結果、サポートロール4の変形量は5
0μm、シンクロール2の変形量20μmであり、両者
ともに、50μm以下にすることができた。このよう
に、変形量が50μm以下であると、後の仕上げ研磨に
て加工修正が可能である。
As a result, the amount of deformation of the support roll 4 is 5
0 μm and the deformation amount of the sink roll 2 was 20 μm, and both could be reduced to 50 μm or less. As described above, when the deformation amount is 50 μm or less, the processing can be corrected by the finish polishing.

【0050】又、サポートロール4及びシンクロール2
の胴端で、硼化層厚さを測定した結果、50μm以上で
ある150μm〜170μmであった。以上のように、
本実施例の方法によれば、セラミックス一体では製造困
難な大型品にでも、均一な硼化物系セラミックスの適用
が可能となった。
The support roll 4 and the sink roll 2
As a result of measuring the thickness of the boride layer at the trunk end, the thickness was 150 μm to 170 μm, which was 50 μm or more. As mentioned above,
According to the method of the present embodiment, uniform boride-based ceramics can be applied even to a large product that is difficult to manufacture integrally with ceramics.

【0051】これらのサポートロール4及びシンクロー
ル2を、溶融亜鉛めっき浴を備えた連続溶融亜鉛めっき
装置に組み込んで、ストリップ1を亜鉛めっき処理し
た。
The support roll 4 and the sink roll 2 were incorporated in a continuous hot-dip galvanizing apparatus equipped with a hot-dip galvanizing bath, and the strip 1 was subjected to a galvanizing treatment.

【0052】図6に、溶融亜鉛めっき浴を備えた連続溶
融亜鉛めっき装置を示す。この装置では、亜鉛めっきさ
れるストリップ1は、亜鉛めっき浴槽6中のめっき浴3
に導入される。このめっき浴3中で、ストリップ1はシ
ンクロール2によって方向を変えられ、垂直方向で上方
向に搬送される。その後、サポートロール4を経てめっ
き浴3から引き出され、ワイピングノズル5によりめっ
き厚みが調整される。このような連続溶融亜鉛めっき装
置に用いられる部品のうちで、めっき浴3と接触しなが
ら回転しているシンクロール2やサポートロール4の胴
部や軸受部は、特に、溶損,摩耗が多い。このような溶
損,摩耗が進むと、ストリップ1の走行中、ストリップ
1の振動が大きくなり均一な亜鉛付着が不可能となる。
FIG. 6 shows a continuous hot-dip galvanizing apparatus provided with a hot-dip galvanizing bath. In this apparatus, a strip 1 to be galvanized is coated with a plating bath 3 in a galvanizing bath 6.
Will be introduced. In this plating bath 3, the strip 1 is turned by a sink roll 2 and conveyed vertically upward. After that, it is pulled out of the plating bath 3 through the support roll 4 and the plating thickness is adjusted by the wiping nozzle 5. Among the parts used in such a continuous hot-dip galvanizing apparatus, the body and the bearing of the sink roll 2 and the support roll 4 rotating while being in contact with the plating bath 3 are particularly susceptible to melting and abrasion. . If such erosion and abrasion progress, the vibration of the strip 1 during the running of the strip 1 increases, making it impossible to deposit zinc uniformly.

【0053】これに対して、本実施例ではシンクロール
2やサポートロール4を適用したので、胴部や軸受部に
溶損や摩耗が少なく、460℃という高温下での使用に
おいて100時間連続使用することができる。この使用
の結果、シンクロール2及びサポートロール4ともに軸
部損耗は全く見られず、また胴部にはスラッジ付着もな
く良好であった。
On the other hand, in the present embodiment, since the sink roll 2 and the support roll 4 are applied, there is little erosion or wear in the body and the bearing, and continuous use for 100 hours at a high temperature of 460 ° C. can do. As a result of this use, the sink roll 2 and the support roll 4 did not show any abrasion of the shaft portion, and the trunk portion was good with no sludge attached.

【0054】また、ここで、めっき浴3中の成分を、重
量%で、Al:10%未満とし、残部を不可避的な不純
物ならびにZnとした。つまり、金属部材の表面に硼化
物系セラミックスである化合物層を備えた本実施例のシ
ンクロール2やサポートロール4等を用い、且つめっき
浴3中のAl量を10%未満としたので、更に、耐食性
が向上し、長時間の連続使用を可能とした。
The components in the plating bath 3 were less than 10% by weight of Al, and the balance was unavoidable impurities and Zn. In other words, since the sink roll 2 and the support roll 4 of the present embodiment having the boride-based ceramics compound layer on the surface of the metal member were used, and the amount of Al in the plating bath 3 was less than 10%, furthermore, The corrosion resistance has been improved, enabling long-term continuous use.

【0055】以上のように、本実施例によれば、溶融亜
鉛めっき浴中で使用される浴中部品の耐腐食性,耐摩耗
性を有する高信頼性,長寿命の部品が得られた。また、
従来のセラミックス部品より取り扱いが簡単で、ロール
交換も少なく、また亜鉛浴中の汚染も少なく、そのため
スラッジも少なく安定した亜鉛鉄板が出来るようになっ
た。
As described above, according to this embodiment, a highly reliable and long-life component having corrosion resistance and abrasion resistance of components in the bath used in the hot-dip galvanizing bath was obtained. Also,
It is easier to handle than conventional ceramic parts, has less roll exchange, and has less contamination in the zinc bath, so that a stable zinc iron plate with less sludge can be obtained.

【0056】[0056]

【発明の効果】本発明の連続溶融亜鉛めっき装置用金属
部材によると、長期間にわたって耐食性を維持すること
ができるという効果を奏する。
According to the metal member for a continuous galvanizing apparatus of the present invention, there is an effect that corrosion resistance can be maintained for a long period of time.

【0057】本発明の連続溶融亜鉛めっき装置による
と、表面に硼化物系セラミックス層を有する連続溶融亜
鉛めっき装置用金属部品を用いた場合の耐食性を向上で
きるという効果を奏する。
According to the continuous hot-dip galvanizing apparatus of the present invention, it is possible to improve the corrosion resistance when using a metal part for a continuous hot-dip galvanizing apparatus having a boride-based ceramic layer on the surface.

【0058】本発明の連続溶融亜鉛めっき装置用金属部
材の製造方法によると、表面に硼化物系セラミックス層
を有する連続溶融亜鉛めっき装置用金属部品を製造する
場合における曲がり変形を抑制し、硼化物の層の厚さの
均一化を図ることができるという効果を奏する。
According to the method for producing a metal member for a continuous hot-dip galvanizing apparatus of the present invention, bending deformation in the case of manufacturing a metal part for a continuous hot-dip galvanizing apparatus having a boride-based ceramic layer on its surface is suppressed, and boride This has the effect that the thickness of the layer can be made uniform.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炭素C量と硼化層厚さ,材料強度の関係を示
す。
FIG. 1 shows the relationship between the amount of carbon C, the thickness of a boride layer, and the material strength.

【図2】耐食性に及ぼす溶融亜鉛中のAl量の影響を示
す。
FIG. 2 shows the effect of the amount of Al in molten zinc on corrosion resistance.

【図3】耐食性に及ぼす金属部材の清浄度の影響を示
す。
FIG. 3 shows the effect of cleanliness of a metal member on corrosion resistance.

【図4】硼化前処理温度と曲がりの関係を示す。FIG. 4 shows the relationship between pre-boriding temperature and bending.

【図5】硼化処理時の積み方と曲がりの関係を示す。FIG. 5 shows a relationship between a stacking method and a bend during boring treatment.

【図6】連続溶融亜鉛めっき装置の構成を示す。FIG. 6 shows a configuration of a continuous hot-dip galvanizing apparatus.

【図7】吊り下げ式硼化処理設備を示す。FIG. 7 shows a suspended boring treatment facility.

【符号の説明】[Explanation of symbols]

1…ストリップ、2…シンクロール、3…めっき浴、4
…サポートロール、5…ガスワイピング、6…亜鉛めっ
き浴槽、10…縦型熱処理炉、11…顆粒状硼化処理
材、12…ロール。
1 ... Strip, 2 ... Sink roll, 3 ... Plating bath, 4
... Support roll, 5 ... Gas wiping, 6 ... Zinc plating bath, 10 ... Vertical heat treatment furnace, 11 ... Granular borated material, 12 ... Roll.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 淳次 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 斉藤 幸雄 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (56)参考文献 特開 平6−346208(JP,A) 特開 平4−116147(JP,A) 特開 平2−43352(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 2/00 - 2/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Junji Sakai 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Yukio Saito 7-chome, Omikacho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi, Ltd. Hitachi Research Laboratory (56) References JP-A-6-346208 (JP, A) JP-A-4-116147 (JP, A) JP-A-2-43352 (JP, A) (58) ) Surveyed field (Int.Cl. 7 , DB name) C23C 2/00-2/40

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 連続溶融亜鉛めっき装置用金属部材におい
て、残留歪を除去するための焼鈍処理が施され、該金属
部材の表面層に耐食性を有する硼化物系セラミックスで
ある50μm以上の厚さの化合物層が拡散処理によって
形成された部材とすることを特徴とする連続溶融亜鉛め
っき装置用金属部材。
1. A metal member for a continuous hot-dip galvanizing apparatus, which has been subjected to an annealing treatment for removing residual strain, and the surface layer of the metal member has a thickness of 50 μm or more, which is a boride-based ceramic having corrosion resistance. A metal member for a continuous galvanizing apparatus, wherein the compound layer is a member formed by a diffusion process.
【請求項2】請求項1に記載の連続溶融亜鉛めっき装置
用金属部材において、前記金属部材は、重量%で、C:
0.05〜0.6%を含むことを特徴とする連続溶融亜鉛
めっき装置用金属部材。
2. The metal member for a continuous hot-dip galvanizing apparatus according to claim 1, wherein the metal member has a C:
A metal member for a continuous hot-dip galvanizing apparatus, comprising 0.05 to 0.6%.
【請求項3】請求項1に記載の連続溶融亜鉛めっき装置
用金属部材において、前記金属部材の成分を、重量%
で、C:0.05〜0.6%,Si:0.1〜0.5%,A
l:0.5% 未満とし、且つ残部を不可避不純物及びF
eとすることを特徴とする連続溶融亜鉛めっき装置用金
属部材。
3. The metal member for a continuous hot-dip galvanizing apparatus according to claim 1, wherein a component of the metal member is contained in a weight%.
C: 0.05 to 0.6%, Si: 0.1 to 0.5%, A
l: less than 0.5%, and the remainder is unavoidable impurities and F
e, a metal member for a continuous galvanizing apparatus.
【請求項4】請求項1〜請求項3の何れかに記載の連続
溶融亜鉛めっき装置用金属部材において、該金属部材の
清浄度(JIS G 0555)が清浄度d:0.1%
以下,O2 :50ppm 以下であることを特徴とする連続
溶融亜鉛めっき装置用金属部材。
4. The metal member for a continuous hot-dip galvanizing apparatus according to any one of claims 1 to 3, wherein the metal member has a cleanliness degree (JIS G 0555) of 0.1%.
Hereinafter, a metal member for a continuous hot-dip galvanizing apparatus, wherein O 2 is 50 ppm or less.
【請求項5】 溶融亜鉛めっき浴に浸漬して使用される金
属部材を備えた連続溶融亜鉛めっき装置において、 該金属部材を、残留歪を除去するための焼鈍処理が施さ
れ、該金属部材の表面層に耐食性を有する硼化物系セラ
ミックスである50μm以上の厚さの化合物層が拡散処
理された部材とすることを特徴とする連続溶融亜鉛めっ
き装置。
5. A continuous hot-dip galvanizing apparatus provided with a metal member used by being immersed in a hot-dip galvanizing bath, wherein the metal member is subjected to an annealing treatment for removing residual strain, and A continuous hot-dip galvanizing apparatus characterized in that a surface layer is a member obtained by subjecting a compound layer having a thickness of 50 μm or more, which is a boride-based ceramic having corrosion resistance, to a diffusion treatment.
【請求項6】連続溶融亜鉛めっき装置用金属部材の製造
方法において、残留歪を除去するための焼鈍処理を施す
前処理工程と、該前処理工程後に該金属部材の表面層に
耐食性を有する硼化物系セラミックスである50μm以
上の厚さの化合物層を拡散処理によって形成する硼化処
理工程とを含むことを特徴とする連続溶融亜鉛めっき装
置用金属部材の製造方法。
6. A method for producing a metal member for a continuous hot-dip galvanizing apparatus, comprising: a pretreatment step of performing an annealing treatment for removing residual strain; and a boron layer having corrosion resistance on a surface layer of the metal member after the pretreatment step. A boride treatment step of forming a compound layer having a thickness of 50 μm or more as a nitride ceramic by diffusion treatment.
【請求項7】円柱状若しくは円筒状の連続溶融亜鉛めっ
き装置用金属部材の製造方法において、該金属部材の長
さがその外直径の3倍以上の長尺である場合、該金属部
材を軸方向に吊り下げた状態で硼化物処理を行って、そ
の曲がりを50μm以内にすることを特徴とする連続溶
融亜鉛めっき装置用金属部材の製造方法。
7. A method for manufacturing a columnar or cylindrical metal member for a continuous hot-dip galvanizing apparatus, wherein when the length of the metal member is at least three times as long as its outer diameter, the metal member is pivoted. 1. A method for producing a metal member for a continuous hot-dip galvanizing apparatus, wherein a boride treatment is performed in a state of being suspended in a direction, and the bending is performed within 50 μm.
JP34468197A 1997-12-15 1997-12-15 Metal member for continuous hot-dip galvanizing apparatus, method for producing the same, and continuous hot-dip galvanizing apparatus Expired - Fee Related JP3284953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34468197A JP3284953B2 (en) 1997-12-15 1997-12-15 Metal member for continuous hot-dip galvanizing apparatus, method for producing the same, and continuous hot-dip galvanizing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34468197A JP3284953B2 (en) 1997-12-15 1997-12-15 Metal member for continuous hot-dip galvanizing apparatus, method for producing the same, and continuous hot-dip galvanizing apparatus

Publications (2)

Publication Number Publication Date
JPH11172393A JPH11172393A (en) 1999-06-29
JP3284953B2 true JP3284953B2 (en) 2002-05-27

Family

ID=18371162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34468197A Expired - Fee Related JP3284953B2 (en) 1997-12-15 1997-12-15 Metal member for continuous hot-dip galvanizing apparatus, method for producing the same, and continuous hot-dip galvanizing apparatus

Country Status (1)

Country Link
JP (1) JP3284953B2 (en)

Also Published As

Publication number Publication date
JPH11172393A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
US11408044B2 (en) High-strength steel sheet and method for producing the same
KR100747133B1 (en) High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation
RU2572901C2 (en) Annealed layer of galvanic coating, and steel plate with such coating, and method of its producing
WO2013141030A1 (en) Cast product having alumina barrier layer, and method for manufacturing same
KR20070112874A (en) Galvannealed sheet steel and process for production thereof
JP2023507960A (en) High-strength hot-dip galvanized steel sheet with excellent surface quality and electric resistance spot weldability and its manufacturing method
JP2010138482A (en) Cold rolled steel sheet, hot dip galvannealed steel sheet, and method for producing them
JP5488735B2 (en) Method for producing hot-dip galvanized steel pipe
JP3390776B2 (en) Surface modification method for steel using aluminum diffusion dilution
JP3284953B2 (en) Metal member for continuous hot-dip galvanizing apparatus, method for producing the same, and continuous hot-dip galvanizing apparatus
JP3379041B2 (en) Equipment in plating bath and manufacturing method
JP3664450B2 (en) Float glass manufacturing roll
JPH0577737B2 (en)
JP2002241843A (en) Method for producing ferritic stainless steel sheet having excellent surface gloss and workability
JPS61231150A (en) Manufacture of ti alloy wire rod
KR100273896B1 (en) Ceramic plasma spray coating method for sink roll and stabilizing roll
JP3580541B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same
KR102453007B1 (en) Composite plated steel sheet having excellent corrosion resistance after forming, and method for manufacturing the same
JP2000119839A (en) Boriding treating method for steel member surface
JP2002256472A (en) Ferritic stainless steel-sheet and manufacturing method therefor
WO2022215636A1 (en) Steel sheet for hot stamping and hot-stamped member
KR100905653B1 (en) Preparing method of non-pickling galvanized hot-rolled steel sheet with excellent coating adhesion
JPH10130801A (en) Production of hot-dip plated steel sheet excellent in surface quality
JP3146839B2 (en) High corrosion resistant cold rolled steel sheet excellent in workability and method for producing the same
JP2000034552A (en) Hot dip metal coating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees