JP3284820B2 - Temperature control device for fuel reformer - Google Patents

Temperature control device for fuel reformer

Info

Publication number
JP3284820B2
JP3284820B2 JP07852795A JP7852795A JP3284820B2 JP 3284820 B2 JP3284820 B2 JP 3284820B2 JP 07852795 A JP07852795 A JP 07852795A JP 7852795 A JP7852795 A JP 7852795A JP 3284820 B2 JP3284820 B2 JP 3284820B2
Authority
JP
Japan
Prior art keywords
temperature
fuel
reforming
catalyst layer
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07852795A
Other languages
Japanese (ja)
Other versions
JPH08273685A (en
Inventor
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP07852795A priority Critical patent/JP3284820B2/en
Publication of JPH08273685A publication Critical patent/JPH08273685A/en
Application granted granted Critical
Publication of JP3284820B2 publication Critical patent/JP3284820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池発電装置に組
込まれる燃料改質器において、過熱管にて過熱された原
燃料が通流する改質管に充填された改質触媒からなる触
媒層を加熱して原燃料を水蒸気改質するのに適する温度
に制御する燃料改質器の温度制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for a fuel reformer incorporated in a fuel cell power generator, comprising a reforming catalyst filled in a reforming tube through which raw fuel heated by a superheating tube flows. The present invention relates to a temperature control device of a fuel reformer that heats a bed to control a temperature suitable for steam reforming of a raw fuel.

【0002】[0002]

【従来の技術】燃料電池発電装置は、燃料改質器と燃料
電池とを主要構成部として構成されている。燃料改質器
は、メタノールや天然ガス等の原燃料を過熱管及びこれ
に接続し、改質触媒が充填された触媒層を有する改質管
に通流し、バーナでの燃焼による燃焼熱により前記過熱
管及び改質管を加熱して原燃料を水素リッチなガスに水
蒸気改質する。燃料電池は、燃料改質器から供給される
改質ガスと別に供給される空気とにより電池反応を起こ
して発電する。なお、発電時、燃料電池から排出される
電池反応に寄与しない燃料オフガスは燃料改質器のバー
ナでの燃料として使用されている。
2. Description of the Related Art A fuel cell power generator is mainly composed of a fuel reformer and a fuel cell. The fuel reformer connects a raw fuel such as methanol or natural gas to a superheater and a superheater, flows through a reformer having a catalyst layer filled with a reforming catalyst, and uses the combustion heat generated by combustion in a burner to produce the fuel. The superheater and the reformer are heated to steam reform the raw fuel into a hydrogen-rich gas. The fuel cell generates electricity by causing a cell reaction between the reformed gas supplied from the fuel reformer and air supplied separately. During power generation, fuel off-gas discharged from the fuel cell and not contributing to the cell reaction is used as fuel in the burner of the fuel reformer.

【0003】ところで、燃料電池を効率よく、かつ安定
に運転するには、燃料改質器からの改質ガスの安定した
供給が必要であり、このために改質管内の触媒層の温度
を負荷変動に関係なく常に適正温度に保持する必要があ
り、従来図2に示す制御系統により触媒層の温度を制御
している。図6において、燃料改質器1は、容器2と、
容器2の上部に設けられるバーナ3と、バーナ3からバ
ーナ口を囲んで吊下る隔壁筒4と、隔壁筒4内に設けら
れる過熱管5と、過熱管5に接続し、改質触媒が充填さ
れた触媒層6を有し、外壁に図示しない伝熱フィンを備
え、かつ下部に原燃料が流入する入口マニホールド7を
備える環状の改質管8とを備えている。なお、9は触媒
層6の原燃料に水蒸気を付加した改質原料の入口部、1
0は改質ガスの出口部の温度を検出する温度検出器であ
る。
In order to operate a fuel cell efficiently and stably, it is necessary to supply a stable supply of reformed gas from a fuel reformer. It is necessary to keep the temperature at an appropriate temperature regardless of the fluctuation, and the temperature of the catalyst layer is conventionally controlled by a control system shown in FIG. In FIG. 6, a fuel reformer 1 includes a container 2,
A burner 3 provided at the upper part of the vessel 2, a partition tube 4 suspended around the burner opening from the burner 3, a superheated tube 5 provided in the partition tube 4, and connected to the superheated tube 5, filled with the reforming catalyst. And an annular reforming tube 8 having a heat transfer fin (not shown) on the outer wall, and an inlet manifold 7 into which raw fuel flows. Reference numeral 9 denotes an inlet of a reforming raw material obtained by adding water vapor to the raw fuel of the catalyst layer 6;
Reference numeral 0 denotes a temperature detector that detects the temperature of the outlet of the reformed gas.

【0004】燃料電池12は電解質層と、これを挟持す
る燃料極14、及び空気極15とを備えている。原燃料
供給系17は図示しない原燃料供給源と燃料改質器1の
過熱管5の入口に接続して流量制御弁18と流量検出器
19とを備えて設けられ、原燃料、この原燃料に水蒸気
を付加した改質原料を過熱管5に供給する。
[0004] The fuel cell 12 includes an electrolyte layer, a fuel electrode 14 and an air electrode 15 sandwiching the electrolyte layer. The raw fuel supply system 17 is provided with a flow control valve 18 and a flow detector 19 connected to a raw fuel supply source (not shown) and the inlet of the superheater pipe 5 of the fuel reformer 1. The reforming raw material obtained by adding steam to the water is supplied to the superheater 5.

【0005】改質ガス供給系20は燃料改質器1の改質
管8の出口と燃料電池12の燃料極14とに接続して設
けられ、改質ガスを燃料極14に供給する。燃料オフガ
ス供給系21は燃料電池12の燃料極14と燃料改質器
1のバーナ3とに接続して設けられ、燃料極14から排
出される燃料オフガスを燃料としてバーナ3に供給す
る。なお、22は燃料電池12の空気極15に空気を供
給する空気供給系、23は空気極15から排出される排
空気を外部に排出する排空気排出系である。
[0005] The reformed gas supply system 20 is connected to the outlet of the reforming tube 8 of the fuel reformer 1 and the fuel electrode 14 of the fuel cell 12, and supplies the reformed gas to the fuel electrode 14. The fuel off-gas supply system 21 is connected to the fuel electrode 14 of the fuel cell 12 and the burner 3 of the fuel reformer 1, and supplies the fuel off-gas discharged from the fuel electrode 14 to the burner 3 as fuel. Reference numeral 22 denotes an air supply system that supplies air to the air electrode 15 of the fuel cell 12, and reference numeral 23 denotes an exhaust air discharge system that discharges exhaust air discharged from the air electrode 15 to the outside.

【0006】燃焼空気供給系24はブロワ25と流量検
出器26とを備えてバーナ3に接続して設けられ、燃焼
空気をバーナ3に供給する。バーナ燃料供給系27は図
示しないバーナ燃料供給源とバーナ3とに接続し、燃料
ポンプ28と燃料流量検出器29とを備えて設けられて
いる。燃焼排ガス排出系30は燃料改質器1の容器2の
上部に接続して設けられ、バーナ3での燃焼による燃焼
排ガスを外部に排出する。
The combustion air supply system 24 includes a blower 25 and a flow rate detector 26 and is connected to the burner 3 to supply combustion air to the burner 3. The burner fuel supply system 27 is connected to a burner fuel supply source (not shown) and the burner 3, and is provided with a fuel pump 28 and a fuel flow detector 29. The flue gas discharge system 30 is provided so as to be connected to the upper part of the container 2 of the fuel reformer 1, and discharges flue gas generated by combustion in the burner 3 to the outside.

【0007】このような構成により、原燃料は流量制御
弁18により負荷指令の負荷に対応する流量に制御さ
れ、この原燃料と水蒸気改質用の水蒸気とを含む改質原
料は原燃料供給系17を経て燃料改質器1の過熱管5に
流入し、過熱管5及び入口マニホールド7を経て改質管
8を通流する。一方、燃料電池12の発電時燃料極14
から排出される電池反応に寄与しない水素を含む燃料オ
フガスは燃料オフガス供給系21を経て燃料改質器1の
バーナ3に供給され、この燃料オフガスはバーナにてブ
ロワ25の駆動により送気され、燃焼空気供給系24を
経る燃焼空気により燃焼される。このバーナ3での燃焼
による燃焼ガスは隔壁筒4内を下方に流れて過熱管5を
加熱した後、隔壁筒4の下方でUターンして隔壁筒4と
容器2の側壁との間を上方に流れ、改質管8を加熱して
燃焼排ガス排出系30から外部に排出される。
[0007] With this configuration, the raw fuel is controlled by the flow control valve 18 to a flow rate corresponding to the load specified by the load command, and the raw material containing this raw fuel and steam for steam reforming is supplied to the raw fuel supply system. The fuel gas flows into the superheater 5 of the fuel reformer 1 via 17 and flows through the reformer 8 via the superheater 5 and the inlet manifold 7. On the other hand, when the fuel cell 12
The fuel off-gas containing hydrogen not contributing to the cell reaction discharged from the fuel supply is supplied to the burner 3 of the fuel reformer 1 through the fuel off-gas supply system 21, and the fuel off-gas is supplied by the drive of the blower 25 by the burner, It is burned by the combustion air passing through the combustion air supply system 24. The combustion gas generated by the combustion in the burner 3 flows downward in the partition tube 4 to heat the superheated tube 5, and then makes a U-turn below the partition tube 4 to move upward between the partition tube 4 and the side wall of the container 2. And heats the reforming tube 8 to be discharged from the flue gas discharge system 30 to the outside.

【0008】したがって、過熱管5,改質管8を通流す
る改質原料は過熱管5にて加熱された後、改質管8の触
媒層6の改質触媒の下に原燃料は水素リッチなガスに水
蒸気改質され、この改質ガスは改質ガス供給系20を経
て燃料電池12の燃料極14に供給される。燃料電池1
2はこの改質ガスと空気供給系22を経て供給される空
気とにより電池反応を起こして発電する。この際、電池
反応に寄与しない水素を含む燃料オフガスは燃料オフガ
ス供給系21を経て燃料改質器1のバーナ3に供給さ
れ、燃料として使用される。
Therefore, after the reforming raw material flowing through the superheating pipe 5 and the reforming pipe 8 is heated by the superheating pipe 5, the raw fuel under the reforming catalyst in the catalyst layer 6 of the reforming pipe 8 is hydrogen The reformed gas is steam-reformed to a rich gas, and the reformed gas is supplied to the fuel electrode 14 of the fuel cell 12 via the reformed gas supply system 20. Fuel cell 1
2 generates electric power by causing a battery reaction between the reformed gas and the air supplied through the air supply system 22. At this time, the fuel off-gas containing hydrogen that does not contribute to the cell reaction is supplied to the burner 3 of the fuel reformer 1 via the fuel off-gas supply system 21 and used as fuel.

【0009】なお、電池反応後の燃料電池12の空気極
15から排出される排空気は排空気排出系23を経て外
部に排出される。このようにして改質原料はバーナ3で
の燃料オフガスの燃焼による燃焼ガスにより過熱管5で
加熱され、改質管8にて原燃料は水蒸気改質されるが、
改質管8内の触媒層6の温度を水蒸気改質反応に適切な
温度に制御する必要がある。このため燃料オフガスの燃
焼による燃焼熱が不足する場合には、バーナ燃料供給系
27の燃料ポンプ28を駆動してバーナ3にバーナ燃料
を供給して燃料オフガスとともに燃焼する。また、燃料
オフガスの燃焼による燃焼熱が過剰の場合は、バーナ燃
料をバーナ3に供給せず、燃料オフガスの燃焼空気量を
多くして改質管8に与える燃焼熱を少なくする。
The exhaust air discharged from the air electrode 15 of the fuel cell 12 after the cell reaction is discharged to the outside via an exhaust air discharge system 23. In this way, the reforming raw material is heated by the superheated pipe 5 by the combustion gas resulting from the combustion of the fuel off-gas in the burner 3, and the raw fuel is steam reformed in the reforming pipe 8.
It is necessary to control the temperature of the catalyst layer 6 in the reforming tube 8 to a temperature suitable for the steam reforming reaction. Therefore, when the combustion heat due to the combustion of the fuel off-gas is insufficient, the fuel pump 28 of the burner fuel supply system 27 is driven to supply burner fuel to the burner 3 and burn with the fuel off-gas. If the combustion heat due to the combustion of the fuel off-gas is excessive, the burner fuel is not supplied to the burner 3, but the combustion air amount of the fuel off-gas is increased to reduce the combustion heat given to the reforming pipe 8.

【0010】次に、上記のような改質管8の触媒層6の
温度制御について説明する。負荷指令の負荷信号は原燃
料量演算器31に入力され、この演算器にて負荷指令に
よる負荷に対応する原燃料流量が演算される。そして、
原燃料量演算器31から出力される原燃料流量の信号は
流量調節器32に入力される。一方、原燃料供給系17
を通流する原燃料の流量は流量検出器19にて検出さ
れ、この検出原燃料流量の信号は流量調節器32に入力
される。そして流量調節器32により原燃料量演算器3
1からの原燃料流量と流量検出器19での検出原燃料流
量との偏差から流量制御弁18を制御して負荷に対応す
る流量の原燃料に水蒸気を付加した改質原料が燃料改質
器1に供給され、過熱管5及び改質管8を通流する。
Next, control of the temperature of the catalyst layer 6 of the reforming tube 8 as described above will be described. The load signal of the load command is input to the raw fuel amount calculator 31, and the calculator calculates the raw fuel flow rate corresponding to the load according to the load command. And
The raw fuel flow rate signal output from the raw fuel amount calculator 31 is input to the flow controller 32. On the other hand, the raw fuel supply system 17
The flow rate of the raw fuel flowing through is detected by the flow rate detector 19, and a signal of the detected raw fuel flow rate is input to the flow rate controller 32. The raw fuel amount calculator 3 is controlled by the flow controller 32.
From the difference between the raw fuel flow rate from No. 1 and the raw fuel flow rate detected by the flow rate detector 19, the flow control valve 18 is controlled to control the flow rate of the raw fuel to a flow rate corresponding to the load by adding steam to the raw material. 1 and flows through the superheater 5 and the reformer 8.

【0011】また、負荷指令の負荷信号は燃焼空気量演
算器33に入力され、負荷指令による負荷に対応して燃
料電池12の燃料極14から排出されることが計算され
る流量の燃料オフガスを所定の空燃比で燃焼させるに必
要な燃焼空気流量が演算され、この流量に対応するブロ
ワ25の回転数が演算される。なお、バーナ燃料が補助
燃料としてバーナ3に供給されているときには、バーナ
燃料供給系27を流れるバーナ燃料の燃料流量検出器2
9で検出したバーナ燃料流量の信号が燃焼空気量演算器
33に入力され、バーナに供給されるバーナ燃料を所定
の空燃比で燃焼させるに必要なバーナ燃料用燃焼空気流
量が演算され、この流量に対応するブロワ25の回転数
が演算される。
A load signal of a load command is input to a combustion air amount calculator 33, and a fuel off gas having a flow rate calculated to be discharged from the fuel electrode 14 of the fuel cell 12 in accordance with the load by the load command is supplied. The combustion air flow rate required for combustion at a predetermined air-fuel ratio is calculated, and the rotation speed of the blower 25 corresponding to this flow rate is calculated. When the burner fuel is being supplied to the burner 3 as auxiliary fuel, the fuel flow rate detector 2 detects the burner fuel flowing through the burner fuel supply system 27.
The signal of the burner fuel flow rate detected in step 9 is input to the combustion air amount calculator 33, and the burner fuel combustion air flow rate required to burn the burner fuel supplied to the burner at a predetermined air-fuel ratio is calculated. Is calculated corresponding to the rotation speed of the blower 25.

【0012】したがって、バーナ燃料がバーナ3に供給
されてないときは、燃焼空気量演算器33から出力する
のは、燃料オフガス用燃焼空気流量の信号、すなわち、
この流量に対応するブロワ25の回転数の信号であり、
一方、バーナ燃料がバーナ3に供給されているときに
は、燃焼空気量演算器33から出力するのは、燃料オフ
ガス用燃焼空気流量とバーナ燃料用燃焼空気流量とを合
計した合計燃焼空気流量の信号、すなわち、この合計し
た流量に対応するブロワ25の回転数の信号である。
Therefore, when the burner fuel is not supplied to the burner 3, the combustion air amount calculator 33 outputs a signal of the fuel off-gas combustion air flow rate, that is,
It is a signal of the rotation speed of the blower 25 corresponding to this flow rate,
On the other hand, when the burner fuel is being supplied to the burner 3, the output from the combustion air amount calculator 33 is a signal of the total combustion air flow rate obtained by summing the fuel off gas combustion air flow rate and the burner fuel combustion air flow rate, That is, it is a signal of the rotation speed of the blower 25 corresponding to the total flow rate.

【0013】ところで、改質管8の触媒層6を通流する
改質原料はバーナ3での燃料オフガスやバーナ燃料の燃
焼により加熱されて原燃料は水蒸気改質されるが、その
ときの触媒層6の温度は水蒸気改質反応に適切な温度に
下記のようにして制御される。触媒層6の温度は、触媒
層6の入口部の温度検出器9で検出される温度の信号
と、触媒層6の水蒸気改質反応に適切な温度の設定値の
信号とが温度調節器35に入力される。そして、温度調
節器35により設定温度と温度検出器9での検出温度と
の偏差から後述するように燃料・燃焼空気演算制御器3
6を介して燃料ポンプ28,ブロワ25の回転数を制御
してそれぞれバーナ燃料流量,燃焼空気流量を制御す
る。次にこれらの制御について説明する。
The reforming raw material flowing through the catalyst layer 6 of the reforming tube 8 is heated by the fuel off-gas or the combustion of the burner fuel in the burner 3, and the raw fuel is steam reformed. The temperature of the layer 6 is controlled to a temperature suitable for the steam reforming reaction as described below. As for the temperature of the catalyst layer 6, a temperature signal detected by the temperature detector 9 at the entrance of the catalyst layer 6 and a signal of a temperature set value appropriate for the steam reforming reaction of the catalyst layer 6 are obtained by the temperature controller 35. Is input to Then, as will be described later, the fuel / combustion air calculation controller 3 determines the difference between the set temperature and the temperature detected by the temperature detector 9 by the temperature controller 35.
The number of revolutions of the fuel pump 28 and the blower 25 is controlled via the control unit 6 to control the burner fuel flow rate and the combustion air flow rate, respectively. Next, these controls will be described.

【0014】バーナ3での燃料オフガスの燃焼による燃
焼熱が触媒層6にて水蒸気改質するのに必要な熱量より
小さい場合には、燃料ポンプ28が駆動され、バーナ燃
料がバーナ3に供給されて燃焼される。この場合、燃料
流量検出器29での検出バーナ燃料流量の信号は燃料・
燃焼空気演算制御器36に入力されており、温度調節器
35により触媒層6の設定温度と温度検出器9での検出
温度との偏差からバーナ燃料ポンプ28の回転数を制御
してバーナ3に供給するバーナ燃料流量を制御する。
When the heat of combustion due to the combustion of the fuel off-gas in the burner 3 is smaller than the amount of heat required for steam reforming in the catalyst layer 6, the fuel pump 28 is driven and the burner fuel is supplied to the burner 3. Burned. In this case, the signal of the burner fuel flow rate detected by the fuel flow rate detector 29 is
The rotation speed of the burner fuel pump 28 is controlled by the temperature controller 35 based on the difference between the set temperature of the catalyst layer 6 and the temperature detected by the temperature detector 9. Controls the burner fuel flow to be supplied.

【0015】一方、前記制御されたバーナ燃料流量を燃
料流量検出器29で検出したバーナ燃料流量の信号は燃
焼空気量演算器33に入力され、この演算器にて所定の
空燃比で燃焼するのに必要な燃焼空気流量が演算され
る。そして、この燃焼空気流量と前記負荷指令による燃
料オフガスを所定の空燃比で燃焼するに必要な燃焼空気
流量とを合計した合計燃焼空気量が演算され、この合計
燃焼空気流量に対応するブロワ25の回転数が演算さ
れ、この回転数の信号は燃料・燃焼空気演算制御器36
に入力される。この際、温度調節器35により触媒層6
の設定温度と温度検出器9での検出温度との偏差からブ
ロワ25を前記回転数をベースにして回転数制御するこ
とにより、ブロワ25が送気する燃焼空気流量を制御す
る。
On the other hand, the burner fuel flow rate signal obtained by detecting the controlled burner fuel flow rate by the fuel flow rate detector 29 is input to a combustion air amount calculator 33, which burns at a predetermined air-fuel ratio. Is calculated. Then, a total combustion air amount is calculated by adding the combustion air flow amount and the combustion air flow amount required to burn the fuel off-gas according to the load command at a predetermined air-fuel ratio, and the blower 25 corresponding to the total combustion air flow amount is calculated. The rotation speed is calculated, and the signal of the rotation speed is supplied to a fuel / combustion air calculation controller 36.
Is input to At this time, the catalyst layer 6 is controlled by the temperature controller 35.
By controlling the number of revolutions of the blower 25 based on the number of revolutions based on the difference between the set temperature and the temperature detected by the temperature detector 9, the flow rate of combustion air supplied by the blower 25 is controlled.

【0016】したがって、燃料ポンプ28とブロワ25
との回転数制御により、燃料オフガスに流量制御された
バーナ燃料を付加した燃料を、流量制御された燃焼空気
流量により燃焼させた燃焼熱により触媒層6の温度を制
御する。一方、バーナ3での燃料オフガスの燃焼による
燃焼熱が触媒層6にて水蒸気改質するのに必要な熱量よ
り多い場合には、燃料ポンプ28が停止される。この
際、バーナ燃料流量検出器29での検出バーナ燃料流量
が零となり、燃料・燃焼空気演算制御器36には検出バ
ーナ燃料流量の信号が入力されてない。この場合、負荷
指令による負荷に対応する燃料オフガスを燃焼空気量演
算器33にて所定の空燃比で燃焼するに必要な燃焼空気
流量が演算され、この流量に対応するブロワ25の回転
数が演算される。そしてこの回転数の信号は燃料・燃焼
空気演算制御器36に入力され、温度調節器35により
触媒層6の設定温度と温度検出器9の検出温度との偏差
からブロワ25を前記回転数以上の回転数で回転数制御
することにより、ブロワ25の送気する燃焼空気流量を
制御する。
Therefore, the fuel pump 28 and the blower 25
By controlling the number of revolutions, the temperature of the catalyst layer 6 is controlled by the combustion heat obtained by burning the fuel obtained by adding the burner fuel whose flow rate has been controlled to the fuel off-gas at the flow rate of the combustion air whose flow rate has been controlled. On the other hand, when the combustion heat generated by the combustion of the fuel off-gas in the burner 3 is larger than the amount of heat required for steam reforming in the catalyst layer 6, the fuel pump 28 is stopped. At this time, the detected burner fuel flow rate at the burner fuel flow rate detector 29 becomes zero, and no signal of the detected burner fuel flow rate is input to the fuel / combustion air calculation controller 36. In this case, the combustion air flow rate required to burn the fuel off-gas corresponding to the load according to the load command at the predetermined air-fuel ratio is calculated by the combustion air flow rate calculator 33, and the rotation speed of the blower 25 corresponding to this flow rate is calculated. Is done. The signal of the rotation speed is input to the fuel / combustion air arithmetic controller 36, and the temperature controller 35 controls the blower 25 based on the difference between the set temperature of the catalyst layer 6 and the temperature detected by the temperature detector 9 to the rotation speed equal to or higher than the rotation speed. By controlling the number of revolutions by the number of revolutions, the flow rate of combustion air sent from the blower 25 is controlled.

【0017】したがって、ブロワ25の回転数を制御し
て所定の空燃比以上の過剰な燃焼空気を送気し、触媒層
6に与える燃料オフガスの燃焼熱による熱量を小さくし
て触媒層6の温度を制御する。なお、触媒層6の温度制
御がバーナ燃料による制御から過剰燃焼空気による制御
にわたるときには、燃料流量検出器29の検出バーナ燃
料流量の零の信号による燃料・燃焼空気演算制御器36
内の切替操作により、燃料ポンプ28は停止してブロワ
25の回転数制御に移行し、一方、過剰燃焼空気による
制御からバーナ燃料による制御にわたるときには、流量
検出器26での検出燃焼空気流量が負荷指令の負荷に対
応する燃料オフガスを所定の空燃比で燃焼するに必要な
燃焼空気量になったとき、燃料・燃焼空気演算制御器3
6内の切替操作により、ブロワ25の回転数制御から燃
料ポンプ28を駆動して燃料ポンプ28の回転数制御に
移行する。
Therefore, by controlling the number of revolutions of the blower 25, excessive combustion air having a predetermined air-fuel ratio or more is supplied to reduce the amount of heat generated by the combustion heat of the fuel off-gas given to the catalyst layer 6, thereby reducing the temperature of the catalyst layer 6. Control. When the temperature control of the catalyst layer 6 ranges from control using burner fuel to control using excess combustion air, the fuel / combustion air calculation controller 36 based on a signal indicating a zero burner fuel flow rate detected by the fuel flow rate detector 29 is used.
, The fuel pump 28 stops and shifts to the rotation speed control of the blower 25. On the other hand, when the control from the excess combustion air to the control by the burner fuel is performed, the flow rate of the combustion air detected by the flow rate detector 26 is reduced. When the amount of combustion air required to burn the fuel off-gas corresponding to the command load at a predetermined air-fuel ratio has been reached, the fuel / combustion air calculation controller 3
By the switching operation in 6, the fuel pump 28 is driven from the rotation speed control of the blower 25 to shift to the rotation speed control of the fuel pump 28.

【0018】なお、前記従来例では触媒層6の入口部の
温度検出器9での検出温度と設定温度との偏差から触媒
層6の温度を制御しているが、触媒層6の出口部の温度
検出器10での検出温度により前述のように触媒層6の
温度を制御することも知られている。
In the prior art, the temperature of the catalyst layer 6 is controlled based on the difference between the temperature detected by the temperature detector 9 at the inlet of the catalyst layer 6 and the set temperature. It is also known that the temperature of the catalyst layer 6 is controlled by the temperature detected by the temperature detector 10 as described above.

【0019】[0019]

【発明が解決しようとする課題】上記のように改質管8
の触媒層6の改質原料の入口部を温度制御点としてこの
入口部に設けた温度検出器9で検出して触媒層6の温度
を水蒸気改質反応に適切な温度に制御するのは、水蒸気
改質反応が吸熱反応であるため、この温度制御点の温度
は改質負荷量に対応した変化が顕著でなく、また触媒層
の改質反応部が移動するために最適な位置ではないとい
う問題がある。
As described above, the reforming tube 8
The reason for controlling the temperature of the catalyst layer 6 to a temperature suitable for the steam reforming reaction by detecting the temperature of the catalyst layer 6 at the inlet of the reforming raw material of the catalyst layer 6 with the temperature detector 9 provided at this inlet is as follows. Since the steam reforming reaction is an endothermic reaction, the temperature at this temperature control point does not significantly change according to the reforming load, and is not the optimal position for the reforming reaction part of the catalyst layer to move. There's a problem.

【0020】一方、触媒層6の改質ガスの出口部を温度
制御点としてこの出口部に設けた温度検出器10で検出
して触媒層6の温度を水蒸気改質するのに適切な温度に
制御するのは、前述のように触媒層6の入口から出口へ
と燃焼による燃焼ガスを流す場合、温度制御すべき温度
制御点は燃焼源のバーナ3から遠いため、制御性が悪い
という問題がある。
On the other hand, the outlet of the reformed gas of the catalyst layer 6 is used as a temperature control point and detected by a temperature detector 10 provided at the outlet to adjust the temperature of the catalyst layer 6 to a temperature suitable for steam reforming. The reason for this is that when the combustion gas is burned from the inlet to the outlet of the catalyst layer 6 as described above, the temperature control point to be temperature-controlled is far from the burner 3 of the combustion source, so that the controllability is poor. is there.

【0021】本発明の目的は、上記のような温度制御に
問題点のある触媒層の温度を直接温度制御点とせず、か
つ負荷変動に対しても触媒層の温度を水蒸気改質反応に
適正な温度に安定して制御できる燃料改質器の温度制御
装置を提供することである。
An object of the present invention is not to make the temperature of the catalyst layer having a problem in the temperature control as described above directly a temperature control point, and to adjust the temperature of the catalyst layer to a steam reforming reaction even with a load fluctuation. It is an object of the present invention to provide a temperature control device for a fuel reformer that can stably control the temperature at a desired level.

【0022】[0022]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明によれば原燃料を過熱管を経て改質触媒が
充填された触媒層を有し、伝熱フィンを備える改質管を
通流させ、過熱管及び改質管をバーナでの燃焼による燃
焼熱により加熱して水素リッチなガスに水蒸気改質する
改質管内の触媒層の温度を制御する燃料改質器の温度制
御装置において、触媒層入口の改質原料の温度を検出す
る改質原料温度検出器と、触媒層の改質原料の流れ方向
の複数箇所に配した触媒層の温度を検出する複数の触媒
層温度検出器と、これらの触媒層温度検出器での検出温
度を平均して触媒平均温度を算出する平均温度演算器
と、この温度演算器から出力する触媒平均温度と触媒平
均基準温度とのずれから修正する修正温度を演算する修
正温度演算器と、負荷指令の負荷に対応して設定した設
定温度を修正温度演算器からの修正温度で補正した補正
設定温度を設定する温度設定器とを備え、負荷指令によ
る温度設定器からの補正設定温度と改質原料温度検出器
での検出改質原料温度との偏差から触媒層の温度を制御
するものとする。
According to the present invention, there is provided a reformer having a catalyst layer filled with a reforming catalyst through a superheater tube and having heat transfer fins. The temperature of the fuel reformer, which controls the temperature of the catalyst layer in the reforming tube that steam-reforms the hydrogen-rich gas by heating the superheated tube and the reforming tube by the combustion heat from the combustion in the burner In the control device, a reforming material temperature detector for detecting the temperature of the reforming material at the inlet of the catalyst layer, and a plurality of catalyst layers for detecting the temperatures of the catalyst layers arranged at a plurality of positions in the flow direction of the reforming material in the catalyst layer A temperature detector, an average temperature calculator for averaging the temperatures detected by these catalyst layer temperature detectors to calculate a catalyst average temperature, and a difference between the catalyst average temperature and the catalyst average reference temperature output from the temperature calculator. A correction temperature calculator that calculates the correction temperature to be corrected from A temperature setter that sets a correction set temperature obtained by correcting the set temperature set in accordance with the load of the command with the corrected temperature from the corrected temperature calculator. The temperature of the catalyst layer is controlled from the deviation from the temperature of the reforming raw material detected by the raw material temperature detector.

【0023】[0023]

【作用】改質原料が過熱管を流れた後、改質触媒が充填
された触媒層を有す改質管を通流し、過熱管及び改質管
をバーナでの燃焼による燃焼熱により加熱して原燃料を
水素リッチなガスに水蒸気改質する反応は、例えば、メ
タノールにおいて下記の吸熱反応である素反応(1)と
発熱反応である素反応(2)とからなっている。
After the reforming raw material has flowed through the superheater, it flows through the reformer having a catalyst layer filled with the reforming catalyst, and the superheater and the reformer are heated by the combustion heat generated by the combustion in the burner. The reaction for steam reforming the raw fuel into a hydrogen-rich gas comprises, for example, the following endothermic reaction (1) and an exothermic reaction (2) in methanol.

【0024】 CH3 OH → CO+2H2 −21.66kcal/mol (1) CO+H2 O → CO2 +H2 +9.84kcal/mol (2) この反応式から分るように改質全反応は吸熱反応であ
り、外部から熱を供給しないと、この反応は継続できな
い。この際の供給熱は改質原料が持ち込む熱量と触媒層
を内蔵する改質管の外壁面に取付けられた伝熱フィンか
ら供給されるものとの和である。
CH 3 OH → CO + 2H 2 -21.66 kcal / mol (1) CO + H 2 O → CO 2 + H 2 +9.84 kcal / mol (2) As can be seen from this reaction equation, the entire reforming reaction is an endothermic reaction. Yes, this reaction cannot be continued without external heat supply. The supplied heat at this time is the sum of the amount of heat brought in by the reforming raw material and that supplied from the heat transfer fins mounted on the outer wall surface of the reforming tube containing the catalyst layer.

【0025】ところで、燃料改質器の構造から改質原料
が持ち込む熱とバーナでの燃焼による燃焼熱により伝熱
フィンを介して改質管に供給される熱は、常に同位相で
ある。すなわち、加熱時は触媒を共に加熱し、冷却時は
共に冷却する。上記のようにして水蒸気改質反応を行な
ったときの触媒層の温度は、触媒層の入口から出口に向
って一般に図3に示す温度の分布を有している。
By the way, the heat supplied to the reforming tube via the heat transfer fins by the heat brought in by the reforming raw material from the structure of the fuel reformer and the combustion heat generated by combustion in the burner are always in phase. That is, the catalyst is heated together during heating, and is cooled together during cooling. The temperature of the catalyst layer when the steam reforming reaction is performed as described above generally has a temperature distribution shown in FIG. 3 from the inlet to the outlet of the catalyst layer.

【0026】次に、改質管内の触媒層への熱供給のメカ
ニズムについて図4を用いて説明する。図4において改
質原料は過熱管を流れてバーナでの燃焼による燃焼熱に
より過熱された後、改質管8を通流し、燃焼熱により加
熱された原燃料は水素リッチなガスに水蒸気改質され
る。ここで、改質に必要な熱量Qrfは改質原料が持込む
熱量Qs と、改質管からの熱量Qfin とで供給される。
この供給熱量Qs とQfin とはバーナでの燃焼ガスの温
度及びその流量で制御され、この燃焼ガスの温度はバー
ナで燃焼させるバーナ燃料の供給量や燃焼空気量で制御
する。
Next, the mechanism of heat supply to the catalyst layer in the reforming tube will be described with reference to FIG. In FIG. 4, the reforming raw material flows through the superheating tube and is superheated by the combustion heat generated by the combustion in the burner, and then flows through the reforming tube 8, and the raw fuel heated by the combustion heat is steam reformed into a hydrogen-rich gas. Is done. Here, the amount of heat Q rf required for reforming is supplied by the amount of heat Q s brought by the reforming raw material and the amount of heat Q fin from the reforming tube.
The supplied heat amounts Q s and Q fin are controlled by the temperature and the flow rate of the combustion gas in the burner, and the temperature of the combustion gas is controlled by the supply amount of the burner fuel burned by the burner and the combustion air amount.

【0027】ここで、Qs ,Qfin は図4に示す記号及
びその他の記号を用いて下記の式で表される。 fin =K・S(Tc2−Trf) (4) ここで、 Tc1: 燃焼排ガス温度 Tc2: 燃焼ガス温度 Ts : 触媒層入口改質原料温度 Tin: 過熱管入口改質原料温度 Trf: 触媒平均温度 F: 改質原料流量 C: 改質原料比熱 また、改質に必要な熱量Qrfは下記の式で表される。
Here, Q s and Q fin are represented by the following equations using the symbols shown in FIG. 4 and other symbols. Q fin = K · S (T c2 −T rf ) (4) where T c1 : combustion exhaust gas temperature T c2 : combustion gas temperature T s : catalyst layer inlet reforming material temperature T in : superheater tube inlet reforming material Temperature T rf : average catalyst temperature F: reforming material flow rate C: reforming material specific heat The amount of heat Q rf required for reforming is represented by the following equation.

【0028】 Qrf=Qs +Qfin −Qout (5) ここで、 Qrf: 改質に必要な熱量 Qs : 改質原料が持込む熱量 Qfin : 伝熱管の伝熱フィンから持込む熱量 Qout : 改質ガスが持出す熱量 ここで、 Qrf>Qs +Qfin −Qout なら熱量過剰 Qrf=Qs +Qfin −Qout ならバランス Qrf<Qs +Qfin −Qout なら熱量不足 していることを示す。Q rf = Q s + Q fin −Q out (5) where, Q rf : heat quantity required for reforming Q s : heat quantity brought in by the reforming raw material Q fin : heat quantity brought from the heat transfer fin of the heat transfer tube the amount of heat Q out: here the amount of heat the reformed gas is bring up, if Q rf> Q s + Q fin -Q out if the amount of heat excess Q rf = Q s + Q fin -Q out if the balance Q rf <Q s + Q fin -Q out Indicates that the amount of heat is insufficient.

【0029】この燃料改質器の構成では、バーナ燃料の
供給量を増加させると、熱量Qs 及び熱量Qfin はとも
に増加する。一方、冷却時はバーナ燃料の供給量を絞
り、または供給量を零にして燃焼空気量を増加させる
と、熱量Qs 及びQfin はともに減少する。以上のこと
は、過熱管の改質原料出口、すなわち触媒層入口の入口
マニホールド及び改質管の伝熱フィンは燃焼ガスの同じ
流路にあるからである。したがって、触媒層の温度は、
熱量Qs 又は熱量Qfin のどちらかを制御すればよいこ
とになる。
[0029] In the structure of the fuel reformer, increasing the supply amount of the burner fuel, heat Q s and the amount of heat Q fin are both increased. On the other hand, when cooling stop the supply amount of the burner fuel, or if the supply amount is zero increase the quantity of combustion air, heat Q s and Q fin decreases both. This is because the reforming material outlet of the superheater, that is, the inlet manifold of the catalyst layer inlet and the heat transfer fins of the reformer are in the same flow path of the combustion gas. Therefore, the temperature of the catalyst layer is
It is sufficient to control either the quantity of heat Q s or heat Q fin.

【0030】一方、改質に必要な改質熱量Qrfは改質原
料流量に比例する。また、熱量Qsもこの改質原燃料流
量によって変わる。改質原料流量は負荷指令により直接
制御されているので、改質に必要な熱量は負荷指令の負
荷に対応する熱量Qs 値、つまり触媒層入口の改質原料
温度Ts を制御することでQs 値を制御できる。さら
に、Qs 値とQfin 値は燃料改質器の伝熱構造で大凡そ
の比率は決まるので、負荷指令の負荷に合った必要な改
質熱量Qrfはこの触媒層入口改質原料温度Ts で制御で
きる。
On the other hand, the reforming heat quantity Q rf required for reforming is proportional to the reforming raw material flow rate. In addition, the amount of heat Q s also vary by this modification TadashiHara fuel flow. Since reforming material flow is controlled directly by the load command, the amount of heat Q s value amount of heat required for reforming is that corresponding to the load of the load command, i.e. by controlling the reforming material temperature T s of the catalyst layer inlet You can control the Q s value. Further, the ratio of the Q s value and the Q fin value is roughly determined by the heat transfer structure of the fuel reformer. Therefore, the required reforming heat quantity Q rf that matches the load of the load command is determined by the catalyst layer inlet reforming material temperature T Can be controlled by s .

【0031】したがって、制御すべき触媒層入口の改質
原料温度Ts と負荷率との関係は図5で示す制御曲線A
のように定められ、制御曲線Aで示す温度は負荷に対応
する触媒層の温度制御する設定温度となる。さらに、負
荷急変等があっても、触媒層の温度を適正範囲に制御す
るために触媒層の改質原料が流れる方向の複数点の温度
を温度検出器で検出し、この検出温度の平均温度を算出
し、これにより図5に示した負荷率に対応する設定温度
を補正する。
Therefore, the relationship between the reforming raw material temperature T s at the inlet of the catalyst layer to be controlled and the load factor is represented by a control curve A shown in FIG.
The temperature indicated by the control curve A is a set temperature for controlling the temperature of the catalyst layer corresponding to the load. Furthermore, even if there is a sudden change in load, the temperature of the catalyst layer is detected at a plurality of points in the direction in which the reforming material flows in order to control the temperature of the catalyst layer within an appropriate range. Is calculated, thereby correcting the set temperature corresponding to the load factor shown in FIG.

【0032】この補正は、前記平均温度の図5に示す基
準点となる水蒸気改質反応に適正な触媒層の触媒平均基
準温度To からのずれに対して行なわれ、図5に示した
制御曲線Aの温度に下記の修正温度を加算して温度制御
する際の補正設定温度とする。 修正温度▽T=−K(Trf−To ) (6) ここで、 Trf: 触媒実測平均温度 To : 触媒平均基準温度 K: 制御素数
[0032] This correction is made to shift from the catalyst the average reference temperature T o of the proper catalyst layer for the steam reforming reaction which is a reference point shown in FIG. 5 of the average temperature, the control shown in FIG. 5 The correction temperature described below is added to the temperature of the curve A to obtain a correction set temperature for temperature control. Corrected temperature ΔT = −K (T rf −T o ) (6) where T rf : average measured catalyst temperature T o : average catalyst reference temperature K: control prime number

【0033】[0033]

【実施例】以下図面に基づいて本発明の実施例について
説明する。図1は本発明の実施例による燃料改質器の温
度制御装置を備えた燃料電池発電装置の制御系統図であ
る。なお、図1ないし図4において図6の従来例と同一
部品には同じ符号を付し、その説明を省略する。図1に
おいて、燃料改質器1は図2に示す構造を有し、容器
2,バーナ3,隔壁筒4,過熱管5、及び入口マニホー
ルド7を備えて触媒層6を有する改質管8を備えてい
る。なお、改質管8の外壁面には複数列の伝熱フィン8
aが取付けられている。また、燃料改質器1には前述の
ように原燃料供給系17,燃料オフガス供給系21,バ
ーナ燃料供給系27,燃焼空気供給系24,燃焼排ガス
排出系30が接続して設けられている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a control system diagram of a fuel cell power generator including a fuel reformer temperature controller according to an embodiment of the present invention. 1 to 4, the same components as those of the conventional example of FIG. 6 are denoted by the same reference numerals, and the description thereof will be omitted. In FIG. 1, the fuel reformer 1 has a structure shown in FIG. 2, and includes a container 2, a burner 3, a partition tube 4, a superheating tube 5, and a reforming tube 8 having a catalyst layer 6 provided with an inlet manifold 7. Have. A plurality of rows of heat transfer fins 8 are provided on the outer wall surface of the reforming tube 8.
a is attached. As described above, the fuel reformer 1 is provided with the raw fuel supply system 17, the fuel off-gas supply system 21, the burner fuel supply system 27, the combustion air supply system 24, and the combustion exhaust gas discharge system 30 connected thereto. .

【0034】図1,図2において従来例と異なるのは次
記の通りである。改質管8の入口マニホールド7に過熱
管5から触媒層6に流入する改質原料の温度を検出する
d点,触媒層6の改質原料の入口部,中央部,出口部で
の触媒層の温度を検出するa,b,c点にそれぞれ温度
検出器40,41,42,43を設ける。平均温度演算
器45は触媒層6の改質原料の入口部,中央部,出口部
に設けられた温度検出器41,42,43での検出温度
の信号が入力され、これらの検出温度を平均し、触媒平
均温度を演算する。
The difference from the conventional example in FIGS. 1 and 2 is as follows. Point d for detecting the temperature of the reforming material flowing into the catalyst layer 6 from the superheater tube 5 at the inlet manifold 7 of the reforming tube 8, and the catalyst layer at the inlet, center, and outlet of the reforming material in the catalyst layer 6. Temperature detectors 40, 41, 42, and 43 are provided at points a, b, and c, respectively, at which the temperature is detected. The average temperature calculator 45 receives signals of the temperatures detected by the temperature detectors 41, 42, and 43 provided at the inlet, the center, and the outlet of the reforming material in the catalyst layer 6, and averages the detected temperatures. Then, the average catalyst temperature is calculated.

【0035】修正温度演算器46は平均温度演算器45
から出力される触媒平均温度の信号が入力され、前記
(6)式による修正温度▽Tを演算する。温度設定器4
7は、図3に示した負荷と設定温度との制御曲線Aにお
ける負荷指令に基づく負荷に対応する設定温度に修正温
度演算器46からの修正温度▽Tを加算した補正設定温
度を演算する。
The corrected temperature calculator 46 is an average temperature calculator 45.
The signal of the average catalyst temperature output from the above is input, and the corrected temperature ΔT is calculated by the equation (6). Temperature setting device 4
7 calculates the corrected set temperature obtained by adding the corrected temperature ΔT from the corrected temperature calculator 46 to the set temperature corresponding to the load based on the load command in the control curve A between the load and the set temperature shown in FIG.

【0036】このような構成により、燃料電池発電装置
が運転されているとき、負荷指令による負荷に対応した
流量の原燃料からなる改質原料が燃料改質器1の過熱管
5を流れた後、入口マニホールド7に流入して改質管8
内の触媒層6を通流し、前述のようにバーナ3での燃焼
による燃焼熱により過熱管5,改質管8は加熱されて原
燃料は水素リッチなガスに水蒸気改質されて燃料電池1
2に送出されるが、この際の触媒層6の水蒸気改質反応
に適切な温度に対する温度制御は下記のようにして行な
われる。
With such a configuration, when the fuel cell power generator is operating, after the reforming raw material composed of the raw fuel at a flow rate corresponding to the load according to the load command flows through the superheater pipe 5 of the fuel reformer 1, Flows into the inlet manifold 7 and the reforming pipe 8
The superheated pipe 5 and the reforming pipe 8 are heated by the combustion heat generated by the combustion in the burner 3 as described above, and the raw fuel is steam-reformed into a hydrogen-rich gas, thereby the fuel cell 1
The temperature is controlled to an appropriate temperature for the steam reforming reaction of the catalyst layer 6 at this time.

【0037】温度検出器41,42,43での触媒層6
の検出温度の信号は平均温度演算器45に入力され、こ
の演算器にて温度検出器41,42,43での検出温度
を平均して触媒平均温度が算出される。この触媒平均温
度の信号は修正温度演算器46に入力され、前記(6)
式による修正温度▽Tが算出される。修正温度▽Tの信
号は温度設定器47に入力され、この設定器にて負荷指
令に基づく負荷に対応する図3に示す制御曲線Aによる
設定温度に修正温度▽Tを加算して補正した補正設定温
度を出力する。この補正設定温度の信号と改質管8の入
口マニホールド7に流入する改質原料の温度を検出する
温度検出器40での検出温度の信号が温度調節器48に
入力され、この調節器からの偏差から燃料・燃焼空気演
算制御器36を介して触媒層の温度を制御するのは従来
技術の場合と同じであるので、説明を省略する。
The catalyst layer 6 in the temperature detectors 41, 42, 43
Is input to an average temperature calculator 45, which averages the temperatures detected by the temperature detectors 41, 42, and 43 to calculate an average catalyst temperature. The signal of the catalyst average temperature is input to the correction temperature calculator 46, and the above (6)
The corrected temperature ΔT is calculated by the equation. A signal of the corrected temperature ΔT is input to the temperature setting device 47, and the correction device corrects the temperature by adding the corrected temperature ΔT to the set temperature according to the control curve A shown in FIG. 3 corresponding to the load based on the load command. Outputs the set temperature. The signal of the correction set temperature and the signal of the temperature detected by the temperature detector 40 for detecting the temperature of the reforming material flowing into the inlet manifold 7 of the reforming pipe 8 are input to the temperature controller 48, Controlling the temperature of the catalyst layer from the deviation via the fuel / combustion air calculation controller 36 is the same as in the case of the prior art, and thus the description is omitted.

【0038】[0038]

【発明の効果】以上の説明から明らかなように、本発明
によれば前述の構成により負荷指令による負荷に基づ
き、触媒層に流入する改質原料の温度と触媒層の複数箇
所で検出した温度の触媒平均温度により補正した負荷に
対応する補正設定温度との偏差から改質管の触媒層の温
度を制御するので、負荷変動に対しても水蒸気改質反応
に適正な温度に安定して制御することができる。
As is apparent from the above description, according to the present invention, the temperature of the reforming material flowing into the catalyst layer and the temperature detected at a plurality of points in the catalyst layer based on the load according to the load command according to the present invention. The temperature of the catalyst layer in the reforming tube is controlled based on the deviation from the correction set temperature corresponding to the load corrected by the average temperature of the catalyst. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による燃料改質器の温度制御装
置を備えた燃料電池発電装置の制御系統図
FIG. 1 is a control system diagram of a fuel cell power generator including a fuel reformer temperature controller according to an embodiment of the present invention.

【図2】図1の燃料改質器の構造を示す断面図FIG. 2 is a sectional view showing the structure of the fuel reformer of FIG. 1;

【図3】図1の燃料改質器の改質管内の触媒層における
水蒸気改質時の温度分布を示す図
FIG. 3 is a diagram showing a temperature distribution at the time of steam reforming in a catalyst layer in a reforming pipe of the fuel reformer of FIG. 1;

【図4】図1の燃料改質器の改質管内の触媒層に熱が出
入する状態を示す熱出入図
FIG. 4 is a heat flow diagram showing a state in which heat flows into and out of a catalyst layer in a reforming tube of the fuel reformer of FIG. 1;

【図5】図1の燃料改質器の改質管内の触媒層の温度制
御を行なうときの負荷に対応する設定温度を示す設定温
度図
FIG. 5 is a set temperature diagram showing a set temperature corresponding to a load when controlling the temperature of the catalyst layer in the reforming pipe of the fuel reformer of FIG. 1;

【図6】従来の燃料改質器の温度制御装置を備えた燃料
電池発電装置の制御系統図
FIG. 6 is a control system diagram of a conventional fuel cell power generator equipped with a fuel reformer temperature controller.

【符号の説明】[Explanation of symbols]

1 燃料改質器 3 バーナ 5 過熱管 8 改質管 12 燃料電池 25 ブロワ 28 燃料ポンプ 31 原燃料量演算器 32 流量調節器 35 温度調節器 36 燃料・燃焼空気演算制御器 40 温度検出器 41 温度検出器 42 温度検出器 43 温度検出器 45 平均温度演算器 46 修正温度演算器 47 温度設定器 48 温度調節器 DESCRIPTION OF SYMBOLS 1 Fuel reformer 3 Burner 5 Superheater tube 8 Reformer tube 12 Fuel cell 25 Blower 28 Fuel pump 31 Raw fuel amount calculator 32 Flow rate controller 35 Temperature controller 36 Fuel / combustion air calculation controller 40 Temperature detector 41 Temperature Detector 42 Temperature detector 43 Temperature detector 45 Average temperature calculator 46 Corrected temperature calculator 47 Temperature setter 48 Temperature controller

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 8/04 H01M 8/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 8/04 H01M 8/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原燃料を過熱管を経て改質触媒が充填され
た触媒層を有し、伝熱フィンを備える改質管を通流さ
せ、過熱管及び改質管をバーナでの燃焼による燃焼熱に
より水素リッチなガスに水蒸気改質する燃料改質器の改
質管内の触媒層の温度を制御する燃料改質器の温度制御
装置において、触媒層に流入する改質原料の温度を検出
する改質原料温度検出器と、触媒層の改質原料の流れ方
向に複数箇所に配した触媒層の温度を検出する複数の触
媒層温度検出器と、これらの触媒層温度検出器での検出
温度を平均して触媒平均温度を算出する平均温度演算器
と、この平均温度演算器から出力する触媒平均温度と触
媒平均基準温度とのずれから修正する修正温度を演算す
る修正温度演算器と、負荷指令による負荷に対応する設
定温度を修正温度演算器からの修正温度で補正した補正
設定温度を設定する温度設定器とを備え、温度設定器か
らの補正設定温度と改質原料温度検出器での検出改質原
料温度との偏差から触媒層の温度を制御することを特徴
とする燃料改質器の温度制御装置。
The raw fuel is passed through a reforming tube having a catalyst layer filled with a reforming catalyst through a superheater tube and provided with heat transfer fins, and the superheater tube and the reformer tube are burned by a burner. Detects the temperature of the raw material flowing into the catalyst layer in the temperature control device of the fuel reformer that controls the temperature of the catalyst layer in the reforming tube of the fuel reformer that reforms steam into hydrogen-rich gas by combustion heat Reforming material temperature detectors, a plurality of catalyst layer temperature detectors for detecting the temperature of catalyst layers disposed at a plurality of locations in the direction of flow of the reforming material in the catalyst layer, and detection by these catalyst layer temperature detectors An average temperature calculator for averaging the temperature to calculate a catalyst average temperature, a correction temperature calculator for calculating a correction temperature for correcting from a difference between the catalyst average temperature and the catalyst average reference temperature output from the average temperature calculator, Correct the set temperature corresponding to the load by the load command. A temperature setter for setting a correction set temperature corrected by the correction temperature from the heater, and a catalyst layer of the catalyst layer is obtained from a deviation between the correction set temperature from the temperature setter and the reforming raw material temperature detected by the reforming raw material temperature detector. A temperature control device for a fuel reformer, which controls a temperature.
JP07852795A 1995-04-04 1995-04-04 Temperature control device for fuel reformer Expired - Fee Related JP3284820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07852795A JP3284820B2 (en) 1995-04-04 1995-04-04 Temperature control device for fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07852795A JP3284820B2 (en) 1995-04-04 1995-04-04 Temperature control device for fuel reformer

Publications (2)

Publication Number Publication Date
JPH08273685A JPH08273685A (en) 1996-10-18
JP3284820B2 true JP3284820B2 (en) 2002-05-20

Family

ID=13664400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07852795A Expired - Fee Related JP3284820B2 (en) 1995-04-04 1995-04-04 Temperature control device for fuel reformer

Country Status (1)

Country Link
JP (1) JP3284820B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2639873A3 (en) * 2012-03-12 2015-08-12 Aisin Seiki Kabushiki Kaisha Fuel cell system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147659B2 (en) * 1998-12-24 2008-09-10 トヨタ自動車株式会社 Control device for reformer
JP3700512B2 (en) 2000-01-25 2005-09-28 日産自動車株式会社 Fuel cell system
JP2001229941A (en) 2000-02-16 2001-08-24 Nissan Motor Co Ltd Fuel cell system
JP4753506B2 (en) * 2001-09-28 2011-08-24 大阪瓦斯株式会社 Hydrogen-containing gas generator and method for operating the same
JP4988281B2 (en) * 2006-09-22 2012-08-01 パナソニック株式会社 Fuel cell system
JP5363717B2 (en) * 2007-10-10 2013-12-11 Jx日鉱日石エネルギー株式会社 Hydrogen production system
JP5173531B2 (en) * 2008-03-31 2013-04-03 独立行政法人石油天然ガス・金属鉱物資源機構 Method of operating a syngas reformer in a GTL plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2639873A3 (en) * 2012-03-12 2015-08-12 Aisin Seiki Kabushiki Kaisha Fuel cell system

Also Published As

Publication number Publication date
JPH08273685A (en) 1996-10-18

Similar Documents

Publication Publication Date Title
KR100623572B1 (en) Fuel reforming system and warmup method thereof
EP0508991A1 (en) Fuel cell power plant fuel control.
JP3480452B2 (en) Fuel cell system and energy supply system
JP4147659B2 (en) Control device for reformer
EP0973219B1 (en) Control apparatus for reformer and method of controlling reformer using control apparatus
JP3284820B2 (en) Temperature control device for fuel reformer
JPH11106204A (en) Hydrogen production apparatus and hydrogen production process
JP2005536850A (en) Fuel control for steam generation in fuel processor in low temperature fuel cell power plant
JP2002042840A (en) Fuel cell type cogeneration system
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
JP7323065B2 (en) FUEL CELL SYSTEM AND METHOD OF CONTROLLING FUEL CELL SYSTEM
JP4599634B2 (en) Fuel cell system
JPH03167759A (en) Catalyst temperature controller of fuel reformer for use in fuel cell
JPH06349510A (en) Temperature control device for fuel reformer for fuel cell
JPH08255621A (en) Power generating device for fuel cell
JP4791698B2 (en) Reformed fuel cell system and operation control method for reformed fuel cell system
JP2002343384A (en) Fuel cell system
JP6115310B2 (en) Fuel cell system
JP3733850B2 (en) Fuel reformer
JP2000178001A (en) Controller for reformer
JP2001338659A (en) Fuel cell system and temperature control method of reforming equipment
JPH07169474A (en) Methanol switching type fuel cell system
JPH08339815A (en) Fuel cell power generation device
JPH0556628B2 (en)
JPH07282828A (en) Fuel cell power generating system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees