JP3283568B2 - Optimal automatic operation control device and method for water supply device - Google Patents

Optimal automatic operation control device and method for water supply device

Info

Publication number
JP3283568B2
JP3283568B2 JP07532192A JP7532192A JP3283568B2 JP 3283568 B2 JP3283568 B2 JP 3283568B2 JP 07532192 A JP07532192 A JP 07532192A JP 7532192 A JP7532192 A JP 7532192A JP 3283568 B2 JP3283568 B2 JP 3283568B2
Authority
JP
Japan
Prior art keywords
water supply
water
capacity
automatic operation
operation control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07532192A
Other languages
Japanese (ja)
Other versions
JPH05241611A (en
Inventor
聡 井上
厚郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP07532192A priority Critical patent/JP3283568B2/en
Publication of JPH05241611A publication Critical patent/JPH05241611A/en
Application granted granted Critical
Publication of JP3283568B2 publication Critical patent/JP3283568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、送水装置の最適自動運
転制御方法に関し、需要給水量データのサンプリングと
ポンプ等送水設備の運転の最適化を考えていく上で得た
知識をもとに、現場の送水装置に簡単に取付けることが
でき、小型化が可能で、且つ送水装置の最適運用を可能
とする送水装置の最適自動運転制御装置及び方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optimal automatic operation control method for a water supply device, and it is based on knowledge obtained in considering optimization of operation of water supply equipment such as pumps and sampling of demand water supply amount data. The present invention relates to an optimal automatic operation control device and method of a water supply device that can be easily attached to a water supply device on site, can be reduced in size, and enable optimal operation of the water supply device.

【0002】[0002]

【従来技術】配水池や農業用水池等の貯水槽の運用とポ
ンプ等の送水設備運転の効率向上に関する問題は、重要
な問題としてさまざまな対応策が考えられている。現
在、貯水槽容量、ポンプ送水能力に余裕のある場合は水
位自動制御が行われ、諸条件がデリケートな貯水槽では
オペレータによる水位制御が行われている。水位自動制
御方式は構成が簡単で安価であるが、バッファとなる貯
水量を時系列的に有効利用した経済的な運用は不可能で
ある。
2. Description of the Related Art Various countermeasures have been considered as important issues concerning the operation of water storage tanks such as distribution reservoirs and agricultural water ponds and the improvement of the efficiency of water supply equipment operation such as pumps. At present, automatic control of the water level is performed when there is room in the storage tank capacity and pump water supply capacity, and the water level control by the operator is performed in the storage tank whose conditions are delicate. Although the automatic water level control method has a simple configuration and is inexpensive, it is impossible to economically operate the buffer water storage capacity in a time-series manner.

【0003】また、水位自動の設定水位を事前に折線で
プログラムすることにより制御を行うデマンド制御方式
もあるが、これも日中の需要量の増大に備えて朝方に満
水状態にする程度にしか用いられておらず、目的とする
最適性を十分に実現することができない。また、エキス
パートシステム等も考えられるが、配水池系の制御には
未だコスト的に不利である。
[0003] There is also a demand control system in which control is performed by programming the set water level of the automatic water level in advance using a broken line. However, this method is also used only in the morning to fill up the water in the morning in preparation for an increase in daytime demand. Since it is not used, the desired optimality cannot be sufficiently realized. An expert system is also conceivable, but it is still disadvantageous in terms of cost for controlling the reservoir system.

【0004】最適計画の策定に関する技術としては、例
えば特公昭62−28319号公報に開示された「ポン
プのスケジュール運転方法」や特公平3−9483号公
報に開示された「配水池群の貯水量制御装置」等がある
が、いずれも計画時と実際値の誤差の吸収について再計
算を行う等の大きな計算資源を必要とするか、実際値が
ずれた時点で即座に最適性を放棄して一般的な水位自動
制御等に逃げてしまっている。
[0004] Techniques for formulating an optimal plan include, for example, a "scheduled operation method of a pump" disclosed in Japanese Patent Publication No. 62-28319 and a "storage amount in a reservoir group" disclosed in Japanese Patent Publication No. 3-9483. There is a `` control device '', etc., either of which requires large computational resources such as recalculating the absorption of the error between the actual value and the time of planning, or abandoning optimality immediately when the actual value deviates Escape to general water level automatic control.

【0005】一般的な配水池等の貯水槽において、需要
水量は朝と夕方にピークがあり、深夜は極端に少ないと
いう様な、ある特定のパターンを持っている。平日と休
日、夏と冬等の条件の違いが配水量の日間、時間パター
ンに大きな影響を与えている。従って、ポンプ起動変更
回数、運転コスト、他系統の水量変化を考慮した総送水
量の平滑度の最適化を狙った運転計画もそれらの条件に
よってある程度分類できる。そういった貯水槽において
は、事前に計算された基本的に数種のパターンによって
運転を行えば、一定の最適性でもってポンプ運転を行う
ことが可能である。
[0005] In a general water reservoir such as a distribution reservoir, the demanded water amount has a certain pattern such that there is a peak in the morning and evening and an extremely small amount in the middle of the night. Differences in conditions, such as weekdays and holidays, and summer and winter, have a great influence on the daily and time patterns of water distribution. Therefore, an operation plan aiming at optimizing the smoothness of the total water supply amount in consideration of the number of changes in pump start-up, the operation cost, and the change in the water amount of another system can be classified to some extent according to those conditions. In such a water storage tank, it is possible to perform a pump operation with a certain degree of optimality by operating according to basically several patterns calculated in advance.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来最適運転方法も、日々の小さい変動や誤差を吸収し、
最適制御の維持を実現する際には下記のような問題点が
あった。
However, the above-mentioned conventional optimal driving method also absorbs small daily fluctuations and errors,
There are the following problems in realizing the maintenance of the optimal control.

【0007】(1)最適運転を実現する際に、誤差発生
時の再計算手法をそのまま自動化しようとすると規模が
大きくなり、コスト的に見合わなくなるポンプ等の送水
装置の制御対象が多い。
(1) In realizing the optimal operation, if the recalculation method at the time of occurrence of an error is to be automated as it is, the scale becomes large, and there are many control targets of a water supply device such as a pump which cannot be cost-effective.

【0008】(2)事前に計算された計画に対し、実績
とずれた時点で即座に最適性を放棄して一般的な水位自
動制御等に逃げてしまっては、目的関数の最適性を維持
することができない。
[0008] (2) If the plan calculated in advance deviates from the actual result at the time of deviation from the actual result and escapes to general water level automatic control, the optimality of the objective function is maintained. Can not do it.

【0009】(3)一方、リアルタイム計算機の最適計
画演算機能が付属した制御装置においても、上記問題は
計算資源の過大利用という問題を引き起す。
(3) On the other hand, even in a control device provided with an optimum plan calculation function of a real-time computer, the above problem causes a problem of excessive use of calculation resources.

【0010】本発明は上述の点に鑑みてなされたもの
で、簡便で低コストにて最適な送水ができる送水装置の
最適自動運転制御装置及び方法を提供することを目的と
する。
The present invention has been made in view of the above points, and has as its object to provide an optimum automatic operation control device and method for a water supply device that can easily perform optimum water supply at low cost.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、経験値、計画値又は重回帰式
等により、貯水槽からの給水量の計画、予測を行って送
水を行う送水装置希望の目的関数により作成された最
適運転計画を作成し、パターン分けされた数種の貯水槽
の計画貯水量の貯水量変化曲線により送水装置に運転指
令を発する最適運転指令装置を具備する送水装置の最適
自動運転制御装置において、送水装置には大容量の送水
手段が数台並列に配置されており、最適運転指令装置は
貯水量変化曲線を時間を遡る方向に延長して得られた制
御線により送水手段の起動変更を行う自動運転制御機能
を具備することを特徴とする。
[MEANS FOR SOLVING THE PROBLEMS]
The invention according to claim 1 is a water supply device that performs water supply by planning and predicting a water supply amount from a water storage tank based on an empirical value, a plan value, a multiple regression equation, or the like, and an optimal operation created by a desired objective function. Create a plan, and instruct the water transmission equipment to operate according to the storage capacity change curve of the planned storage capacity of several types of water storage tanks that have been divided into patterns.
The optimal operation of the water supply device with the optimal operation command device that issues the command <br/> In the automatic operation control device , the water supply device has a large capacity water supply
Several means are arranged in parallel, and the optimal operation command device is
The control obtained by extending the water storage volume change curve in the backward direction
Automatic operation control function to change the start of water supply means by the line
It is characterized by having .

【0012】また、請求項2に記載の発明は、請求項1
記載の送水装置の最適自動運転制御装置において、送水
装置には大容量の送水手段が数台に加えて小容量の送水
手段が複数台が並列若しくは流量変更手段が備えられて
おり、最適運転指令装置は貯水量変化曲線と一定の差を
もって平行に変位する制御曲線に基づいて小容量の送水
手段の起動変更若しくは流量変更を行う自動運転制御機
能と、貯水量変化曲線を時間を遡る方向に延長して得ら
れた制御線により前記大容量の送水手段の起動変更を行
う自動運転制御機能を具備することを特徴とする。
The invention described in claim 2 is the first invention.
In the optimal automatic operation control device for the water supply device described above, the water supply device is provided with several large-capacity water supply means and a plurality of small-capacity water supply means in parallel or with flow rate changing means. , The optimal operation command device is an automatic operation controller that changes the start of the small-volume water supply means or changes the flow rate based on a control curve that is displaced in parallel with a constant difference with the water storage amount change curve.
And the water volume change curve by extending the curve
The start of the large capacity water supply means is changed by the
It is characterized by having an automatic operation control function .

【0013】また、請求項3に記載の発明は、経験値、
計画値又は重回帰式等により、貯水槽からの給水量の計
画、予測を行って送水を行う送水装置に対し、希望の目
的関数により作成された最適運転計画を作成し、パター
ン分けされた数種の貯水槽の計画貯水量の貯水量変化曲
線により送水装置の運転を行う送水装置の自動運転制御
方法において、送水装置には大容量の送水手段が数台
列に配置されており、貯水量変化曲線を時間を遡る方向
に延長して得られた制御線により送水手段の起動変更を
行うことを特徴とする。
Further, the invention according to claim 3 provides an empirical value,
Measure the amount of water supply from the water storage tank using the planned value or multiple regression equation
For water supply equipment that performs water supply based on
The optimal operation plan created by the functional function,
Of the storage capacity of the planned storage capacity of several types of water storage tanks
Operation control of the water supply device that operates the water supply device by the wire
In the method, several large-capacity water supply means are arranged in parallel in the water supply device, and the water supply means is activated by a control line obtained by extending a water storage amount change curve in a backward direction. It is characterized by making a change.

【0014】また、請求項4に記載の発明は、請求項3
記載の送水装置の最適自動運転制御方法において、送水
装置には大容量の送水手段が数台に加えて小容量の送水
手段が数台が並列若しくは流量変更手段が備えられて
おり、貯水量変化曲線と一定の差をもって平行に変位す
る制御曲線に基づいて小容量の送水手段の起動変更を行
う自動運転制御方法と、貯水量変化曲線を時間を遡る方
向に延長して得られた制御線により大容量の送水手段の
起動変更若しくは流量変更を行う自動運転制御方法
併用することを特徴とする。
The invention described in claim 4 is the third invention.
In optimum automatic operation control method for a water supply apparatus according, the water supply device small capacity of the water supply means in addition to several cars water means a large capacity is provided in parallel or flow rate changing means few cars double <br/> And displaces in parallel with a certain difference from the water volume change curve.
Start-up of small capacity water supply means based on the control curve
Automatic operation control method and method of going backwards in the water volume change curve
Control line that is extended in the direction of
It is characterized in that it is used in combination with an automatic operation control method for changing the startup or the flow rate .

【0015】[0015]

【作用】これにより再度の計画修正計算を行わなくと
も、最適化を施したものに近い低コスト、高効率運用が
簡便に実現できる。また、ポンプの起動停止時刻の概略
値を知ることができるので、上位にある配水池からの時
間当たりの需要水量が把握でき、上位配水池の運用計画
作成が容易になることや、目的関数の設定を変化させる
ことにより、基幹配水池における水需要量の平滑化、深
夜電力利用等による省エネルギー化等、計画時の目的を
損なうことなく運用戦略に沿った制御も実現できる。
As a result, a low-cost, high-efficiency operation close to the optimized one can be easily realized without performing the plan correction calculation again. In addition, since the approximate value of the pump start / stop time can be known, the amount of water demand per hour from the upper reservoir can be ascertained, making it easier to create an operation plan for the upper reservoir, By changing the setting, control according to the operation strategy can be realized without impairing the purpose at the time of planning, such as smoothing the water demand in the main reservoir and saving energy by using late-night power.

【0016】[0016]

【実施例】以下本発明の実施例を図面に基づいて説明す
る。図1は本発明の最適自動運転制御方法を実施するた
め送水設備の全体構成を示すブロックである。10はポ
ンプ群であり、該ポンプ群10は貯水槽11に配管12
で接続されている。13は該貯水槽11から送水するた
めの配管である。また、ポンプ群10は配管18に接続
され、ポンプ群10の運転により、配管18からの水は
配管12を通って貯水槽11に送られ、該貯水槽11か
ら配管13を通って需要家や他のポンプ・貯水槽系へ送
られる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the overall configuration of a water supply facility for implementing the optimum automatic operation control method of the present invention. Reference numeral 10 denotes a pump group, and the pump group 10
Connected by 13 is a pipe for sending water from the water storage tank 11. Further, the pump group 10 is connected to the pipe 18, and by the operation of the pump group 10, water from the pipe 18 is sent to the water tank 11 through the pipe 12, and from the water tank 11 to the water tank 11 through the pipe 13, Sent to other pump / water tank systems.

【0017】20は最適運転指令装置であり、該最適運
転指令装置20は時刻毎の最適運転状態記憶部21、パ
ターン毎の最適運転状態記憶部22、時刻毎の最適運転
水位発生部23、水位によるポンプ運転指令発生部24
及び内蔵時計25で構成される。14は貯水槽11の水
位を測定する水位計であり、該水位計14の出力は水位
監視装置15に入力され、該水位監視装置15の出力は
水位によるポンプ運転指令発生部24に入力される。水
位によるポンプ運転指令発生部24の出力はポンプ運転
指令をポンプ起動制御装置17に出力する。
Reference numeral 20 denotes an optimum operation command device. The optimum operation command device 20 includes an optimum operation state storage unit 21 for each time, an optimum operation state storage unit 22 for each pattern, an optimum operation water level generation unit 23 for each time, and a water level. Pump operation command generation unit 24
And a built-in clock 25. Reference numeral 14 denotes a water level meter for measuring the water level in the water storage tank 11. The output of the water level meter 14 is input to a water level monitoring device 15, and the output of the water level monitoring device 15 is input to a pump operation command generation unit 24 based on the water level. . The output of the pump operation command generator 24 based on the water level outputs a pump operation command to the pump start controller 17.

【0018】上記構成の送水設備において、上位計算機
があり、該上位計算機で1サイクル(例えば1日)毎の
最適計画が策定された場合は、最適運転状態記憶部21
にはこの上位計算機で策定された1サイクル毎の最適計
画が記憶されている。また、上位計算機がなく、事前に
計算したパターンとカレンダーにて最適計画を選定する
場合は、パターン毎の最適運転状態記憶部22に事前に
計算したパターンが記憶されている。
In the water supply system having the above configuration, when there is a host computer, and an optimum plan for each cycle (for example, one day) is formulated by the host computer, the optimum operation state storage unit 21 is provided.
Stores an optimal plan for each cycle formulated by the host computer. In addition, when there is no host computer and an optimum plan is selected based on a pre-calculated pattern and a calendar, the pre-calculated pattern is stored in the optimum operation state storage unit 22 for each pattern.

【0019】上位計算機があり、該上位計算機で1サイ
クル毎の最適計画が策定された場合は、内蔵時計25か
ら最適運転状態記憶部21及び最適運転水位発生部23
に時刻信号が送られ、最適運転状態記憶部21から当該
時刻の最適計画データが選択され、最適運転水位発生部
23に送られ、該最適運転水位発生部23は時刻毎の最
適水位信号を発生し、水位によるポンプ運転指令発生部
24に出力する。該水位によるポンプ運転指令発生部2
4は水位監視装置15から送られてくる貯水槽の貯水量
状態に照らして、ポンプ群10内のポンプの起動及び指
令をポンプ起動制御装置17に出力する。
When there is a host computer, and an optimum plan for each cycle is formulated by the host computer, the optimum operation state storage unit 21 and the optimum operation water level generation unit 23 are stored in the internal clock 25.
A time signal is sent to the optimum operation state storage unit 21, the optimum plan data at the time is selected, and sent to the optimum operation water level generation unit 23, which generates an optimum water level signal for each time. Then, the output is output to the pump operation command generation unit 24 based on the water level. Pump operation command generation unit 2 based on the water level
Reference numeral 4 indicates the activation and the command of the pumps in the pump group 10 to the pump activation control device 17 in light of the state of the water stored in the water tank sent from the water level monitoring device 15.

【0020】上位計算機がなく、事前に計算したパター
ンがパターン毎の最適運転状態記憶部22に記憶されて
いる場合は、内蔵時計25からの信号により当該時刻に
おける最適計画を選定し、最適運転水位発生部23に送
る。
When there is no host computer and the pre-calculated patterns are stored in the optimum operation state storage unit 22 for each pattern, the optimum plan at the time is selected by the signal from the internal clock 25, and the optimum operation water level is selected. It is sent to the generator 23.

【0021】図2は最適計画設定作業の流れを示す図で
あり、先ず最初に、事前に過去の実績の日間配水量を統
計的な手法を用いて解析し、条件の異なるいくつかのパ
ターンに分類した上、最適化手法を用いてそれぞれのパ
ターンにおける最適貯水量:時刻、ポンプ起動変更時
刻:起動回数、及びポンプ運転状態変化:ポンプ台数、
起動時刻、停止時刻を決定する。このとき、定常的に最
適計画が策定できる計算機が上位にあれば、その日の計
画による結果をそのまま用いればよい。
FIG. 2 is a diagram showing a flow of an optimal plan setting operation. First, the daily water distribution amount in the past is analyzed in advance by using a statistical method, and is analyzed in several patterns under different conditions. After categorizing, using the optimization method, the optimal water storage amount in each pattern: time, the pump start change time: the number of starts, and the pump operation state change: the number of pumps,
Determine the start time and stop time. At this time, if the computer that can formulate the optimal plan on a regular basis is at the top, the result of the plan on that day may be used as it is.

【0022】一方、事前に組み込むポンプの起動及び停
止命令等の各種制御条件は、下記に示す手法によってそ
れぞれ決定される。
On the other hand, various control conditions such as a command to start and stop a pump to be incorporated in advance are determined by the following methods.

【0023】[第1の手法] 先ず、ポンプ群10に小容量ポンプが多数並列に配置さ
れている場合で、貯水量変化曲線への合致を重視する場
合を図3を用いて説明する。本手法は最適水位制御線L
0(t)を中心に所定幅eをもって引かれた上側水位制
御線L11(t),下側水位制御線L12(t)によって、
ポンプ起動台数の増減によって誤差を逐次修正すること
を基本とする。計画上のポンプ始動台数mによって運転
を開始する。運転開始後、上側水位制御線L11(t)=
0(t)+eに到達した場合には1台ポンプを停止
(m−1台運転)する。更に、一定時間後(dt分後)
貯水量が上側水位制御線L11(t)より上位にある場合
には更に1台ポンプを停止する(m−2台運転)。
[First Method] First, a case where a large number of small capacity pumps are arranged in parallel in the pump group 10 and emphasis is placed on matching with the water storage amount change curve will be described with reference to FIG. This method uses the optimal water level control line L
By the upper water level control line L 11 (t) and the lower water level control line L 12 (t) drawn with a predetermined width e around 0 (t),
Basically, errors are sequentially corrected by increasing or decreasing the number of pumps started. The operation is started with the planned number m of pumps to be started. After the operation starts, the upper water level control line L 11 (t) =
When L 0 (t) + e is reached, one pump is stopped (m−1 units are operated). After a certain time (after dt minutes)
When the water storage amount is higher than the upper water level control line L 11 (t), one more pump is stopped (m−2 units operation).

【0024】また、計画上のポンプ起動台数mによって
運転開始後、下側水位制御線L12=L0(t)−eに到
達した場合には1台ポンプを追加運転(m+1台運転)
する。更に、一定時間後(dt分後)貯水量が下側水位
制御線L12より下位にある場合には更に1台追加運転
(m+2)する。
When the lower water level control line L 12 = L 0 (t) -e is reached after the start of operation according to the planned number m of pumps to be started, one pump is additionally operated (m + 1 unit operation).
I do. Moreover, further additional operating one (m + 2) if after a certain time (dt min after) water volume is lower than the lower water level control line L 12.

【0025】計画上の起動変更時点Tiに到達した場合
には、その際の最適水位制御線(計画水位)L0(T
i)と実水位(現状水位)L(Ti)がある範囲(±
d)内{│L0(Ti)−L(Ti)│<d}にある時
は計画ポンプ起動台数m’に、現状水位が計画水位より
もある範囲を越えて上位にある{│L0(Ti)−L
(Ti)│<−d}時は、計画ポンプ起動台数m’−1
に、ある範囲を越えて下位にある{│L0(Ti)−L
(Ti)│>d}時は、計画ポンプ起動台数m’+1に
変更する。以後上記操作をt=24時間繰り返す。
When the scheduled start change time Ti has been reached, the optimum water level control line (planned water level) L 0 (T
i) and the actual water level (current water level) L (Ti) in a certain range (±
d) in the {│L 0 (Ti) -L ( Ti) │ <d} when in the plan pump start number m ', are higher beyond what current level is than planned water level {│L 0 (Ti) -L
(Ti) │ <−d}, the planned pump start number m′−1
{| L 0 (Ti) −L which is lower than a certain range
When (Ti) │> d}, change to the planned number of pumps to be started m ′ + 1. Thereafter, the above operation is repeated for t = 24 hours.

【0026】なお、ここでポンプの全台数が起動されて
いる時に、さらなる追加起動は不可能であるから、この
場合には流出弁を閉じて貯水槽11からの供給を停止す
るか、そのまま供給を続けるかを選べるようにしてお
く。また、ポンプの全台数が停止中の場合はさらなる停
止も不可能であるので、その場合はなにもしない。上記
のような制御手順にしたがった運転例を図4に示す。
In this case, when the total number of pumps has been started, further start-up is impossible. In this case, the outflow valve is closed and the supply from the water storage tank 11 is stopped, or So that you can choose to continue. Further, if the total number of pumps is stopped, further stop is impossible, and in that case, nothing is performed. An operation example according to the above control procedure is shown in FIG.

【0027】[第2の手法] 次に、大容量ポンプが数台並列に存在するような場合
で、ポンプの起動変更回数の低減を重視する場合を説明
する。この場合は、ポンプの運転状態変更時刻T(i)
を実貯水量L(t)により前後させることにより計画貯
水量変化パターンL0(t)との差を吸収させることを
基本とする。
[Second Method] Next, a description will be given of a case where several large-capacity pumps are arranged in parallel, and where importance is placed on the reduction in the number of times of starting the pumps. In this case, the operating state change time T (i) of the pump
Is changed by the actual water storage amount L (t) to absorb the difference from the planned water storage amount change pattern L 0 (t).

【0028】(1)制御線の作成 先ず基本法則として、各起動変更時刻T(i)を境にし
て、フェイズp:p=1〜pを分類する。この時、tp
=T(i):i=1〜Nとし、最適計算より求めた運転
タイミングに従い、それに基づいた貯水槽の貯水量変化
p(t)、運転状態フェイズD(t){但し、各ポン
プの運転はPi(tD(t)):i=1〜n(ポンプの運転
台数)によって決まる}を以下のようにフェイズ分割す
る。
(1) Creation of control lines First, as a basic rule, phases p: p = 1 to p are classified starting from each activation change time T (i). At this time, t p
= T (i): i = 1 to N, and according to the operation timing obtained from the optimal calculation, the water storage amount change L p (t) of the water storage tank based thereon, the operation state phase D (t) { The operation is phase-divided as follows: P i (t D (t) ):} determined by i = 1 to n (the number of operating pumps).

【0029】 L0(t)、D(t) L1(t)=0〜t1 D(t)=1 L2(t)=t1〜t2 D(t)=2 : : Lp(t)=tp-1〜tp D(t)=p : : Lp(t)=tp-1〜tp D(t)=pL 0 (t), D (t) L 1 (t) = 0 to t 1 D (t) = 1 L 2 (t) = t 1 to t 2 D (t) = 2:: L p (t) = t p-1 ~t p D (t) = p:: L p (t) = t p-1 ~t p D (t) = p

【0030】それぞれのフェイズにおける貯水量変化L
p(t)をそのフェイズの運転状態D(tp-1〜p)で運
転していたと仮定して、時間を遡る方向に延長する。 Lp(t):t=0〜tp この時、時間を遡る際に、バッファ範囲を逸脱した場合
にはそこまでを、それ以外の場合はその全てをこのフェ
イズにおける制御とする。 Cp(t)=Lp(t):=tout〜tp 但し、ここでtoutはt=tp-1〜0と変化させた時に、
最初にバッファ範囲を外れた時間である。もし、逸脱し
なければtout=0である。以上によって、本手法の基
本となる制御線Cp(t)が求められる。
The change L of the water storage amount in each phase
Assuming that p (t) was operated in the operation state D (tp -1 to p ) of the phase, the time is extended in the backward direction. L p (t): t = 0 to t p At this time, when going back in time, if the buffer deviates from the buffer range, the control up to that point is set as control in this phase otherwise. C p (t) = L p (t): = t out ~t p However, where t out when was changed and t = t p-1 ~0,
It is the first time outside the buffer range. If there is no deviation, t out = 0. As described above, the control line C p (t) that is the basis of the present method is obtained.

【0031】次に、補助的規則として、バッファ範囲を
逸脱しそうなとき運転台数を水位自動制御的に増減する
制御線{CH(t)、CL(t)}を付加する。これらは
「{CH(t)−L(t)<0}ならば、次のフェイズ
に停止されるポンプがあればそのポンプから、また吐出
量の少ないほうから先にポンプを1台止め、dt分後に
水位が減少していなければ{再度、CH(t)−L
(t)<0ならば}、もう1台停止する。」「{C
L(t)−L(t)>0}ならば、次のフェイズに起動
されるポンプがあればそのポンプから、吐出量の少ない
ほうから先にポンプを1台起動し、dt分後に水位が増
加していなければ{CL(t)−L(t)>0}、もう
1台起動する。」働きをする。また、1サイクルの最後
に規定範囲内に貯水量を維持するため、最終目標貯水量
下限からCEL(t)を、最終目標貯水量上限からC
EH(t)を以下の条件を基準に作成し、加える。
Next, as an auxiliary rule, control lines {C H (t), C L (t)} for increasing / decreasing the number of operating vehicles by automatic water level control when the buffer is likely to deviate from the buffer range are added. These are "{C H (t) -L (t) <0}, if there is a pump that is stopped in the next phase, one pump is stopped first from the pump with the smaller discharge amount, If the water level does not decrease after dt minutes. Again, C H (t) -L
(T) If <0, stop another vehicle. "{C
If L (t) −L (t)> 0}, if there is a pump to be started in the next phase, one of the pumps will be started first from the pump with the smaller discharge amount, and the water level will be dt minutes later. if not increased {C L (t) -L ( t)> 0}, to start another one. Work. In addition, at the end of one cycle, in order to maintain the water storage within the specified range, CEL (t) is set from the lower limit of the final target storage amount, and CEL (t) is set from the upper limit of the final target storage amount.
EH (t) is created and added based on the following conditions.

【0032】CEL(t) 最終目標貯水量下限レベルにおいて、フェイズpの状態
より1台多い状態で運転したと仮定したときの時間を遡
る方向の水平変化曲線。 CEH(t) 最終目標貯水量上限レベルにおいて、フェイズpの状態
より1台減じた状態で運転したと仮定したときの時間を
遡る方向の水位変化曲線。
C EL (t) A horizontal change curve that goes back in time when it is assumed that the vehicle is operated one more than the state in the phase p at the lower limit level of the final target water storage amount. C EH (t) A water level change curve that goes back in time when it is assumed that the vehicle is operated with one vehicle reduced from the state in phase p at the final target water storage upper limit level.

【0033】最後に、最終到達貯水量から、基本法則に
従って翌日(次のサイクル)の最初の運転状態による遡
上線CN(t)を加える。
Finally, a run-up line C N (t) based on the first operating state of the next day (next cycle) is added from the final reached water storage amount according to the basic rule.

【0034】(2)実際時の制御 初期状態(1サイクルの初め)の時点に運転状態D
(0)を1として運転を開始する。各フェイズを定常条
件として、 D(t)=pの時 Cp(t):p〜p D(t)<pの時 Cp(t):p+1〜p について、 L(t)−Cp(t)<0の時αp=1 L(t)−Cp(t)>0の時αp=−1 として、αp{L(t)−Cp(t)}>0となった時に
運転状態D(t)をpとする。
(2) Control at Actual Time The operation state D is set at the time of the initial state (at the beginning of one cycle).
The operation is started with (0) set to 1. Each phase as the steady condition, D (t) = C p (t) when the p: p~p D (t) <When p C p (t): the p + 1~p, L (t) -C p If (t) <0, α p = 1 L (t) −C p (t)> 0, α p = −1, and α p {L (t) −C p (t)}> 0. And the operating state D (t) is p.

【0035】それ以外の時それまでの運転状態D(t)
を保つ。但し、先に述べた補助制御線に達したときは、
L(t)、CH(t)、CEL(t)、CEH(t)、CN
(t)の順に優先して実行する。
At other times, the operating state D (t) up to that time
Keep. However, when the above-mentioned auxiliary control line is reached,
C L (t), C H (t), C EL (t), C EH (t), C N
Execution is performed with priority in the order of (t).

【0036】上記の基本法則を図5に示す。Cp(t)
に達したらフェイズpの運転状態にする。この基本法則
に基づいて運転を行った実際例を、図6及び図7に示
す。図7において、ある幅eの不感帯を持った第1の手
法による運転状態は、第2の手法に比べ、矢印Aで示す
ような短い時間内に都合4回も起動変更が増えている。
また、矢印Bに示す時点で再計算を行う方法を用いても
第2の手法と同様の運転状態となる場合が多い。計算の
時間ステップ間隔によっては運転状態が変更される場合
もあるが、一般にその際の全体の目的関数は第2の手法
(若しくは、初期の運転状態)よりも悪くなる確率が高
い。
FIG. 5 shows the above basic rules. C p (t)
Is reached, the operation state of the phase p is set. FIGS. 6 and 7 show actual examples of driving based on this basic law. In FIG. 7, in the driving state according to the first method having a dead zone having a certain width e, the number of startup changes increases four times within a short time as indicated by an arrow A, compared to the second method.
In addition, even if the method of performing the recalculation at the time indicated by the arrow B is used, the operation state is often the same as the second method. Although the operation state may be changed depending on the time step interval of the calculation, generally, the overall objective function at that time is more likely to be worse than the second method (or the initial operation state).

【0037】また、第2の手法に従い、全ての制御線を
付加した運転制御線(1日分の起動変更水位を設定すれ
ば)は図8のようになり、これに従って運転した場合の
例を図9に示す。図9において、第2の手法に従うと、
実際には線Cに示すようになる。
Further, according to the second method, the operation control line to which all the control lines are added (if the start change water level for one day is set) is as shown in FIG. As shown in FIG. In FIG. 9, according to the second method,
Actually, it becomes as shown by the line C.

【0038】[第3の手法] 大容量のポンプが数台、小容量のポンプが数台並列に存
在する場合、若しくは大容量のポンプ数台、流量変更に
使える電動弁等が存在する場合で貯水量変化曲線への合
致と起動変更回数の低減の両方が混在する場合、上記第
1の手法による運転制御と第2の手法による運転制御を
併せて用いる運転制御方法を採る。即ち、小容量のポン
プや電動弁等は第1の手法によって運転制御を行い、大
容量のポンプは第2の手法によって運転制御を行う。
[Third Method] When there are several large-capacity pumps and several small-capacity pumps in parallel, or when there are several large-capacity pumps and electric valves that can be used for changing the flow rate, etc. In the case where both the matching with the water storage amount change curve and the reduction of the number of startup changes are mixed, an operation control method using both the operation control by the first method and the operation control by the second method is adopted. That is, the operation of a small-capacity pump or an electric valve is controlled by the first method, and the operation of the large-capacity pump is controlled by the second method.

【0039】[0039]

【発明の効果】以上説明したように各請求項に記載の
明によれば下記のような優れた効果が得られる。
As described above, according to the inventions described in the respective claims, the following excellent effects can be obtained.

【0040】(1)従来の水位自動方式に比べて、時間
単位の水需要量に合わせて配水池や農業用水池等の貯水
槽運用が可能となり、ポンプ等の送水手段の起動回数の
減少、平滑化及び省電力化が可能になる。また、従来オ
ペレータが管理していた貯水槽でもそれに近い高効率の
自動化が実現できる。
(1) Compared to the conventional automatic water level method, time
Water storage in reservoirs, agricultural ponds, etc. according to the unit water demand
Tank operation becomes possible, and the number of activations of water supply means such as pumps is reduced.
Reduction, smoothing, and power saving can be achieved. In addition, conventional
Even with a water tank managed by the Pererator, a highly efficient
Automation can be realized.

【0041】 (2)パターン別のポンプ等の送水手段の
送水制御変更時刻の概略値が把握できるため、上位の貯
水槽からその貯水槽への水流量が時間の関数として予見
でき、上位の貯水槽の水運用計画作成を容易にすること
ができる。
[0041] (2) Since the approximate value of the water supply control change time of the water supply means such as a pattern by the pump can be grasped, can be foreseen as a function of water flow time from reservoir upper to the reservoir, the reservoir of the upper It is easy to create a water operation plan for the tank.

【0042】 (3)事前に計画する貯水槽運用の最適化
の際の目的関数設定の仕方により、貯水槽のバックアッ
プ機能を有効に利用した送水制御を行うことが可能であ
り、上位貯水槽からの流出量の平滑化や深夜電力利用に
よる省エネルギー化等好みの送水パターンを選択でき
る。
[0042] (3) by way of the objective function settings for optimizing reservoir production planning in advance, it is possible to perform effectively utilizing water control a backup function of the reservoir, from the upper reservoir You can select your favorite water supply pattern such as smoothing outflow of water and saving energy by using midnight power.

【0043】 (4)上記(1),(2),(3)の効果
を有する最適自動運転制御装置及び方法は従来の方法に
比べて安価に実現できる。
[0043] (4) above (1), (2), the optimum automatic operation control apparatus and method having the effect of (3) can be realized at low cost as compared with conventional methods.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の最適自動運転制御方法を適用するため
送水設備の全体構成を示すブロック図である。
FIG. 1 is a block diagram showing an overall configuration of a water supply facility for applying an optimal automatic operation control method of the present invention.

【図2】最適計画設定作業の流れを示す図である。FIG. 2 is a diagram showing a flow of an optimal plan setting operation.

【図3】小容量ポンプが多数存在する場合(第1の手
法)の運転制御の基本法則を説明するための図である。
FIG. 3 is a diagram for explaining a basic rule of operation control when a large number of small displacement pumps are present (first method).

【図4】図3に示す基本法則に従った運転制御例を説明
するための図である。
FIG. 4 is a diagram for explaining an operation control example according to the basic rule shown in FIG. 3;

【図5】大容量ポンプが数台並列に存在する場合(第2
の手法)の運転制御の基本法則を説明するための図であ
る。
FIG. 5 shows a case where several large-capacity pumps exist in parallel (second
FIG. 4 is a diagram for explaining a basic rule of operation control in the (method).

【図6】図5に示す基本法則に従った運転制御例を説明
するための図である。
FIG. 6 is a diagram for explaining an operation control example according to the basic rule shown in FIG. 5;

【図7】図6に示す基本法則に従った運転制御例を説明
するための図である。
FIG. 7 is a diagram for explaining an operation control example according to the basic rule shown in FIG. 6;

【図8】全ての制御線を付加した運転制御用制御線を示
す図である。
FIG. 8 is a diagram illustrating operation control lines to which all control lines are added;

【図9】図8の運転制御用制御線に従った運転制御例を
説明するための図である。
FIG. 9 is a diagram for explaining an example of operation control according to the operation control line of FIG. 8;

【符号の説明】[Explanation of symbols]

10 ポンプ群 11 貯水槽 12 配管 13 配管 14 水位計 15 水位監視装置 17 ポンプ起動制御装置 18 配管 20 最適運転指令装置 21 時刻毎の最適運転状態記憶部 22 パターン毎の最適運転状態記憶部 23 時刻毎の最適運転水位発生部 24 水位によるポンプ運転指令発生部 25 内蔵時計 DESCRIPTION OF SYMBOLS 10 Pump group 11 Water storage tank 12 Piping 13 Piping 14 Water level gauge 15 Water level monitoring device 17 Pump activation control device 18 Piping 20 Optimal operation command device 21 Optimal operating state storage unit for each time 22 Optimal operating state storage unit for each pattern 23 Each time Optimal operating water level generator 24 Pump operation command generator based on water level 25 Built-in clock

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−128616(JP,A) 特開 平1−245301(JP,A) 特開 平2−21998(JP,A) 特開 昭59−157495(JP,A) (58)調査した分野(Int.Cl.7,DB名) G05B 11/00 - 13/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-128616 (JP, A) JP-A-1-245301 (JP, A) JP-A-2-21998 (JP, A) JP-A-59-128 157495 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G05B 11/00-13/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 経験値、計画値又は重回帰式等により、
貯水槽からの給水量の計画、予測を行って送水を行う送
水装置希望の目的関数により作成された最適運転計画
を作成し、パターン分けされた数種の貯水槽の計画貯水
量の貯水量変化曲線により前記送水装置に運転指令を発
する最適運転指令装置を具備する送水装置の最適自動運
転制御装置において、前記送水装置には大容量の送水手段が数台並列に配置さ
れており、 前記最適運転指令装置は前記貯水量変化曲線を時間を遡
る方向に延長して得られた制御線により前記送水手段の
起動変更を行う自動運転制御機能を具備する ことを特徴
とする送水装置の最適自動運転制御装置
1. An empirical value, a plan value, a multiple regression equation, etc.
Transmission and supply of water after planning and forecasting the amount of water supply from the storage tank
Water equipment,Optimal operation plan created by desired objective function
Create and plan storage of several types of water tanks
QuantityWater storageThe water supply device according to the change curveIssue a driving command to
Of water supply equipment with optimal operation command deviceAutomatic luck
Rotation controlapparatusAtIn the water supply device, several large-capacity water supply means are arranged in parallel.
And The optimal operation command device traces the water storage amount change curve back in time.
The water supply means by the control line obtained by extending in the direction
Equipped with automatic operation control function to change start-up Features
Automatic operation control of water supply equipmentapparatus.
【請求項2】 前記送水装置には大容量の送水手段が数
台に加えて小容量の送水手段が多数台が並列若しくは流
量変更手段が備えられており、前記最適運転指令装置は前記 貯水量変化曲線と一定の差
をもって平行に変位する制御曲線に基づいて前記小容量
送水手段の起動変更若しくは流量変更を行う自動運転
制御機能と、前記貯水量変化曲線を時間を遡る方向に延
長して得られた制御線により前記大容量の送水手段の起
動変更を行う自動運転制御機能を具備することを特徴と
する請求項1記載の送水装置の最適自動運転制御装置
2. A large-capacity water supply means is provided in the water supply device.
Parallel or flow water supply means many stand small volume in addition to the base
The amount changing means have been found wherein the optimal operation command unit the small capacity based on the control curve parallel displacement with a constant difference between the water amount change curve
Operation to change the water supply means startup or flow rate
The control function and the water storage amount change curve are extended in a direction going back in time.
The control line obtained for a long time activates the large-capacity water supply means.
2. The optimum automatic operation control device for a water supply device according to claim 1 , further comprising an automatic operation control function for changing the operation.
【請求項3】 経験値、計画値又は重回帰式等により、
貯水槽からの給水量の計画、予測を行って送水を行う送
水装置に対し、希望の目的関数により作成された最適運
転計画を作成し、パターン分けされた数種の貯水槽の計
画貯水量の貯水量変化曲線により前記送水装置の運転を
行う送水装置の自動運転制御方法において、 前記送水装置には大容量の送水手段が数台並列に配置さ
れており、貯水量変化曲線を時間を遡る方向に延長して
得られた制御線により前記送水手段の起動変更を行うこ
とを特徴とする送水装置の最適自動運転制御方法。
3. An empirical value, a plan value, a multiple regression equation, etc.
Transmission and supply of water after planning and forecasting the amount of water supply from the storage tank
Optimal operation created by the desired objective function for the water system
Create a transfer plan and measure several tanks
The operation of the water supply device is controlled by the water volume change curve of the
In the automatic operation control method of the water supply device to be performed, in the water supply device, several large-capacity water supply means are disposed in parallel, and the control line obtained by extending a water storage amount change curve in a direction going back in time is used. An optimal automatic operation control method for a water supply device, comprising changing a start of a water supply means.
【請求項4】 前記送水装置には大容量の送水手段が数
に加えて小容量の送水手段が複数台が並列若しくは流
量変更手段が備えられており、 前記貯水量変化曲線と一定の差をもって平行に変位する
制御曲線に基づいて前記小容量の送水手段の起動変更
しくは流量変更を行う自動運転制御方法と、前記貯水量
変化曲線を時間を遡る方向に延長して得られた制御線に
より前記大容量の送水手段の起動変更を行う自動運転制
御方法とを併用することを特徴とする請求項3記載の送
水装置の最適自動運転制御方法。
Wherein said water supply water supply means in parallel or flow is a plurality of small-capacity in addition to several cars water means a large capacity in the apparatus
The amount changing means have been found with, young start changing the water supply means of the small capacity based on the control curve parallel displacement with a constant difference between the water amount change curve
Or the automatic operation control method of changing the flow rate and the automatic operation control method of changing the activation of the large-capacity water supply means by a control line obtained by extending the water storage amount change curve in a direction going back in time. The optimal automatic operation control method for a water supply device according to claim 3, wherein:
JP07532192A 1992-02-26 1992-02-26 Optimal automatic operation control device and method for water supply device Expired - Lifetime JP3283568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07532192A JP3283568B2 (en) 1992-02-26 1992-02-26 Optimal automatic operation control device and method for water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07532192A JP3283568B2 (en) 1992-02-26 1992-02-26 Optimal automatic operation control device and method for water supply device

Publications (2)

Publication Number Publication Date
JPH05241611A JPH05241611A (en) 1993-09-21
JP3283568B2 true JP3283568B2 (en) 2002-05-20

Family

ID=13572885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07532192A Expired - Lifetime JP3283568B2 (en) 1992-02-26 1992-02-26 Optimal automatic operation control device and method for water supply device

Country Status (1)

Country Link
JP (1) JP3283568B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4861852B2 (en) * 2007-02-13 2012-01-25 株式会社川本製作所 Control device for receiving water in water supply system

Also Published As

Publication number Publication date
JPH05241611A (en) 1993-09-21

Similar Documents

Publication Publication Date Title
CA1214842A (en) Scheduled hot water heating based on automatically adjusted historical data
AU673248B2 (en) Thermostat for a variable capacity HVAC and method for providing a ramping set point on a setback thermostat
JP3800713B2 (en) Water distribution facility control equipment
CN110398070A (en) Water heater and its control method and computer readable storage medium
JP3283568B2 (en) Optimal automatic operation control device and method for water supply device
US5309730A (en) Thermostat for a gas engine heat pump and method for providing for engine idle prior to full speed or shutdown
JP2004068710A (en) Cogeneration device and its control method
JP3763767B2 (en) Operation planning system for energy supply equipment
JP2003329292A (en) Cogeneration apparatus and control method for it
JP2003050037A (en) Operation control system and operating method of heat accumulation type air conditioner and heat source device
JP2001084039A (en) Water-supply/sewerage monitor and control system
US11802468B2 (en) Asymmetric power management and load management
JPH0614294B2 (en) Control method for operating number of multiple pumps
CN112329980A (en) Method for improving power grid operation level by machine learning fixed electricity price
JP3320139B2 (en) Pump operation number control device
JPH0743001A (en) Method and device for operating regional cooling/heating apparatus
JP3002069B2 (en) Pump control device
JP2939365B2 (en) Pump operation number control device
JP2001263255A (en) Rotation operation control method of pump and device
JPH0835707A (en) Heat supplying facility
JPH10252998A (en) Tap water distribution control system
JPH01177110A (en) Water level controller
JP2004189998A (en) Method for supplying gas
CN109063888B (en) Multi-type energy regulation and control method for grid-connected combined heat and power system
JP3849734B2 (en) Water distribution control method considering the water level of clean water reservoir and distribution reservoir

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

EXPY Cancellation because of completion of term