JP3281796B2 - Plasma chemical vapor deposition equipment - Google Patents

Plasma chemical vapor deposition equipment

Info

Publication number
JP3281796B2
JP3281796B2 JP09682796A JP9682796A JP3281796B2 JP 3281796 B2 JP3281796 B2 JP 3281796B2 JP 09682796 A JP09682796 A JP 09682796A JP 9682796 A JP9682796 A JP 9682796A JP 3281796 B2 JP3281796 B2 JP 3281796B2
Authority
JP
Japan
Prior art keywords
cylindrical
reaction gas
substrate
electrode
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09682796A
Other languages
Japanese (ja)
Other versions
JPH09283452A (en
Inventor
正義 村田
良昭 竹内
暁己 高野
博久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP09682796A priority Critical patent/JP3281796B2/en
Publication of JPH09283452A publication Critical patent/JPH09283452A/en
Application granted granted Critical
Publication of JP3281796B2 publication Critical patent/JP3281796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Plasma Technology (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアモルファスシリコ
ン感光ドラム、太陽電池、光センサ及び半導体保護膜な
どの各種電子デバイスに使用される薄膜の製造に適用さ
れるプラズマ化学蒸着装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a plasma chemical vapor deposition apparatus applied to the production of thin films used for various electronic devices such as amorphous silicon photosensitive drums, solar cells, optical sensors and semiconductor protective films.

【0002】[0002]

【従来の技術】アモルファスシリコン(以下、a−Si
と記す)薄膜や窒化シリコン(以下、SiNxと記す)
薄膜を製造するために、従来より用いられているプラズ
マ化学蒸着装置(以下、プラズマCVD装置と称する)
の構成について、代表例を説明する。なお、薄膜を形成
する基板の形状は通常平板及び円筒の2種類があるが、
ここでは、円筒形基板を対象にしたプラズマCVD装置
を示す。
2. Description of the Related Art Amorphous silicon (hereinafter a-Si)
Thin film) or silicon nitride (hereinafter, referred to as SiNx)
A plasma chemical vapor deposition apparatus conventionally used for producing a thin film (hereinafter, referred to as a plasma CVD apparatus)
A typical example of the configuration will be described. In addition, there are usually two types of shapes of a substrate on which a thin film is formed, a flat plate and a cylinder.
Here, a plasma CVD apparatus for a cylindrical substrate is shown.

【0003】図7は感光ドラムを製造するために用いら
れる従来のプラズマCVD装置の構成図である。同図に
おいて、反応容器130内には、外側円筒電極、すなわ
ち円筒形高周波電極131、円筒形基板132及び内側
円筒電極、すなわち、接地電極を兼ねる円筒形ヒータ1
33が基板ホルダ136とともに平行に配置されてい
る。
FIG. 7 is a configuration diagram of a conventional plasma CVD apparatus used for manufacturing a photosensitive drum. In the figure, an outer cylindrical electrode, that is, a cylindrical high-frequency electrode 131, a cylindrical substrate 132, and an inner cylindrical electrode, that is, a cylindrical heater 1 also serving as a ground electrode, are provided in a reaction vessel 130.
33 are arranged in parallel with the substrate holder 136.

【0004】なお、上記の高周波電極131にはガス吐
出管135が付属しており、図示しない反応ガス供給装
置より導入管134を通して、例えばモノシランと水素
の混合ガスが供給され、該ガス吐出管135より上記高
周波電極131と上記基板132の空間に上記混合ガス
が吐出される。反応容器130内のガスは、排気筒13
9を通して、図示しない真空ポンプを介して、排出され
る。
A gas discharge pipe 135 is attached to the high-frequency electrode 131. For example, a mixed gas of monosilane and hydrogen is supplied from a reaction gas supply device (not shown) through an introduction pipe 134. The mixed gas is discharged into the space between the high-frequency electrode 131 and the substrate 132. The gas in the reaction vessel 130 is
9 through a vacuum pump (not shown).

【0005】この高周波電極131には、高周波電源3
7からインピーダンス整合器38を介して、例えば1
3.56MHzの高周波電力が供給される。該ヒータ1
33は、反応容器130とともに接地され、接地電極と
なっている。したがって、該高周波電極131と該ヒー
タ133、すなわち基板132との間でグロー放電プラ
ズマが発生する。
The high-frequency electrode 131 has a high-frequency power source 3
7 through an impedance matching unit 38, for example, 1
A high frequency power of 3.56 MHz is supplied. The heater 1
Reference numeral 33 is grounded together with the reaction vessel 130, and serves as a ground electrode. Therefore, glow discharge plasma is generated between the high-frequency electrode 131 and the heater 133, that is, the substrate 132.

【0006】この装置を用いて、以下のようにしてa−
Si系薄膜を製造する。真空ポンプを駆動して、反応容
器130内を排出する。反応ガス導入管134を通し
て、例えばモノシランと水素の混合ガスを供給して反応
容器130内の圧力を0.5〜2.0Torrに保ち、高周
波電源138から高周波電極131に電圧をかけると、
グロー放電プラズマが発生する。
[0006] Using this device, a-
A Si-based thin film is manufactured. The inside of the reaction vessel 130 is discharged by driving the vacuum pump. When, for example, a mixed gas of monosilane and hydrogen is supplied through the reaction gas introduction pipe 134 to maintain the pressure in the reaction vessel 130 at 0.5 to 2.0 Torr, and a voltage is applied to the high frequency electrode 131 from the high frequency power supply 138,
Glow discharge plasma is generated.

【0007】反応ガス吐出管135より吐出された上記
混合ガスは、グロー放電によって、SiH3 ,SiH2
などSiを含むラジカルに分解、解離される。その結
果、基板132表面にa−Si系薄膜が形成される。
[0007] The mixed gas discharged from the reaction gas discharge pipe 135 is subjected to glow discharge to produce SiH 3 and SiH 2.
Decomposed and dissociated into radicals containing Si. As a result, an a-Si based thin film is formed on the surface of the substrate 132.

【0008】[0008]

【発明が解決しようとする課題】従来のプラズマCVD
装置では、a−Si膜形成の成膜速度を大きくすると、
下記理由により大量の粉が発生し、特に感光ドラムなど
の製造では問題である。すなわち、図7において、高周
波電極131と接地電極133の間に供給する高周波電
力を0.1〜1KW、反応ガスの圧力0.2〜2.0To
rrとし、成膜速度を5〜20Å/Sの高速にすると、プ
ラズマ中で粉、すなわち、Si2 6 やSi3 8 など
のポリマが発生する。
SUMMARY OF THE INVENTION Conventional plasma CVD
In the apparatus, when the deposition rate for forming the a-Si film is increased,
A large amount of powder is generated for the following reasons, which is a problem particularly in the production of photosensitive drums and the like. That is, in FIG. 7, the high-frequency power supplied between the high-frequency electrode 131 and the ground electrode 133 is 0.1 to 1 kW, and the pressure of the reaction gas is 0.2 to 2.0 Ton.
When rr is set and the film forming speed is set to a high speed of 5 to 20 ° / S, powder such as a polymer such as Si 2 H 6 or Si 3 H 8 is generated in the plasma.

【0009】その結果、a−Si膜は光導電率の低下や
ピンホールの発生などにより品質が著しく低下し、感光
ドラムや太陽電池などへの実用化が困難である。したが
って、膜質を低下せずに成膜速度を向上させることは非
常に困難である。
As a result, the quality of the a-Si film is remarkably deteriorated due to a decrease in photoconductivity and generation of pinholes, and it is difficult to put the a-Si film to practical use as a photosensitive drum or a solar cell. Therefore, it is very difficult to improve the film formation rate without deteriorating the film quality.

【0010】[0010]

【課題を解決するための手段】本発明はこのような課題
を解決するために次の手段を提供する。
The present invention provides the following means for solving such a problem.

【0011】反応容器と;同反応容器内に反応ガスを供
給する反応ガス吐出孔と;反応ガスを前記反応器外に排
出する反応ガス排出孔と;前記反応容器内に設置された
内側円筒電極及び外側円筒電極から構成の一対の放電用
円筒電極と;同放電用円筒電極にグロー放電発生用電力
を供給する電源と;前記一対の放電用円筒電極間に配置
され、薄膜を形成する円筒基板を加熱するヒータと;前
記一対の放電用電極を包含して配置した電磁コイルと;
同電極コイルに電力を供給する直流電源とから成るプラ
ズマ化学蒸着装置において、前記外側円筒電極はメッシ
ュ状あるいは格子状のいずれかであり;前記反応ガス吐
出孔は前記円筒基板と前記外側円筒電極との間に設置さ
れ、同円筒電極側を向き;前記反応ガス排出孔は前記反
応ガス吐出孔とで前記外側円筒電極を挟むように前記反
応容器側面に配置され;かつ、前記電磁コイルの軸芯が
前記一対の放電用円筒電極の軸芯と一致するように配置
したことを特徴とするプラズマ化学蒸着装置。
A reaction vessel; a reaction gas discharge hole for supplying a reaction gas into the reaction vessel; a reaction gas discharge hole for discharging the reaction gas out of the reactor; and an inner cylindrical electrode provided in the reaction vessel. A pair of discharge cylindrical electrodes composed of an outer cylindrical electrode and a power supply for supplying glow discharge power to the discharge cylindrical electrode; and a cylindrical substrate disposed between the pair of discharge cylindrical electrodes and forming a thin film. And an electromagnetic coil including the pair of discharge electrodes and disposed therein;
In a plasma chemical vapor deposition apparatus comprising a DC power supply for supplying power to the electrode coil, the outer cylindrical electrode is either a mesh shape or a grid shape; and the reactant gas discharge holes are formed on the cylindrical substrate and the outer cylindrical electrode. And the reaction gas discharge hole is disposed on the side surface of the reaction vessel so as to sandwich the outer cylindrical electrode with the reaction gas discharge hole; and the axis of the electromagnetic coil is disposed. Are disposed so as to coincide with the axis of the pair of discharge cylindrical electrodes.

【0012】本発明はこのような手段により、高速成膜
時に発生する粉をa−Si膜中に混入させないように、
反応ガスの流れの方向を基板表面から遠ざかる方向へ、
すなわち吐出孔が、基板から排出孔を向いた方向にする
ことにより、プラズマ中の粉を円筒基板表面に遠ざける
ように流すことができる。
According to the present invention, powder generated during high-speed film formation is prevented from being mixed into the a-Si film by such means.
The direction of the flow of the reaction gas in the direction away from the substrate surface,
That is, the powder in the plasma can be made to flow away from the surface of the cylindrical substrate by setting the direction of the discharge hole toward the discharge hole from the substrate.

【0013】すなわち、従来の装置では反応ガスの流れ
が放電領域から基板の方向に向いているため、粒径が可
視光の波長あるいはそれ以上に成長した粉及びそれらが
凝集した粒子は反応ガスの流れに乗って運ばれ、基板上
に成膜中のa−Si膜に混入する。これに対して、本発
明の装置では上記のように、放電領域で発生した粉は一
般には負に帯電しており、磁場に補足されて円筒基板へ
の移動が抑制される。又、粉が凝集した粒子は反応ガス
の流れに乗って、円筒基板より遠ざかる方向へ流れ、メ
ッシュ状あるいは格子状の電極を通って排出孔へ搬出さ
れる。したがって、基板表面に成膜中のa−Si膜には
粉は混入されない。
That is, in the conventional apparatus, since the flow of the reaction gas is directed from the discharge region toward the substrate, the powder having a particle size grown to the wavelength of visible light or more and the particles agglomerated by the reaction gas are generated by the reaction gas. It is carried along with the flow and mixes with the a-Si film being formed on the substrate. On the other hand, in the apparatus of the present invention, as described above, the powder generated in the discharge region is generally negatively charged, and the movement to the cylindrical substrate is suppressed by the magnetic field. Further, the particles in which the powder is agglomerated flow in the direction away from the cylindrical substrate along with the flow of the reaction gas, and are carried out to the discharge hole through a mesh-like or lattice-like electrode. Therefore, no powder is mixed into the a-Si film being formed on the substrate surface.

【0014】円筒基板表面にa−Si膜を形成するSi
3 ラジカルは電気的に中性で、かつ、成膜時の圧力は
数Torr以下であるので、SiH3 ラジカル濃度が高い放
電領域から拡散現象により基板表面に到達する。
Si for forming an a-Si film on the surface of a cylindrical substrate
Since the H 3 radical is electrically neutral and the pressure at the time of film formation is several Torr or less, the H 3 radical reaches the substrate surface from a discharge region having a high SiH 3 radical concentration by a diffusion phenomenon.

【0015】更に、本発明では、放電により発生する電
場Eに、電磁コイルで直交する方向の磁場Bを付加して
いるので、放電領域中の電子及び荷電粒子は、クーロン
力F 1 、すなわちF1 =qE;(ただし、qは電子ある
いは荷電粒子の電荷量)と、ローレンツ力F2 、すなわ
ちF2 =q(V×B);(ただし、Vは電子あるいは荷
電粒子の速度)、によってE×Bドリフト運動を起こ
す。
Further, in the present invention, the electric power generated by the electric discharge is generated.
To the field E, add a magnetic field B in the direction orthogonal to the
Electrons and charged particles in the discharge region
Force F 1, Ie F1= QE; (where q is an electron
Or the amount of charge of charged particles) and Lorentz force FTwo,
Chi FTwo= Q (V × B); (where V is an electron or a charge
Causes the E × B drift motion.
You.

【0016】一対の放電用円筒電極の間、すなわち、円
筒基板と高周波電極の間の放電領域中の電子及び荷電粒
子は円筒基板まわりをぐるぐる廻る運動を起す。したが
って、放電領域内のプラズマ密度が空間的に不均一な場
合でも平均化され、円筒基板に成膜されるs−Si膜が
均一化される。
Electrons and charged particles in a discharge region between a pair of discharge cylindrical electrodes, that is, between a cylindrical substrate and a high-frequency electrode, move around the cylindrical substrate. Therefore, even when the plasma density in the discharge region is spatially non-uniform, the average is averaged, and the s-Si film formed on the cylindrical substrate is made uniform.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の実
施の一形態に係るプラズマ化学蒸着装置の構成図、図2
はその内部に用いられる円筒形高周波電極の形状を示す
斜視図で、(a)はメッシュ状、(b)は格子状のもの
を示す。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a configuration diagram of a plasma chemical vapor deposition apparatus according to an embodiment of the present invention, and FIG.
1A is a perspective view showing the shape of a cylindrical high-frequency electrode used therein, FIG. 1A shows a mesh shape, and FIG.

【0018】これら図において、反応容器30内には、
図2(a)に示す(網目)状の円筒形高周波電極31あ
るいは格子状の円筒形高周波電極31、円筒形基板32
及び円筒形ヒータ33が基板ホルダ36とともに平行に
配置されている。
In these figures, a reaction vessel 30 contains:
2A, a (mesh) -shaped cylindrical high-frequency electrode 31 or a lattice-shaped cylindrical high-frequency electrode 31, a cylindrical substrate 32
And a cylindrical heater 33 are arranged in parallel with the substrate holder 36.

【0019】図3はプラズマ化学蒸着装置の反応容器3
0の平面図で、反応ガスの導入、排出を示す図である。
図3に示すように、高周波電極31と基板32の間に
は、反応ガスを吐出するガス吐出管35が8本配置さ
れ、それぞれ導入管34−a,34−b,34−c,3
4−d,34−e,34−f,34−g及び34−hに
接続され、これら導入管を通して図示しない反応ガス供
給装置より、例えばモノシランと水素の混合ガスが供給
され、ガス吐出管35の吐出孔35aから基板32の反
対側へ上記混合ガスが吐出される。
FIG. 3 shows a reaction vessel 3 of the plasma chemical vapor deposition apparatus.
0 is a plan view showing the introduction and discharge of a reaction gas. FIG.
As shown in FIG. 3, eight gas discharge tubes 35 for discharging a reaction gas are arranged between the high-frequency electrode 31 and the substrate 32, and the introduction tubes 34-a, 34-b, 34-c, and 3 are respectively provided.
4-d, 34-e, 34-f, 34-g, and 34-h, and a mixed gas of, for example, monosilane and hydrogen is supplied from a reaction gas supply device (not shown) through these introduction pipes. The mixed gas is discharged from the discharge hole 35a to the opposite side of the substrate 32.

【0020】反応容器30内のガスは、上、下各4ケ所
に設けた8ケ所の排出孔39−a,39−b,39−
c,39−d,39−e,39−f,39−g,39−
hを通して、図示しない真空ポンプを介して排出され
る。
The gas in the reaction vessel 30 is supplied to eight discharge holes 39-a, 39-b, 39-
c, 39-d, 39-e, 39-f, 39-g, 39-
through the vacuum pump (not shown).

【0021】高周波電極31とヒータ33との間には、
図1に示すように高周波電源37からインピーダンス整
合器38を介して、例えば13.56MHzの高周波電
力が供給される。該ヒータ33は、反応容器30ととも
に接地され、接地電極となっている。したがって、該高
周波電極31と該ヒータ33、すなわち基板32との間
でグロー放電プラズマが発生する。
Between the high-frequency electrode 31 and the heater 33,
As shown in FIG. 1, for example, 13.56 MHz high frequency power is supplied from a high frequency power supply 37 via an impedance matching unit 38. The heater 33 is grounded together with the reaction vessel 30 and serves as a ground electrode. Therefore, glow discharge plasma is generated between the high-frequency electrode 31 and the heater 33, that is, the substrate 32.

【0022】反応容器30の外側には、一対の電磁コイ
ル1−a、及び1−bが、それぞれの軸芯が該円筒形ヒ
ータ33及び該高周波電極31の軸芯と一致するように
配置される。
Outside the reaction vessel 30, a pair of electromagnetic coils 1-a and 1-b are arranged such that their respective axes coincide with the axes of the cylindrical heater 33 and the high-frequency electrode 31. You.

【0023】直流電源2の出力は、一対の電磁コイル1
−a及び1−bに供給され、該一対のコイル1−a及び
1−bは、図4に示すように上記ヒータ33及び基板3
2の軸芯と同じ方向の磁力線、すなわち磁場Bを発生す
る。
The output of the DC power supply 2 is a pair of electromagnetic coils 1
-A and 1-b, and the pair of coils 1-a and 1-b are connected to the heater 33 and the substrate 3 as shown in FIG.
A magnetic field line in the same direction as the two shaft cores, that is, a magnetic field B is generated.

【0024】上記に説明の接地電極33と高周波電極3
1が形成する電場E及び該磁場Bは電磁気現象として、
E×Bドリフト運動を起すが、その状況を図4に示して
いる。
The above-described ground electrode 33 and high-frequency electrode 3
The electric field E and the magnetic field B formed by 1 are electromagnetic phenomena,
An E × B drift motion occurs, the situation of which is shown in FIG.

【0025】図4において、接地電極33と高周波電極
31の間には放電による電場Eとこれに直交する磁場B
が付加され、発生したプラズマ中の電子や荷電粒子は、
クーロン力F1 、すなわちF1 =qE;(ただし、qは
電子あるいは荷電粒子の電荷量)と、ローレンツ力
2 、すなわちF2 =q(V×B);(ただし、Vは電
子あるいは荷電粒子の速度)、によってE×Bドリフト
運動を起す。
In FIG. 4, an electric field E due to electric discharge and a magnetic field B orthogonal to the electric field E are provided between the ground electrode 33 and the high-frequency electrode 31.
Is added, electrons and charged particles in the generated plasma are
Coulomb force F 1 , that is, F 1 = qE; (where q is the amount of charge of an electron or a charged particle) and Lorentz force F 2 , that is, F 2 = q (V × B); (where V is an electron or a charged Particle velocity) causes an E × B drift motion.

【0026】すなわち、図4に示すように、一対の電極
31及び33の間、すなわち基板32と高周波電極31
の間の放電領域中の電子及び荷電粒子は基板32のまわ
りを廻る運動を起す。これらの運動で電子の反応ガス分
子との衝突頻度は著しく増大し、プラズマ密度が空間的
に平均化され、増大するので、a−Si薄膜形成の膜厚
が均一化されると共に成膜速度も速くなる。
That is, as shown in FIG. 4, between the pair of electrodes 31 and 33, ie, between the substrate 32 and the high-frequency electrode 31.
The electrons and charged particles in the discharge region between move around the substrate 32. These movements significantly increase the frequency of collision of electrons with the reactant gas molecules, and spatially average and increase the plasma density, so that the film thickness of the a-Si thin film is made uniform and the film forming speed is also increased. Be faster.

【0027】他方、プラズマ中に発生する粉は一般的に
負に帯電しているので磁力線のまわりを回転するような
運動をする。すなわち、帯電した粉は磁場Bに補足され
て、基板32の方向への移動が抑制される。粉が成長し
て、その粒径が大きくなったり、あるいは微粒子が凝集
して大きいかたまりになったりすると、プラズマ中のガ
スの流れに乗って下流へ搬出される。すなわち、放電領
域からメッシュ状あるいは格子状の円筒形放電用電極3
1を通って排出孔39−a〜39−hから排出される。
On the other hand, the powder generated in the plasma is generally negatively charged, so that it moves around the lines of magnetic force. That is, the charged powder is captured by the magnetic field B, and the movement in the direction of the substrate 32 is suppressed. When the powder grows and its particle diameter increases, or when the fine particles aggregate to form a large lump, the powder is carried downstream along with the flow of gas in the plasma. In other words, a mesh-shaped or grid-shaped cylindrical discharge electrode 3 is formed from the discharge region.
1 through the discharge holes 39-a to 39-h.

【0028】更に、前述のようにガス吐出管35は、高
速成膜時に発生する粉をa−Si膜中に混入させないよ
うに、反応ガスの流れの方向を基板32表面から遠ざか
る方向へ、すなわち吐出孔5aの向きを基板32から排
出孔39−a〜39−hを向いた方向にしているので、
プラズマ中の粉を基板32表面より遠ざけるように流す
ことができる。
Further, as described above, the gas discharge pipe 35 sets the flow direction of the reaction gas in a direction away from the surface of the substrate 32, that is, in order to prevent the powder generated during the high-speed film formation from being mixed into the a-Si film. Since the direction of the discharge hole 5a is set to the direction from the substrate 32 to the discharge holes 39-a to 39-h,
The powder in the plasma can be flowed away from the surface of the substrate 32.

【0029】従来の装置では、反応ガスの流れが放電領
域から基板32の方向に向いているため、粒歪が可視光
の波長あるいはそれ以上に成長した粉及びそれらが凝集
した粒子は反応ガスの流れに乗って運ばれ、基板32上
において成膜中のa−Si膜に混入するが、本発明では
上記のように粉を基板32から遠ざけるので、発生した
粉及び粉が凝集した粒子は反応ガスの流れに乗って、基
板32より遠ざかる方向へ搬出される。したがって、基
板表面に成膜中のa−Si膜には粉は混入されない。
In the conventional apparatus, since the flow of the reaction gas is directed from the discharge region to the direction of the substrate 32, the powder in which the grain strain has grown to the wavelength of visible light or more, and the particles in which the particles are aggregated are not mixed. The powder is carried along with the flow and mixes with the a-Si film being formed on the substrate 32. In the present invention, however, the powder is kept away from the substrate 32 as described above. It is carried out in a direction away from the substrate 32 along with the gas flow. Therefore, no powder is mixed into the a-Si film being formed on the substrate surface.

【0030】基板32にa−Si膜を形成するSiH3
ラジカルは電気的に中性で、かつ、成膜時の圧力は数To
rr以下であるので、SiH3 ラジカル濃度が高い放電領
域から拡散現象により基板表面に到達する。
SiH 3 for forming an a-Si film on the substrate 32
Radicals are electrically neutral, and the pressure during film formation is several To
Since it is rr or less, it reaches the substrate surface by a diffusion phenomenon from a discharge region having a high SiH 3 radical concentration.

【0031】次に、上記に説明したプラズマ化学蒸着装
置によりアモルファスシリコン薄膜を製造する具体例を
説明する。真空ポンプにより、反応容器30内を排気す
る。反応容器30が充分に排気された後、例えば1×1
-6〜1×10-7Torrの圧力になった後、反応ガス吐出
管35から、例えばモノシラン200cc/分程度の流
量で供給し、反応容器30内の圧力を0.2〜2.0To
rrに保つ。
Next, a specific example of manufacturing an amorphous silicon thin film by the above-described plasma chemical vapor deposition apparatus will be described. The inside of the reaction vessel 30 is evacuated by a vacuum pump. After the reaction vessel 30 is sufficiently evacuated, for example, 1 × 1
After the pressure reaches 0 -6 to 1 × 10 -7 Torr, monosilane is supplied from the reaction gas discharge pipe 35 at a flow rate of, for example, about 200 cc / min.
Keep at rr.

【0032】高周波電源37からインピーダンス整合器
38を介して、高周波電極31に、例えば13.56M
Hzの高周波電力200〜1,000Wを供給する。
The high-frequency power source 37 is connected to the high-frequency electrode 31 via the impedance matching device 38, for example, at 13.56M.
And a high frequency power of 200 to 1,000 W.

【0033】一方、電磁コイル1−a及び1−bに直流
電源2より電力を供給し、磁場の強さ10〜100ガウ
スの磁場を該電磁コイル内に発生させる。
On the other hand, electric power is supplied from the DC power supply 2 to the electromagnetic coils 1-a and 1-b to generate a magnetic field having a magnetic field strength of 10 to 100 Gauss in the electromagnetic coils.

【0034】アモルファスシリコン薄膜の成膜速度及び
膜質は、反応ガス流量、圧力、高周波電力及び磁場の強
さなどに依存する。そこで、以下のような条件でアモル
ファス薄膜を成膜した。即ち、磁場の強さ0〜100ガ
ウスにおいて、100%モノシラン流量200cc/
分、圧力0.8Torr、高周波電力500Wとして、先ず
膜厚分布の一様性を調査した。その結果を図5に示す。
The deposition rate and quality of the amorphous silicon thin film depend on the flow rate of the reaction gas, the pressure, the high frequency power, the strength of the magnetic field, and the like. Therefore, an amorphous thin film was formed under the following conditions. That is, at a magnetic field strength of 0 to 100 Gauss, a 100% monosilane flow rate of 200 cc /
First, the uniformity of the film thickness distribution was investigated with a pressure of 0.8 Torr and a high frequency power of 500 W. The result is shown in FIG.

【0035】図5は基板円周方向の距離と膜厚との関係
を磁場の強さを変化させて測定したもので、図5による
と、磁場の強さが40ガウス程度までは膜厚は変動する
が、40ガウス以上であれば、膜厚分布は一様になるこ
とが分かる。
FIG. 5 shows the relationship between the distance in the circumferential direction of the substrate and the film thickness measured by changing the strength of the magnetic field. According to FIG. 5, the film thickness is not increased until the strength of the magnetic field is about 40 gauss. Although it fluctuates, it can be seen that the film thickness distribution becomes uniform if it is 40 Gauss or more.

【0036】次に、磁場の強さを60ガウスとして、1
00%モノシラン流量200cc/分、圧力0.2〜
2.0Torr、高周波電力500Wという条件で膜特性を
調査した。その結果を図6に示す。
Next, assuming that the strength of the magnetic field is 60 Gauss, 1
00% monosilane flow rate 200cc / min, pressure 0.2 ~
The film characteristics were investigated under the conditions of 2.0 Torr and 500 W of high frequency power. FIG. 6 shows the result.

【0037】図6は、(a)は成膜特性、(b)は屈折
率、(c)は光導電率、(d)は暗導電率をそれぞれ示
し、図6によると、a−Siの場合、粉の混入があると
屈折率が3.2以下になるが、本結果においては、圧力
範囲0.2〜2.0Torrにおいて、屈折率(b)が3.
2以上あるので、粉の混入の無い良質の膜を判断でき
る。
FIGS. 6A and 6B show the film formation characteristics, FIG. 6B shows the refractive index, FIG. 6C shows the photoconductivity, and FIG. 6D shows the dark conductivity, respectively. In this case, when the powder is mixed, the refractive index becomes 3.2 or less, but in the present result, the refractive index (b) is 3 in the pressure range of 0.2 to 2.0 Torr.
Since there are two or more, it is possible to judge a good quality film without mixing of powder.

【0038】なお、上記の装置において、反応ガスとし
て、モノシランガス、アンモニア及び窒素の混合ガスを
用いれば、SiNx薄膜を形成できるのは当然である。
In the above-described apparatus, if a mixed gas of monosilane gas, ammonia and nitrogen is used as a reaction gas, it is natural that a SiNx thin film can be formed.

【0039】[0039]

【発明の効果】以上、具体的に説明したように、本発明
は、プラズマ化学蒸着装置において、外側円筒電極をメ
ッシュ状あるいは格子状とし、反応ガス吐出孔は円筒基
板の反対側となる円筒電極側を向き、反応ガス排出孔は
反応ガス吐出孔とで外側円筒電極を挟むように反応容器
側面に配置し、かつ、電磁コイルの軸芯が一対の放電用
円筒電磁の軸芯と一致するように配置したので、次のよ
うな効果を奏する。
As described above, according to the present invention, in the plasma chemical vapor deposition apparatus, the outer cylindrical electrode is formed in a mesh shape or a lattice shape, and the reaction gas discharge holes are formed on the opposite side of the cylindrical substrate. Facing the side, the reaction gas discharge hole is disposed on the side of the reaction vessel so as to sandwich the outer cylindrical electrode with the reaction gas discharge hole, and the axis of the electromagnetic coil coincides with the axis of the pair of discharge cylindrical electromagnetic waves. , The following effects can be obtained.

【0040】(1)プラズマ内で発生し、成長あるいは
凝集する粉が基板より遠ざかる方向へ搬送させられ、か
つプラズマ密度の増大と空間分布の平均化が可能となっ
た。その結果、基板上のa−Si膜への粉混入抑制及び
高速・均一分布の成膜が可能となった。
(1) Powder generated in the plasma and growing or agglomerated is transported in a direction away from the substrate, and the plasma density can be increased and the spatial distribution can be averaged. As a result, it was possible to suppress powder mixing into the a-Si film on the substrate and to form a film at a high speed and uniform distribution.

【0041】(2)したがって、従来困難視されていた
a−Si膜高速成膜時のa−Si膜への粉混入に伴う膜
質低下の防止及び高速成膜が可能となった。このこと
は、a−Si感光ドラム、太陽電池、及びTFT液晶デ
ィスプレイなどの装置分野における工業的価値は著しく
大きいことを示している。
(2) Therefore, it has become possible to prevent deterioration in film quality due to mixing of powder into the a-Si film at the time of high-speed formation of the a-Si film, which has been considered difficult in the past, and to perform high-speed film formation. This indicates that the industrial value in the field of devices such as a-Si photosensitive drums, solar cells, and TFT liquid crystal displays is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係るプラズマ化学蒸着
装置の構成図である。
FIG. 1 is a configuration diagram of a plasma chemical vapor deposition apparatus according to an embodiment of the present invention.

【図2】本発明の実施の一形態に係るプラズマ化学蒸着
装置の高周波電極の斜視図で、(a)はメッシュ状、
(b)は格子状の形状を示す。
FIGS. 2A and 2B are perspective views of a high-frequency electrode of the plasma-enhanced chemical vapor deposition apparatus according to one embodiment of the present invention, wherein FIG.
(B) shows a lattice shape.

【図3】本発明の実施の一形態に係るプラズマ化学蒸着
装置の反応容器の平面図で、反応ガス導入及び排出の構
造を示す。
FIG. 3 is a plan view of a reaction vessel of the plasma enhanced chemical vapor deposition apparatus according to the embodiment of the present invention, showing a structure for introducing and discharging a reaction gas.

【図4】本発明の実施の一形態に係るプラズマ化学蒸着
装置のプラズマ発生部におけるE×Bドリフトの説明図
である。
FIG. 4 is an explanatory diagram of an E × B drift in a plasma generation unit of the plasma chemical vapor deposition apparatus according to one embodiment of the present invention.

【図5】本発明の実施の一形態に係るプラズマ化学蒸着
装置で得られた磁場の強さと膜厚分布の関係を示す特性
図である。
FIG. 5 is a characteristic diagram showing a relationship between a magnetic field strength and a film thickness distribution obtained by a plasma chemical vapor deposition apparatus according to one embodiment of the present invention.

【図6】本発明の実施の一形態に係るプラズマ化学蒸着
装置で得られた特性図で、(a)は成膜速度、(b)は
屈折率、(c)は光導電率、(d)は暗導電率をそれぞ
れ示す。
6A and 6B are characteristic diagrams obtained by a plasma chemical vapor deposition apparatus according to one embodiment of the present invention, wherein FIG. 6A shows a film forming speed, FIG. 6B shows a refractive index, FIG. ) Indicates dark conductivity, respectively.

【図7】従来の円筒形放電用電極を用いたプラズマ化学
蒸着装置の構成図である。
FIG. 7 is a configuration diagram of a conventional plasma chemical vapor deposition apparatus using a cylindrical discharge electrode.

【符号の説明】[Explanation of symbols]

1−a,1−b 電磁コイル 2 直流電源 30 反応容器 31,31′ 円筒形高周波電極 32 円筒形基板 33 円筒形ヒータ 34−a,〜34−h 導入管 35 ガス吐出管 35a 吐出孔 36 基板ホルダ 37 高周波電源 38 インピーダンス整合器 39−a,〜39−h 排気孔 Reference Signs List 1-a, 1-b electromagnetic coil 2 DC power supply 30 Reaction vessel 31, 31 'Cylindrical high-frequency electrode 32 Cylindrical substrate 33 Cylindrical heater 34-a, to 34-h Introduction pipe 35 Gas discharge pipe 35a Discharge hole 36 Substrate Holder 37 High-frequency power supply 38 Impedance matching device 39-a, to 39-h Exhaust hole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H05H 1/46 H01L 31/04 A (72)発明者 吉田 博久 長崎市深堀町五丁目717番1号 三菱重 工業株式会社長崎研究所内 (56)参考文献 特開 平7−330488(JP,A) 特開 昭59−207620(JP,A) 特開 昭59−193265(JP,A) 特開 昭61−147880(JP,A) 特開 平4−293784(JP,A) 実開 平5−90939(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 C23C 16/44 C23C 16/50 H01L 31/04 H05H 1/46 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI H05H 1/46 H01L 31/04 A (72) Inventor Hirohisa Yoshida 5-717-1 Fukahori-cho, Nagasaki-shi Mitsubishi Heavy Industries Nagasaki (56) References JP-A-7-330488 (JP, A) JP-A-59-207620 (JP, A) JP-A-59-193265 (JP, A) JP-A-61-147880 (JP, A) JP-A-4-293784 (JP, A) JP-A-5-90939 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/205 C23C 16/44 C23C 16 / 50 H01L 31/04 H05H 1/46

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応容器と;同反応容器内に反応ガスを
供給する反応ガス吐出孔と;反応ガスを前記反応器外に
排出する反応ガス排出孔と;前記反応容器内に設置され
た内側円筒電極及び外側円筒電極から構成の一対の放電
用円筒電極と;同放電用円筒電極にグロー放電発生用電
力を供給する電源と;前記一対の放電用円筒電極間に配
置され、薄膜を形成する円筒基板を加熱するヒータと;
前記一対の放電用電極を包含して配置した電磁コイル
と;同電極コイルに電力を供給する直流電源とから成る
プラズマ化学蒸着装置において、前記外側円筒電極はメ
ッシュ状あるいは格子状のいずれかであり;前記反応ガ
ス吐出孔は前記円筒基板と前記外側円筒電極との間に設
置され、同円筒電極側を向き;前記反応ガス排出孔は前
記反応ガス吐出孔とで前記外側円筒電極を挟むように前
記反応容器側面に配置され;かつ、前記電磁コイルの軸
芯が前記一対の放電用円筒電極の軸芯と一致するように
配置したことを特徴とするプラズマ化学蒸着装置。
A reaction vessel; a reaction gas discharge hole for supplying a reaction gas into the reaction vessel; a reaction gas discharge hole for discharging the reaction gas out of the reactor; and an inside provided in the reaction vessel. A pair of cylindrical electrodes for discharging composed of a cylindrical electrode and an outer cylindrical electrode; a power supply for supplying power for generating a glow discharge to the cylindrical electrodes for discharging; and a thin film formed between the pair of cylindrical electrodes for discharging. A heater for heating the cylindrical substrate;
In a plasma-enhanced chemical vapor deposition apparatus comprising: an electromagnetic coil including the pair of discharge electrodes and a DC power supply for supplying power to the electrode coil, the outer cylindrical electrode has a mesh shape or a grid shape. The reaction gas discharge hole is provided between the cylindrical substrate and the outer cylindrical electrode and faces the cylindrical electrode side; and the reaction gas discharge hole is sandwiched between the reaction gas discharge hole and the outer cylindrical electrode. A plasma chemical vapor deposition apparatus disposed on a side surface of the reaction vessel; and arranged so that an axis of the electromagnetic coil coincides with an axis of the pair of discharge cylindrical electrodes.
JP09682796A 1996-04-18 1996-04-18 Plasma chemical vapor deposition equipment Expired - Fee Related JP3281796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09682796A JP3281796B2 (en) 1996-04-18 1996-04-18 Plasma chemical vapor deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09682796A JP3281796B2 (en) 1996-04-18 1996-04-18 Plasma chemical vapor deposition equipment

Publications (2)

Publication Number Publication Date
JPH09283452A JPH09283452A (en) 1997-10-31
JP3281796B2 true JP3281796B2 (en) 2002-05-13

Family

ID=14175395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09682796A Expired - Fee Related JP3281796B2 (en) 1996-04-18 1996-04-18 Plasma chemical vapor deposition equipment

Country Status (1)

Country Link
JP (1) JP3281796B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101477575B1 (en) * 2013-02-14 2014-12-30 재단법인 철원플라즈마 산업기술연구원 Plasma processing system for powder
CN107321997A (en) * 2017-06-29 2017-11-07 成都磁动势科技有限公司 The processing method of magnetic

Also Published As

Publication number Publication date
JPH09283452A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
US6142096A (en) Electronic device manufacturing apparatus and method for manufacturing electronic device
JP3377773B2 (en) Power supply method to discharge electrode, high-frequency plasma generation method, and semiconductor manufacturing method
JPS59193265A (en) Plasma cvd apparatus
AU594107B2 (en) Method for preparation of multi-layer structure film
JPH0510428B2 (en)
JPS6248753B2 (en)
JP3281796B2 (en) Plasma chemical vapor deposition equipment
JP3249356B2 (en) Plasma chemical vapor deposition equipment
US5582648A (en) Apparatus for preparing a functional deposited film by microwave plasma chemical vapor deposition
US5338580A (en) Method of preparation of functional deposited film by microwave plasma chemical vapor deposition
US5449880A (en) Process and apparatus for forming a deposited film using microwave-plasma CVD
AU1638799A (en) Plasma CVD apparatus
TW200939903A (en) Plasma treatment equipment
JPH06295866A (en) Plasma reaction system
JP3068604B2 (en) Plasma CVD equipment
JP3513206B2 (en) Method and apparatus for forming deposited film
JP2002012977A (en) Apparatus and method for surface treatment
JP2798225B2 (en) High frequency plasma CVD equipment
JPH0364466A (en) Production of amorphous silicon-based semiconductor film
JPH09283449A (en) Plasma chemical vapor deposition system
JP2002060953A (en) Surface treating device and surface treating method
JP3276445B2 (en) Plasma CVD equipment
JP2002016006A (en) Device and method for surface treatment
JP2833044B2 (en) Thin film formation method
JP2005039051A (en) Coaxial cable for high frequency power supply, plasma surface treatment apparatus comprising the same, and a plasma surface treatment method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020129

LAPS Cancellation because of no payment of annual fees