JP3281098B2 - Composite solid electrolyte and method for producing the same - Google Patents

Composite solid electrolyte and method for producing the same

Info

Publication number
JP3281098B2
JP3281098B2 JP06135993A JP6135993A JP3281098B2 JP 3281098 B2 JP3281098 B2 JP 3281098B2 JP 06135993 A JP06135993 A JP 06135993A JP 6135993 A JP6135993 A JP 6135993A JP 3281098 B2 JP3281098 B2 JP 3281098B2
Authority
JP
Japan
Prior art keywords
alumina
solid electrolyte
coating layer
producing
nasicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06135993A
Other languages
Japanese (ja)
Other versions
JPH06256076A (en
Inventor
康之 水嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP06135993A priority Critical patent/JP3281098B2/en
Publication of JPH06256076A publication Critical patent/JPH06256076A/en
Application granted granted Critical
Publication of JP3281098B2 publication Critical patent/JP3281098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、蓄電池、燃料電池、イ
オンセンサー、湿度センサー又はイオン交換膜等に利用
される複合固体電解質およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite solid electrolyte used for a storage battery, a fuel cell, an ion sensor, a humidity sensor, an ion exchange membrane and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】β−アルミナ(Na2O・XAl2
3(Xは9〜11の数を示す)、格子定数a0=0.55
94,C0=2.253nm)またはβ”−アルミナ
(Na2O・XAl23(Xは5〜7の数を示す)、格
子定数a0=0.5595,C0=3.393nm)は、
通常の固体に比べて著しく点欠陥濃度の高い物質であっ
てNa+のイオン伝導率が極めて高いため、従来より固
体電解質、燃料電池等に利用されている。
2. Description of the Related Art β-alumina (Na 2 O.XAl 2 O)
3 (X is a number of 9-11), the lattice constant a 0 = 0.55
94, C 0 = 2.253 nm) or β ″ -alumina (Na 2 O.XAl 2 O 3 (X represents a number of 5 to 7), lattice constant a 0 = 0.5595, C 0 = 3.393 nm )
Since it is a substance having a much higher point defect concentration than ordinary solids and having an extremely high ionic conductivity of Na + , it has been conventionally used for solid electrolytes, fuel cells, and the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、β−ア
ルミナ及びβ”−アルミナは、Na+が非常に動き易い
反面、H2Oと反応し易い。このため、β−アルミナ及
びβ”−アルミナからなる固体電解質は水分の多い環境
下では容易に崩れ易く、耐水性、耐湿性等の耐環境性に
対して非常に問題があった。
However, β-alumina and β ″ -alumina are very easy for Na + to move, but are liable to react with H 2 O. Therefore, β-alumina and β ″ -alumina are difficult to be converted from β-alumina and β ″ -alumina. The solid electrolyte easily breaks down in an environment with a lot of moisture, and has a serious problem with respect to environmental resistance such as water resistance and moisture resistance.

【0004】このため、β−アルミナ又はβ”−アルミ
ナの表面に、耐水、耐湿用のガラス膜を設けることも考
えられるが、この場合は一般にイオン伝導度が悪化して
しまうという問題がある。
For this reason, it is conceivable to provide a water-resistant and moisture-resistant glass film on the surface of β-alumina or β ″ -alumina. However, in this case, there is a problem that ionic conductivity generally deteriorates.

【0005】本発明は上記事情に鑑みてなされたもので
あり、イオン伝導度が良好でかつ耐水性、耐湿性等の耐
環境性にも優れた固体電解質及びその製造方法を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a solid electrolyte having good ionic conductivity and excellent environmental resistance such as water resistance and moisture resistance, and a method for producing the same. And

【0006】[0006]

【課題を解決するための手段】請求項1記載の複合固体
電解質では、β−アルミナまたはβ”−アルミナ系固体
電解質の表面に、Nasicon[Na1+XZr2SiX
3-X12(ここで、0≦X≦3)]を主成分とする被
覆層を設けたことを課題を解決するための手段とした。
In the composite solid electrolyte according to the present invention, the surface of β-alumina or β ″ -alumina solid electrolyte is coated with Nasicon [Na 1 + X Zr 2 Si X
The provision of a coating layer containing P 3-X O 12 (where 0 ≦ X ≦ 3)] as a main component is a means for solving the problem.

【0007】ここで、Nasiconを主成分とする被
覆層はNasiconのみから成るものの他に、副成分
としてZrO2やガラス相を含むものであっても良く、
用途に応じてイオン伝導度や耐環境性を考慮して適宜許
容範囲を定めるのが良い。しかし、イオン伝導度を優先
すればNasicon含有量の高い方が好ましい。
Here, the coating layer containing Nasicon as a main component may be a layer containing ZrO 2 or a glass phase as an auxiliary component in addition to a layer consisting of Nasicon alone.
It is preferable that an allowable range is appropriately determined in consideration of ionic conductivity and environmental resistance depending on the application. However, if priority is given to ionic conductivity, a higher Nasicon content is preferred.

【0008】請求項2記載の複合固体電解質の製造方法
では、β−アルミナまたはβ”−アルミナ系固体電解質
の表面に、化学液相法によって上記Nasiconを主
成分とする被覆層を形成することを課題を解決するため
の手段とした。
According to a second aspect of the present invention, in the method for producing a composite solid electrolyte, a coating layer containing Nasicon as a main component is formed on a surface of a β-alumina or β ″ -alumina solid electrolyte by a chemical liquid phase method. It is a means to solve the problem.

【0009】ここで、上記化学液相法としては、金属ア
ルコキシド、有機金属化合物等の原料を用いたゾルゲル
法等が好適である。また、上記化学液相法によってNa
siconを主成分とする被覆層を形成する場合の膜厚
は、0.01〜10μmが好ましく、1μm程度が最適
である。0.01μm未満では、均一な被覆層が得られ
ず耐水性、耐湿性等の耐環境性を改善するための効果が
小さくなり、10μmを越えると低温域におけるイオン
伝導度が悪くなると共に上記被覆層が剥がれ易くなる。
Here, as the chemical liquid phase method, a sol-gel method using raw materials such as metal alkoxides and organometallic compounds is suitable. Further, Na is obtained by the chemical liquid phase method described above.
When forming a coating layer containing silicon as a main component, the thickness is preferably 0.01 to 10 μm, and most preferably about 1 μm. When the thickness is less than 0.01 μm, a uniform coating layer cannot be obtained, and the effect of improving environmental resistance such as water resistance and moisture resistance is reduced. The layer is easily peeled.

【0010】請求項3記載の複合固体電解質の製造方法
では、β−アルミナまたはβ”−アルミナ系固体電解質
の表面に、気相成長法によって上記Nasiconを主
成分とする被覆層を形成することを課題を解決するため
の手段とした。
According to a third aspect of the present invention, there is provided a method for producing a composite solid electrolyte, comprising forming a coating layer containing Nasicon as a main component on a surface of a β-alumina or β ″ -alumina solid electrolyte by a vapor phase growth method. It is a means to solve the problem.

【0011】上記気相成長法としては、CVD法(化学
気相成長法)、PVD法(物理気相蒸着法)等が好適で
ある。
As the above-mentioned vapor phase growth method, a CVD method (chemical vapor deposition method), a PVD method (physical vapor deposition method) and the like are suitable.

【0012】また、気相法によって被覆層を形成する場
合の膜厚は、1nm〜1μmが好ましく、特に0.1〜
1μmが望ましい。1nm未満では、被覆層の均一性に
乏しくまた被覆層自身の劣化により耐環境性を改善する
ための効果が小さくなり、1μmを越えると、時間がか
かりコスト高になる。
When the coating layer is formed by a vapor phase method, the thickness is preferably 1 nm to 1 μm, particularly 0.1 to 1 μm.
1 μm is desirable. When the thickness is less than 1 nm, the uniformity of the coating layer is poor, and the effect of improving the environmental resistance is reduced due to the deterioration of the coating layer itself.

【0013】[0013]

【作用】Nasiconは、NaOとAl23が層状構
造をなすβ−アルミナ及びβ”−アルミナとは異なり、
Zr−Si−P−Oの三次元網目構造中にNa+を含有
している構造をとっている。この構造上の相違により、
Nasicon中のNa+はβ−アルミナ等のそれに比
べてH2Oと反応しにくいものと推定される。従って、
β−アルミナまたはβ”−アルミナ上にNasicon
層を被覆することによって、耐水性が改善される。
Nasicon is different from β-alumina and β ″ -alumina in which NaO and Al 2 O 3 form a layered structure.
It has a structure in which Na + is contained in a three-dimensional network structure of Zr—Si—PO. Due to this structural difference,
It is presumed that Na + in Nasicon is less likely to react with H 2 O than that of β-alumina or the like. Therefore,
Nasicon on β-alumina or β ″ -alumina
By coating the layer, the water resistance is improved.

【0014】また、Nasicon自体も特に高温域に
おいてはイオン伝導度に優れているので、Nasico
n層を被覆したβ−アルミナのイオン伝導度は良好に維
持され、一方低温域においても被覆層の厚さを薄くする
ことによってβ−アルミナのイオン伝導度は良好に維持
される。
Further, Nasicon itself has excellent ionic conductivity especially in a high temperature range, and
The ionic conductivity of β-alumina coated with the n-layer is well maintained, while the ionic conductivity of β-alumina is well maintained even in a low temperature range by reducing the thickness of the coating layer.

【0015】[0015]

【実施例1】ジルコニウムブトキシド;Zr(OC
494溶液(Huls社製)40gにトリエタノールアミ
ン;(HOC243N 10.95gを加えて攪拌し、
エタノール100mlを添加した。これにオルトケイ酸テ
トラエチル;Si(OC25421.72g,リン酸
トリエチル;(C25O)3PO 9.495g,ナトリ
ウムメトキシド;CH3ONa 8.459gを入れて加
熱、攪拌した。これにエタノール100mlで薄めた水2
0.64gを徐々に加えて加水分解を行った。この溶液
中に20×20×5mmの寸法のβ−アルミナ片を浸漬
してコートした。その後、1200℃×2時間で焼成し
て被覆層を形成したβ−アルミナ片を得た。被覆層につ
いてX線回折法にて結晶相を調べたところ、Nasic
on(Na3Zr2Si2PO12, Na3.4Zr2Si2.4
0.612)と少量のZrO2が確認された。膜厚は2〜3
μmであった。
Example 1 Zirconium butoxide; Zr (OC
10.95 g of triethanolamine; (HOC 2 H 4 ) 3 N was added to 40 g of 4 H 9 ) 4 solution (manufactured by Huls), and the mixture was stirred.
100 ml of ethanol were added. This tetraethylorthosilicate; Si (OC 2 H 5) 4 21.72g, triethyl phosphate; (C 2 H 5 O) 3 PO 9.495g, sodium methoxide; CH 3 heating put ONa 8.459g, Stirred. Water 2 diluted with 100 ml of ethanol
Hydrolysis was performed by gradually adding 0.64 g. A β-alumina piece having a size of 20 × 20 × 5 mm was immersed in the solution to coat. Then, it was fired at 1200 ° C. for 2 hours to obtain a β-alumina piece having a coating layer formed thereon. When the crystal phase of the coating layer was examined by an X-ray diffraction method,
on (Na 3 Zr 2 Si 2 PO 12 , Na 3.4 Zr 2 Si 2.4 P
0.6 O 12 ) and a small amount of ZrO 2 were confirmed. The film thickness is 2-3
μm.

【0016】この被覆層を形成したβ−アルミナ片とし
ないものとで、可逆電極を用いた直接法で300℃にお
けるイオン伝導度を測定したところ、被覆層を形成した
β−アルミナ片では0.37Ω-1cm-1、被覆層を形成
していないものでは0.42Ω-1cm-1であった。
When the ionic conductivity at 300 ° C. was measured by a direct method using a reversible electrode between the β-alumina piece having the coating layer and the non-β-alumina piece having the coating layer, the β-alumina piece having the coating layer had a ionic conductivity of 0.3%. 37Ω -1 cm -1, but not to form a coating layer was 0.42Ω -1 cm -1.

【0017】次にこの被覆層を形成したβ−アルミナ片
を湿度75%、40℃の恒温恒湿槽に入れ、1週間放置
した。また、比較のために被覆層を形成していないβ−
アルミナ片(寸法20×20×5mm)を入れて同様に
放置した。
Next, the β-alumina piece on which the coating layer was formed was placed in a constant temperature / humidity bath at a humidity of 75% and a temperature of 40 ° C., and allowed to stand for one week. Further, for comparison, β-
Alumina pieces (dimensions 20 × 20 × 5 mm) were put and left in the same manner.

【0018】その結果、Nasicon被覆層を形成し
たβ−アルミナ片では変化が見られなかったが、被覆層
を形成していないβ−アルミナ片では、表面が溶け出し
たようになり、腐食が起こっていた。
As a result, no change was observed in the β-alumina piece having the Nasicon coating layer formed thereon. I was

【0019】[0019]

【実施例2】原料として、ジルコニウムブトキシド;Z
r(OC494,リン酸トリエチル;(C25O)3
O,ナトリウムイソプロポキシド;NaOC37,シリ
コンエトキシド;Si(OC254を使用し、MOC
VD(Metal Organic Chemical Vapor Deposition)装
置を用いて被覆を行った。
Example 2 Zirconium butoxide; Z as raw material
r (OC 4 H 9 ) 4 , triethyl phosphate; (C 2 H 5 O) 3 P
O, sodium isopropoxide; NaOC 3 H 7 , silicon ethoxide; Si (OC 2 H 5 ) 4 and MOC
Coating was performed using a VD (Metal Organic Chemical Vapor Deposition) apparatus.

【0020】まず、原料を100〜180℃で加熱して
原料蒸気を得た。次いで、これをキャリアガスであるA
rでβ−アルミナ基板上に運び、ここでキャリアガスA
rにO2を体積基準で20〜30%混合し、1〜10Tor
r程度の圧力で約90分間析出処理を行った。この際、
成膜温度は外熱式反応炉において900〜1100℃に
設定した。
First, the raw material was heated at 100 to 180 ° C. to obtain a raw material vapor. Next, this is used as the carrier gas A
r onto the β-alumina substrate, where the carrier gas A
r is mixed with 20-30% by volume of O 2 , and 1-10 Torr
A precipitation treatment was performed at a pressure of about r for about 90 minutes. On this occasion,
The film formation temperature was set at 900 to 1100 ° C. in an external heating type reaction furnace.

【0021】その結果、厚さ約200nmの被覆層を有
するβ−アルミナ基板を得た。この被覆層について薄膜
X線回折法にて結晶相を調べたところ、Nasicon
(Na3Zr2Si2PO12)の存在が確認された。
As a result, a β-alumina substrate having a coating layer having a thickness of about 200 nm was obtained. The crystal phase of this coating layer was examined by a thin film X-ray diffraction method.
The presence of (Na 3 Zr 2 Si 2 PO 12 ) was confirmed.

【0022】実施例1と同様にしてイオン伝導度を測定
した結果、被覆層を形成していないものが0.42Ω-1
cm-1(300℃)であるのに対して、被覆層を形成し
たものでは0.40Ω-1cm-1(300℃)であり、被
覆層を形成してもイオン伝導度を良好に維持できること
が判明した。
The ion conductivity was measured in the same manner as in Example 1. As a result, 0.42 Ω −1 was obtained without the coating layer.
cm.sup.- 1 (300.degree. C.), but 0.40 .OMEGA..sup.- 1 cm.sup.- 1 (300.degree. C.) in the case where the coating layer was formed. It turns out that it can be done.

【0023】さらに、このNasiconを被覆したβ
−アルミナ基板に、実施例1と同様の耐湿性試験を行っ
た結果、表面に変化が見られず、良好な耐水性を示し
た。
Furthermore, β coated with this Nasicon
The same moisture resistance test as in Example 1 was performed on the alumina substrate. As a result, no change was observed on the surface, and good water resistance was exhibited.

【0024】[0024]

【発明の効果】以上説明したように請求項1記載の複合
固体電解質では、β−アルミナまたはβ”−アルミナ系
固体電解質の表面に、Nasiconを主成分とする被
覆層を設けたものであるので、イオン伝導度を良好に維
持しつつ、耐水性、耐湿性等の耐環境性を改善すること
ができる。
As described above, in the composite solid electrolyte according to the first aspect, a coating layer containing Nasicon as a main component is provided on the surface of a β-alumina or β ″ -alumina solid electrolyte. In addition, environmental resistance such as water resistance and moisture resistance can be improved while maintaining good ion conductivity.

【0025】請求項2記載の複合固体電解質の製造方法
では、β−アルミナまたはβ”−アルミナ系固体電解質
の表面に、化学液相法によって上記Nasiconを主
成分とする被覆層を形成する方法であるので、低コスト
で膜厚の大きいものまで容易に製造することができる。
According to a second aspect of the present invention, there is provided a method for producing a composite solid electrolyte, the method comprising forming a coating layer containing Nasicon as a main component on a surface of a β-alumina or β ″ -alumina solid electrolyte by a chemical liquid phase method. As a result, it is possible to easily produce a film having a large thickness at a low cost.

【0026】請求項3記載の複合固体電解質の製造方法
では、β−アルミナまたはβ”−アルミナ系固体電解質
の表面に、気相成長法によって上記Nasiconを主
成分とする被覆層を形成する方法であるので、イオン伝
導度が良好で耐環境性に優れた複合固体電解質を製造す
ることができる。
According to a third aspect of the present invention, there is provided a method for producing a composite solid electrolyte, comprising forming a coating layer containing Nasicon as a main component on a surface of a β-alumina or β ″ -alumina solid electrolyte by a vapor phase growth method. As a result, a composite solid electrolyte having good ionic conductivity and excellent environmental resistance can be manufactured.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】β−アルミナまたはβ”−アルミナ系固体
電解質の表面に、Nasicon[Na1+XZr2SiX
3-X12(ここで、0≦X≦3)]を主成分とする被
覆層が設けられていることを特徴とする複合固体電解
質。
(1) Nasicon [Na 1 + X Zr 2 Si X is coated on the surface of β-alumina or β ″ -alumina solid electrolyte.
P 3-X O 12 (where 0 ≦ X ≦ 3)].
【請求項2】β−アルミナまたはβ”−アルミナ系固体
電解質の表面に、化学液相法によってNasicon
[Na 1+X Zr Si 3−X 12 (ここで、0
≦X≦3)]を主成分とする被覆層を形成することを特
徴とする複合固体電解質の製造方法。
Wherein β- alumina or beta "- to the surface of the alumina-based solid electrolyte by chemical liquid phase N Asicon
[Na 1 + X Zr 2 Si X P 3-X O 12 ( where 0
.Ltoreq.X.ltoreq.3)] . A method for producing a composite solid electrolyte, comprising:
【請求項3】β−アルミナまたはβ”−アルミナ系固体
電解質の表面に、気相成長法によってNasicon
[Na 1+X Zr Si 3−X 12 (ここで、0
≦X≦3)]を主成分とする被覆層を形成することを特
徴とする複合固体電解質の製造方法。
3. β- alumina or beta "- to the surface of the alumina-based solid electrolyte, by the vapor deposition N Asicon
[Na 1 + X Zr 2 Si X P 3-X O 12 ( where 0
.Ltoreq.X.ltoreq.3)] . A method for producing a composite solid electrolyte, comprising:
JP06135993A 1993-02-26 1993-02-26 Composite solid electrolyte and method for producing the same Expired - Fee Related JP3281098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06135993A JP3281098B2 (en) 1993-02-26 1993-02-26 Composite solid electrolyte and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06135993A JP3281098B2 (en) 1993-02-26 1993-02-26 Composite solid electrolyte and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06256076A JPH06256076A (en) 1994-09-13
JP3281098B2 true JP3281098B2 (en) 2002-05-13

Family

ID=13168892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06135993A Expired - Fee Related JP3281098B2 (en) 1993-02-26 1993-02-26 Composite solid electrolyte and method for producing the same

Country Status (1)

Country Link
JP (1) JP3281098B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6275822B2 (en) * 2014-03-20 2018-02-07 株式会社東芝 Non-aqueous electrolyte battery active material, non-aqueous electrolyte battery electrode, non-aqueous electrolyte secondary battery, battery pack, and method for producing non-aqueous electrolyte battery active material

Also Published As

Publication number Publication date
JPH06256076A (en) 1994-09-13

Similar Documents

Publication Publication Date Title
Béchade et al. Diffusion path and conduction mechanism of oxide ions in apatite-type lanthanum silicates
Shim et al. Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells
de Rouffignac et al. Atomic layer deposition of Y2O3 thin films from yttrium tris (N, N ‘-diisopropylacetamidinate) and Water
Kueper et al. Thin-film ceramic electrolytes deposited on porous and non-porous substrates by sol-gel techniques
Windisch Jr et al. Mott–Schottky analysis of thin ZnO films
JP2004523086A (en) Cathode side hardware for sol-gel coated carbonate fuel cell
WO1999023103A1 (en) Anhydrous mononuclear tris(beta-diketonate) bismuth compositions for deposition of bismuth-containing films, and method of making the same
JP3281098B2 (en) Composite solid electrolyte and method for producing the same
Krumdieck et al. YSZ layers by pulsed-MOCVD on solid oxide fuel cell electrodes
Dunyushkina et al. Microstructure, hardness, and electrical behavior of Y-doped CaZrO 3 films prepared by chemical solution deposition
JPH0229614B2 (en)
Xie et al. Fabrication of yttrium-doped barium zirconate thin films with sub-micrometer thickness by a sol–gel spin coating method
CN114752028B (en) Solvent-free preparation method and application of covalent organic framework COFs film
JP6277507B2 (en) Inorganic solid ionic conductor, method for producing the same, and electrochemical device
JP4096435B2 (en) Method for producing zirconium oxide and thin film
JP3939212B2 (en) Proton conductive composition
Majidzade et al. Electrochemical deposition of Sb2S3 thin films
Mereacre et al. Strong-Acid-Catalyzed Formation of Crystalline LiNbO3 at Low Ambient Temperatures
NL8101479A (en) ELECTRICAL DEVICE AND METHOD FOR MANUFACTURING SUCH A DEVICE.
Wolfenstine et al. Reaction of Li 0.33 La 0.57 TiO 3 with water
Coulibaly et al. Effect of zirconium hydrolysis degree on the dielectric properties of PbZrO3
JPS6154439A (en) Manufacture of fluoride sensitive film
Mohammed et al. Investigation of the nanomechanical properties of crystalline anatase titanium dioxide films synthesized using atomic layer deposition
Mirahmadi et al. Improvement of plasma-sprayed YSZ electrolytes for solid oxide fuel cells by alumina addition
STEINHAUSER Sol-gel preparation of ion-conducting ceramics for use in thin films(Ph. D. Thesis)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020212

LAPS Cancellation because of no payment of annual fees