JP3278019B2 - Accuracy correction method for articulated robots - Google Patents

Accuracy correction method for articulated robots

Info

Publication number
JP3278019B2
JP3278019B2 JP13657894A JP13657894A JP3278019B2 JP 3278019 B2 JP3278019 B2 JP 3278019B2 JP 13657894 A JP13657894 A JP 13657894A JP 13657894 A JP13657894 A JP 13657894A JP 3278019 B2 JP3278019 B2 JP 3278019B2
Authority
JP
Japan
Prior art keywords
component
length
arm
temperature rise
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13657894A
Other languages
Japanese (ja)
Other versions
JPH07314367A (en
Inventor
智 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP13657894A priority Critical patent/JP3278019B2/en
Publication of JPH07314367A publication Critical patent/JPH07314367A/en
Application granted granted Critical
Publication of JP3278019B2 publication Critical patent/JP3278019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、多関節ロボットの精度
補正方法に関し、とくに温度変化によるアーム等の熱膨
張に対する補正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting the accuracy of an articulated robot, and more particularly to a method for correcting thermal expansion of an arm or the like due to a temperature change.

【0002】[0002]

【従来の技術】従来、複数のアームを関節によって結合
した多関節ロボットを動作させる場合、アームの姿勢が
変化した時にアームの重量や温度変化等によってアーム
が変位し、制御すべきアームの位置である制御点の座標
と実際の作業点の座標の間にずれが生じるため、制御点
の座標を補正して精度を維持する必要があった。その補
正方法として、変位した状態のアームの各関節の位置デ
ータとして各アームの傾斜角や長さを測定してロボット
座標から直交座標に座標変換を行い、制御点との3次元
のずれを測定して、そのずれの3次元データにより、ロ
ボットの直交座標上の制御点を補正し、次の目標点を計
算するようにしたものが開示されている(例えば、特開
昭61−235909号)。
2. Description of the Related Art Conventionally, when an articulated robot in which a plurality of arms are connected by joints is operated, when the posture of the arm changes, the arm is displaced by a change in the weight or temperature of the arm, and the position of the arm to be controlled is changed. Since a deviation occurs between the coordinates of a certain control point and the coordinates of the actual working point, it is necessary to correct the coordinates of the control point to maintain the accuracy. As a correction method, the tilt angle and length of each arm are measured as position data of each joint of the displaced arm, coordinate conversion is performed from robot coordinates to rectangular coordinates, and three-dimensional deviation from control points is measured. Then, a control point on the orthogonal coordinates of the robot is corrected based on the three-dimensional data of the deviation, and the next target point is calculated (for example, Japanese Patent Application Laid-Open No. Sho 61-235909). .

【0003】[0003]

【発明が解決しようとする課題】ところが、従来技術で
は、各アームの傾斜角度を測定して、座標変換の演算を
する必要があるが、傾斜角度を正確に測定するための計
測器や座標変換のための演算装置が必要であるととも
に、測定や演算のために多くの時間がかかっていた。と
くに、複数のアームを駆動する駆動モータを、アームを
支えるベース上に取り付けたり、アームの中に内蔵する
多関節ロボットでは、駆動モータの熱が各アームに伝達
され、温度上昇によりアームの長さが変化し、アームの
作業点で数mmの誤差が生じることがあるが、作業点と
制御点との3次元のずれを測定して制御点を補正する方
法では、演算時間が多くかかり、作業効率が低下すると
いう問題があった。本発明は、アームの傾斜角の測定を
なくし、制御点の補正演算を簡単にして、アームの精度
補正時間を低減することができる多関節ロボットの精度
補正方法を提供することを目的とするものである。
In the prior art, however, it is necessary to measure the tilt angle of each arm and calculate the coordinate conversion. However, there is a measuring instrument or coordinate conversion for accurately measuring the tilt angle. In addition to the necessity of an arithmetic unit for the measurement, much time is required for measurement and calculation. In particular, in the case of a multi-joint robot in which a drive motor for driving a plurality of arms is mounted on a base that supports the arms, or in an articulated robot that is built in the arms, the heat of the drive motor is transmitted to each arm, and the length of the arm is increased due to a temperature rise. May change and an error of several mm may occur at the working point of the arm. However, the method of measuring the three-dimensional deviation between the working point and the control point and correcting the control point requires a lot of calculation time, and There is a problem that the efficiency is reduced. SUMMARY OF THE INVENTION It is an object of the present invention to provide an accuracy correction method for an articulated robot that eliminates measurement of an angle of inclination of an arm, simplifies correction calculation of a control point, and can reduce the time required for accuracy correction of an arm. It is.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明は、関節によって結合された複数の構成要素
を備え、温度上昇によって変位する前記各構成要素の制
御点の位置を補正する多関節ロボットの精度補正方法に
おいて、前記多関節ロボットの動作前後に、それぞれ各
構成要素の長さ方向を垂直または水平に同時に位置決め
した状態で、各構成要素を動かすことなく、前記各構成
要素の長さの変位と温度上昇値を求め、前記各構成要素
の長さの変位と温度上昇値との相関関係を求め、前記各
構成要素の温度上昇値から求められる前記各構成要素の
長さの補正値によって前記各構成要素の制御点の位置を
補正するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention comprises a plurality of components connected by a joint and corrects a position of a control point of each of the components which is displaced by a rise in temperature. In the accuracy correction method for an articulated robot, before and after the operation of the articulated robot, the length direction of each component is vertically or horizontally simultaneously positioned, and the length of each component is moved without moving the component. Of the length of each component and the temperature rise value, and the correction of the length of each component obtained from the temperature rise value of each component. The position of the control point of each component is corrected based on the value.

【0005】[0005]

【作用】上記手段により、多関節ロボットの各構成要素
の長さ方向を水平または垂直に位置決めした状態で、動
作前後の各構成要素の長さを測定して、動作前後の温度
上昇などの環境の変化によって変化する各構成要素の長
さの変位を求めるので、各構成要素の傾斜角を測定する
必要がなく、制御点の補正が簡単になる。また、各構成
要素の長さの変位を求める時、同時に各構成要素の温度
上昇値を測定しておくので、ロボットの動作を止めるこ
となく、各構成要素の温度上昇値によってその長さを補
正してロボットの姿勢制御を行うことができる。
With the above means, the length of each component before and after operation is measured in a state where the length direction of each component of the articulated robot is positioned horizontally or vertically, and the environment such as temperature rise before and after operation is measured. Since the displacement of the length of each component that changes with the change of the component is obtained, it is not necessary to measure the inclination angle of each component, and the correction of the control point is simplified. Also, when calculating the displacement of the length of each component, the temperature rise value of each component is measured at the same time, so that the length is corrected by the temperature rise value of each component without stopping the operation of the robot To control the posture of the robot.

【0006】[0006]

【実施例】以下、本発明を図に示す実施例について説明
する。図1は本発明の実施例を示す側面図である。図に
おいて、ロボット1のベース11の上には、地面に対し
て垂直な旋回軸S1 の回りに旋回し得る旋回台12を設
けてあり、旋回台12の上部には水平方向に伸びる旋回
軸S2 の回りに旋回し得る第1アーム13を設けてあ
る。第1アーム13の先端には旋回軸S2 に平行な旋回
軸S3 の回りに旋回し得る第2アーム14を設けてあ
り、第2アーム14の先端には旋回軸S3 に平行な旋回
軸S4 の回りに旋回し得る手首部15を設けてある。旋
回台12には、要部を拡大した図2(a)に示すよう
に、旋回軸S2 を含み、地面に垂直な測定面21と地面
に平行な測定面22とを備えたブロック2を取り付けて
ある。第1アーム13には、図2(b)に示すように、
第1アーム13が水平の位置にある時に、旋回軸S3
含み、地面に垂直な測定面31を備えたブロック3を取
り付けてある。第2アーム14には、図2(c)に示す
ように、第2アーム14が地面に対して垂直な位置にあ
る時、旋回軸S4 を含み、水平な測定面41を備えたブ
ロック4を取りつけてある。また、旋回台12、第1ア
ーム13、第2アーム14などの各構成要素には、それ
ぞれの温度を測定するための熱電対などの温度測定器5
(51、52、53)を取りつけてある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 is a side view showing an embodiment of the present invention. In the figure, a swivel 12 capable of swiveling around a swivel axis S 1 perpendicular to the ground is provided on a base 11 of the robot 1, and a swivel axis extending in a horizontal direction is provided above the swivel base 12. the first arm 13 may pivot about the S 2 is provided. The tip of the first arm 13 is provided with a second arm 14 which may pivot about a pivot axis S parallel to pivot axis 2 S 3, pivoting parallel to the pivot axis S 3 at the tip of the second arm 14 the wrist unit 15 may pivot about axis S 4 is provided. The swivel slide 12, as shown in FIG. 2 (a) of an enlarged main part includes a pivot axis S 2, a block 2 which includes a parallel measurement surface 22 perpendicular to the measurement surface 21 and the ground on the ground It is attached. As shown in FIG. 2B, the first arm 13
When the first arm 13 is in the horizontal position, comprising a pivot axis S 3, it is mounted a block 3 provided with a vertical measuring surface 31 on the ground. The second arm 14, as shown in FIG. 2 (c), when the second arm 14 is in a position perpendicular to the ground, includes a pivot shaft S 4, block 4 provided with a horizontal measuring surface 41 Is installed. Each component such as the swivel 12, the first arm 13, and the second arm 14 has a temperature measuring device 5 such as a thermocouple for measuring the respective temperatures.
(51, 52, 53) are attached.

【0007】ロボット1の温度上昇による精度補正をす
る場合、まず、動作前の旋回台12の旋回軸S2 までの
高さH、旋回軸S1 から旋回軸S2 までの水平方向の長
さL0 、第1アーム13の長さL1 、第2アーム14の
長さL2 および各構成要素の温度を温度測定器5により
測定しておく。ロボット1の姿勢は、第1アーム13お
よび第2アーム14の作業範囲から外れた範囲に旋回台
12を旋回して測定位置におき、第1アーム13を水平
に位置決めし、第2アーム14を垂直に位置決めする。
この状態で定位置に固定されたダイヤルゲージなどの長
さ測定器Aによりブロック2の測定面21の水平方向位
置(旋回軸S2 の水平方向位置)を測定、長さ測定器B
によりブロック2の測定面22の垂直方向位置(旋回軸
2 の高さ)を測定、長さ測定器Cによりブロック3の
測定面31の水平方向位置(旋回軸S3 の水平方向位
置)を測定、長さ測定器Dによりブロック4の測定面4
1の垂直方向位置(旋回軸S4 の高さ)を測定し、各測
定値を0に合わせる。次に、ロボット1を作業範囲に入
れて動作を開始し、各構成要素の温度が上昇した時に、
再度、ロボット1を作業範囲から測定位置に旋回し、第
1アーム13を水平に位置決めし、第2アーム14を垂
直に位置決めする。この状態で温度測定器5により各構
成要素の温度を測定すると共に、動作前と同様に、長さ
測定器Aによりブロック2の測定面21の変位δA を測
定、長さ測定器Bによりブロック2の測定面22の変位
δB を測定、長さ測定器Cによりブロック3の測定面3
1の変位δC を測定、長さ測定器Dによりブロック4の
測定面41の変位δD を測定する。ここで、温度上昇に
よる各構成要素の長さを補正する。すなわち、補正後の
旋回台12の高さをH’、旋回台12の水平方向長さを
0 ’、第1アーム13の長さをL1 ’,第2アーム1
4の長さをL2 ’とすると、 H’=H+δB0 ’=L0 +δA1 ’=L1 −δA +δC2 ’=L2 −δB +δD となる。このようにして、温度上昇の値を数点採り、各
温度上昇値における各構成要素の長さの補正値を決め
て、温度上昇値と各構成要素の長さの相関関係を求めて
おくと、ロボットの動作中に各構成要素の長さを測定す
ることなく、各構成要素の温度上昇を測定するだけで、
間接的に各構成要素の温度上昇による各構成要素の長さ
の補正値を求めることができる。この各構成要素の長さ
の補正値を、ロボットの制御装置に入力して制御するこ
とにより、ロボットの制御点の温度上昇による誤差をな
くすることができる。
[0007] When the accuracy correction due to the temperature rise of the robot 1, firstly, the horizontal length of the height H to the pivot axis S 2 of the pre-operation of the swivel base 12, from the pivot axis S 1 to the pivot axis S 2 L 0, keep the length of the first arm 13 L 1, the temperature of the length L 2 and the components of the second arm 14 is measured by the temperature measuring instrument 5. The posture of the robot 1 is such that the turntable 12 is turned to a measurement position by turning the turntable 12 out of the working range of the first arm 13 and the second arm 14, the first arm 13 is positioned horizontally, and the second arm 14 is moved. Position vertically.
Measuring the horizontal position of the measurement surface 21 of the block 2 by the length measuring device A, such as fixed dial gauge in position (horizontal position of the pivot axis S 2) in this state, the length measuring device B
Measuring the vertical position of the measurement surface 22 of the block 2 (the height of the pivot axis S 2), the horizontal position of the measurement surface 31 of the block 3 by the length measuring device C (the horizontal position of the swivel axis S 3) Measurement, measurement surface 4 of block 4 by length measuring device D
1 vertical position (height of the pivot axis S 4) is measured and matched to the respective measurement values to zero. Next, the robot 1 is put into the working range and starts operation, and when the temperature of each component rises,
Again, the robot 1 is turned from the working range to the measurement position, the first arm 13 is positioned horizontally, and the second arm 14 is positioned vertically. In this state, the temperature of each component is measured by the temperature measuring device 5, the displacement δ A of the measurement surface 21 of the block 2 is measured by the length measuring device A, and the block is measured by the length measuring device B as before the operation. The displacement δ B of the measurement surface 22 of the block 2 is measured, and the measurement surface 3 of the block 3 is measured by the length measuring device C.
Measuring the first displacement [delta] C, to measure the displacement [delta] D of the measurement surface 41 of the block 4 by the length measuring device D. Here, the length of each component due to the temperature rise is corrected. That is, the height of the swivel table 12 after the correction is H ′, the horizontal length of the swivel table 12 is L 0 ′, the length of the first arm 13 is L 1 ′, and the second arm 1 is
Assuming that the length of L 4 is L 2 ′, H ′ = H + δ B L 0 ′ = L 0 + δ A L 1 ′ = L 1 −δ A + δ C L 2 ′ = L 2 −δ B + δ D In this way, several values of the temperature rise are taken, the correction value of the length of each component at each temperature rise value is determined, and the correlation between the temperature rise value and the length of each component is determined. , Without measuring the length of each component during the operation of the robot, just measuring the temperature rise of each component,
Indirectly, a correction value of the length of each component due to the temperature rise of each component can be obtained. By inputting and controlling the correction value of the length of each component to the control device of the robot, it is possible to eliminate an error due to a rise in the temperature of the control point of the robot.

【0008】図3は、他の実施例を示す側面図で、第2
アーム14の旋回軸S3 と手首部15の旋回軸S4 にブ
ロック6および7を設け、長さ測定器を一方側に集めて
各構成要素の長さを求める方法を示すものである。すな
わち、最初、第1アーム13を水平に、第2アームを垂
直に位置決めする。この状態で、長さ測定器Aによって
旋回軸S3 の水平方向変位δA を測定、長さ測定器Bに
よって旋回軸S2 の高さの変位δB を測定、長さ測定器
Dによって旋回軸S4 の高さの変位δD を測定する。次
に、点線で示すように、第1アーム13を垂直に位置決
めし、第2アーム14を水平に位置決めして、長さ測定
器Cによって旋回軸S4 の水平方向変位δCを測定す
る。補正後の各構成要素の長さは、 H’=H+δB0 ’=L0 +δD −δB −δC1 ’=L1 +δA +δC +δB −δD2 ’=L2 −δB +δD となる。なお、上記は旋回軸が4軸の場合について説明
したが、旋回する部材を水平方向または垂直方向に位置
決めして、各構成要素材の長さの変位と各構成要素材の
温度上昇値とを求めることにより、1軸以上のロボット
の各構成要素材の長さの補正値を求めることができる。
また、長さ測定器は接触式のダイヤルゲージに限るもの
ではなく、非接触式の光学式長さ測定器によって測定し
てもよい。
FIG. 3 is a side view showing another embodiment.
The pivot axis S 4 the pivot axis S 3 and wrist portion 15 of the arm 14 provided with block 6 and 7 illustrates a method of attracting length measuring device on one side determine the length of each component. That is, first, the first arm 13 is positioned horizontally and the second arm is positioned vertically. In this state, the horizontal displacement δ A of the turning axis S 3 is measured by the length measuring device A , the height displacement δ B of the turning axis S 2 is measured by the length measuring device B, and the turning is performed by the length measuring device D. The displacement δ D of the height of the axis S4 is measured. Next, as shown by the dotted line, the first arm 13 is positioned vertically, the second arm 14 is positioned horizontally, and the horizontal displacement δ C of the turning axis S 4 is measured by the length measuring device C. The length of each component after correction, H '= H + δ B L 0' = L 0 + δ D -δ B -δ C L 1 '= L 1 + δ A + δ C + δ B -δ D L 2' = L a 2 -δ B + δ D. Although the above description has been given of the case where the number of turning axes is four, the turning member is positioned in the horizontal direction or the vertical direction, and the displacement of the length of each component material and the temperature rise value of each component material are determined. By calculating, the correction value of the length of each component material of the robot having one or more axes can be obtained.
Further, the length measuring device is not limited to a contact type dial gauge, but may be measured by a non-contact type optical length measuring device.

【0009】[0009]

【発明の効果】以上述べたように、本発明によれば、温
度上昇時における多関節ロボットの各構成要素の長さ
、それぞれ各構成要素の長さ方向を垂直または水平に
同時に位置決めした状態で、各構成要素を動かすことな
く各構成要素の長さ測定のための 多関節ロボットの動き
を最小限にして、前記各構成要素の長さの変位と温度上
昇値を、直接または間接に求めて、その値を温度上昇時
の補正値として姿勢制御に利用するので、多関節ロボッ
トの動作前の各構成要素の長さ測定に要する時間も短時
間ですむとともに、動作中のアームの傾斜角などを測定
する必要もなく、制御点の補正演算が極めて簡単にな
り、アームの精度補正時間を低減することができる効果
がある。
As described above, according to the present invention, the length of each component of the articulated robot when the temperature rises can be set so that the length direction of each component is vertical or horizontal.
Do not move each component while positioning at the same time.
Motion of an articulated robot for measuring the length of each component
Minimize the length displacement and temperature of each component
The Noborichi, seeking directly or indirectly, because it utilizes the posture control its value as a correction value at the time of temperature rise, the articulated robot
The time required to measure the length of each component before operation is short
In addition, there is no need to measure the tilt angle of the operating arm and the like, so that the correction calculation of the control point becomes extremely simple, and the accuracy correction time of the arm can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例を示す側面図である。FIG. 1 is a side view showing an embodiment of the present invention.

【図2】 本発明の実施例を示す(a)旋回台上部の要
部拡大図、(b)第1アーム先端部の要部拡大図、およ
び(c)第2アーム先端部の要部拡大図である。
FIGS. 2A and 2B show an embodiment of the present invention, wherein FIG. 2A is an enlarged view of a main part of an upper portion of a swivel base, FIG. 2B is an enlarged view of a main part of a tip end of a first arm, and FIG. FIG.

【図3】 本発明の他の実施例を示す側面図である。FIG. 3 is a side view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ロボット、11 ベース、12 旋回台、13 第
1アーム、14 第2アーム、15 手首部、2、3、
4、6、7 ブロック、21、22、31、41測定
面、5(51、52、53) 温度測定器
1 robot, 11 base, 12 swivel, 13 first arm, 14 second arm, 15 wrist, 2, 3,
4, 6, 7 blocks, 21, 22, 31, 41 measurement surface, 5 (51, 52, 53) Temperature measuring device

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B25J 13/08 B25J 9/10 B25J 19/02 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) B25J 13/08 B25J 9/10 B25J 19/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 関節によって結合された複数の構成要素
を備え、温度上昇によって変位する前記各構成要素の制
御点の位置を補正する多関節ロボットの精度補正方法に
おいて、 前記多関節ロボットの動作前後に、それぞれ各構成要素
の長さ方向を垂直または水平に同時に位置決めした状態
、各構成要素を動かすことなく、前記各構成要素の長
さの変位と温度上昇値を求め、前記各構成要素の長さの
変位と温度上昇値との相関関係を求め、前記各構成要素
の温度上昇値から求められる前記各構成要素の長さの補
正値によって前記各構成要素の制御点の位置を補正する
ことを特徴とする多関節ロボットの精度補正方法。
An accuracy correction method for an articulated robot, comprising: a plurality of components connected by a joint, wherein the position of a control point of each component displaced by a temperature rise is corrected. In the state where the longitudinal direction of each component is simultaneously positioned vertically or horizontally, without moving each component, the displacement of the length of each component and the temperature rise value are obtained, and the Obtaining a correlation between the displacement of the length and the temperature rise value, and correcting the position of the control point of each component by a correction value of the length of each component obtained from the temperature rise value of each component. A method for correcting the accuracy of an articulated robot characterized by the following.
JP13657894A 1994-05-25 1994-05-25 Accuracy correction method for articulated robots Expired - Fee Related JP3278019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13657894A JP3278019B2 (en) 1994-05-25 1994-05-25 Accuracy correction method for articulated robots

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13657894A JP3278019B2 (en) 1994-05-25 1994-05-25 Accuracy correction method for articulated robots

Publications (2)

Publication Number Publication Date
JPH07314367A JPH07314367A (en) 1995-12-05
JP3278019B2 true JP3278019B2 (en) 2002-04-30

Family

ID=15178558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13657894A Expired - Fee Related JP3278019B2 (en) 1994-05-25 1994-05-25 Accuracy correction method for articulated robots

Country Status (1)

Country Link
JP (1) JP3278019B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6398204B2 (en) * 2014-01-29 2018-10-03 株式会社デンソーウェーブ Positioning accuracy correction method for robot apparatus
JP2021019071A (en) * 2019-07-19 2021-02-15 日本電産サンキョー株式会社 Industrial robot and control method of the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124889A (en) * 1985-11-26 1987-06-06 豊田工機株式会社 Robot having arm-length compensating function
JPS62166980A (en) * 1986-01-14 1987-07-23 オムロン株式会社 Method of measuring quantity of backlash in industrial robot
JPS6329804A (en) * 1986-07-23 1988-02-08 Matsushita Electric Ind Co Ltd Automatic calibrating device for arm length of industrial robot
JPH01264786A (en) * 1988-04-11 1989-10-23 Toshiba Corp Industrial robot
JPH0241879A (en) * 1988-08-01 1990-02-13 Fanuc Ltd Correction of position for industrial robot

Also Published As

Publication number Publication date
JPH07314367A (en) 1995-12-05

Similar Documents

Publication Publication Date Title
EP0042960B1 (en) Method and apparatus for calibrating a robot
JP2510216B2 (en) Method for calibrating sensors in industrial robots
US5239855A (en) Positional calibration of robotic arm joints relative to the gravity vector
JPH07186073A (en) Industrial robot calibration method and industrial robot device
JP3326175B2 (en) Method and apparatus for calibrating the motion axis of an industrial robot
KR100253898B1 (en) Trajectory control apparatus and trajectory control method for intra-planar multifreedom scara type of robot, and computer-readable recording medium with trajectory control program for intra-planar multifreedom scara type of robot stored therein
EP1886771B1 (en) Rotation center point calculating method, rotation axis calculating method, program creating method, operation method, and robot apparatus
JPH0464562B2 (en)
JP2983941B2 (en) Measurement error correction method for 3D automatic measurement device
JPH11114777A (en) Method for controlling machine tool
JP3278019B2 (en) Accuracy correction method for articulated robots
JP2010207990A (en) Measuring system
JP2002096232A (en) Controlling method for machine tool
JP3064184B2 (en) Shape measuring instruments
JP2002273676A (en) Control method for machine tool
JPH07178689A (en) Getting-out-of position measuring method for robot arm, and getting-out-of position correcting method and system for this robot arm
JPH09304003A (en) Contact-type 3-d measuring method and its system
JP2000055664A (en) Articulated robot system with function of measuring attitude, method and system for certifying measuring precision of gyro by use of turntable for calibration reference, and device and method for calibrating turntable formed of n-axes
JPH0260475B2 (en)
JPS60127987A (en) Method and device for controlling profiling
JPH0727408B2 (en) Robot handling device with fixed 3D vision
JPH01222311A (en) Curve profile controller for multidegree of freedom work machine
JPH05329786A (en) Industrial robot device
JPH08174453A (en) Measuring device of positioning error in robot device and correcting method for positioning error
US20220097235A1 (en) Delta Robot Calibration Methods, Control System, Delta Robot And Robot System

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees