JP3272968B2 - Absorption air conditioner - Google Patents

Absorption air conditioner

Info

Publication number
JP3272968B2
JP3272968B2 JP33305696A JP33305696A JP3272968B2 JP 3272968 B2 JP3272968 B2 JP 3272968B2 JP 33305696 A JP33305696 A JP 33305696A JP 33305696 A JP33305696 A JP 33305696A JP 3272968 B2 JP3272968 B2 JP 3272968B2
Authority
JP
Japan
Prior art keywords
temperature
heating
regenerator
cooling
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33305696A
Other languages
Japanese (ja)
Other versions
JPH09318183A (en
Inventor
徹 福田
明 鈴木
満 石川
昇 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP33305696A priority Critical patent/JP3272968B2/en
Publication of JPH09318183A publication Critical patent/JPH09318183A/en
Application granted granted Critical
Publication of JP3272968B2 publication Critical patent/JP3272968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式冷暖房装置
に関し、特に、コンパクト化を図りつつ、通常の暖房運
転はヒ−トポンプによる高効率の暖房運転が行えると共
に、熱の汲み上げが難しくなる外気温度が低いときでも
能力を低下させることなく暖房運転を行うことができる
吸収式冷暖房装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption type air conditioner, and more particularly, to a compact air conditioner, which can perform a high efficiency heating operation by a heat pump in a normal heating operation and makes it difficult to pump heat. The present invention relates to an absorption-type air conditioner that can perform a heating operation without lowering the capacity even when the temperature is low.

【0002】[0002]

【従来の技術】従来広く用いられていた水冷式の吸収冷
凍機は、クーリングタワーを初めとする冷却水系の据付
工事や保守ならびに水管理等に多くの手間がかかるとい
う欠点を有していた。このような水冷式吸収冷凍機に代
わるものとして、水を冷媒とし、臭化リチウムを吸収剤
とする空冷式吸収冷凍機が知られている。例えば、特公
平5−67866号公報では、吸収器および凝縮器をフ
ァンで冷却するように構成した空冷式の吸収冷凍機が提
案されている。
2. Description of the Related Art A water-cooled absorption refrigerator which has been widely used in the past has a disadvantage that much work is required for installation work, maintenance and water management of a cooling water system such as a cooling tower. As an alternative to such a water-cooled absorption refrigerator, an air-cooled absorption refrigerator using water as a refrigerant and lithium bromide as an absorbent is known. For example, Japanese Patent Publication No. 5-67866 proposes an air-cooled absorption refrigerator in which an absorber and a condenser are cooled by a fan.

【0003】吸収冷凍機は一般に冷房に用いられるが、
近年、冷房運転だけでなく、吸収器で汲み上げた熱を利
用してヒートポンプ暖房運転も行えるようにした冷暖房
装置に対する需要が高まっている。特開平6−2980
号公報や特公平7−96977号公報には、冷暖房に共
用できる吸収式ヒートポンプ装置や吸収式冷温水機が提
案されている。
[0003] Absorption refrigerators are generally used for cooling.
In recent years, there has been an increasing demand for a cooling and heating device that can perform not only a cooling operation but also a heat pump heating operation using heat pumped by an absorber. JP-A-6-2980
Japanese Patent Application Publication No. 7-96997 and Japanese Patent Publication No. 7-96977 propose an absorption heat pump device and an absorption chiller / heater that can be used for cooling and heating.

【0004】[0004]

【発明が解決しようとする課題】上記公報に記載されて
いるような空冷式吸収冷凍機を冷房運転から暖房運転に
切り替えようとすると構成が非常に複雑になるため、実
用上、暖房運転には使用できないという問題点があっ
た。すなわち、空冷式吸収冷凍機では空気給送のための
ダクトが必要であり、このダクトを冷房用と暖房用とで
簡単に切り替えることは困難であり、該切り替えを行お
うとすると装置が大型化する。
When the air-cooled absorption refrigerator described in the above publication is switched from the cooling operation to the heating operation, the configuration becomes very complicated. There was a problem that it could not be used. That is, the air-cooled absorption refrigerator requires a duct for air supply, and it is difficult to easily switch this duct between cooling and heating, and if the switching is performed, the apparatus becomes large. .

【0005】さらに、吸収冷凍機をヒートポンプ暖房運
転に使用する場合、外気温度が極端に低い地域では外気
から熱を汲み上げるための空冷熱交換器に着霜が生じる
ことがある。そうすると、霜によって熱伝導性が低下す
るため、多量の熱を効率よく汲み上げることができない
という問題点がある。
Further, when an absorption refrigerator is used for a heat pump heating operation, frost may be formed on an air-cooled heat exchanger for drawing heat from outside air in an area where the outside air temperature is extremely low. Then, since the thermal conductivity is reduced by the frost, there is a problem that a large amount of heat cannot be efficiently pumped.

【0006】本発明は、上記問題点を解消し、ヒ−トポ
ンプ運転時に外気との熱交換が簡単な構成を提供し、か
つ、暖房運転時において通常はヒ−トポンプのサイクル
による高効率運転が行えると共に、外気温度が低いため
に熱の汲み上げが難しくなるような条件の下においても
暖房能力低下を防止することができる吸収式冷暖房装置
を提供することを目的とする。
The present invention solves the above-mentioned problems, provides a structure in which heat exchange with the outside air is simple when the heat pump is operated, and enables high efficiency operation by the heat pump cycle during the heating operation. It is an object of the present invention to provide an absorption type air conditioner that can perform heating and prevent a decrease in heating capacity even under conditions where pumping of heat becomes difficult due to low outside air temperature.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決し、目
的を達成するための本発明は、蒸発器と、前記蒸発器で
発生した冷媒蒸気を吸収剤を含む溶液で吸収して吸収熱
を発生する吸収器と、前記溶液の吸収剤濃度を回復させ
るため該溶液を加熱して冷媒蒸気を抽出する再生器と、
前記再生器で抽出された冷媒蒸気に混入した吸収剤を分
離する分縮器と、前記分縮器で吸収剤が分離された冷媒
蒸気を凝縮させて前記蒸発器に回収するための凝縮器
と、前記蒸発器内の冷媒で管内を通過する冷水を冷却す
るための第1管路と、前記吸収器内および前記分縮器に
延長して配置され、前記吸収器内の溶液を管内を通過す
る冷却水で冷却すると共に前記分縮器で発生した蒸気を
管内を通過する冷却水で冷却するため前記第2管路と、
冷暖房用の風を室内に吹き込むための室内機と、前記冷
却水および冷水と外気との熱交換をする顕熱交換器と、
冷房運転時には前記第1管路で冷却された冷水を前記室
内機に導くとともに前記第2管路を通過して昇温した冷
却水を前記顕熱交換器に導く一方、暖房運転時には前記
第1管路で冷却された冷水を前記顕熱交換器に導くとと
もに前記第2管路を通過して昇温した冷却水を前記室内
機に導くための管路切替弁と、前記暖房運転時において
外気温度が第1予定値以下、前記凝縮器の圧力値が第2
予定値以下、前記凝縮器の圧力および蒸発器の圧力の差
圧が第3予定値以下の条件の、少なくとも1つが満足さ
れたときには、前記第2管路内冷却水を直火加熱する手
段とを具備し、前記直火加熱する手段は、前記分縮器で
冷却される冷媒蒸気を可及的に全縮に近づけるため、該
分縮器の冷却容量を増大する冷却容量可変手段を具備し
た点に第1の特徴がある。この第1の特徴によれば、通
常の暖房運転時はヒ−トポンプサイクルによる高効率の
暖房運転が行えると共に、外気温度が極端に低いために
熱の汲み上げが難しくなる場合や、暖房負荷が急減して
凝縮器の圧力あるいは凝縮器圧力と蒸発器圧力との差圧
がそれぞれの閾値以下に低下した場合などは、室内機に
循環させる冷却水を直火加熱することにより暖房能力の
低下を防止することができる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems and to achieve the object, the present invention provides an evaporator and a refrigerant vapor generated in the evaporator, which is absorbed by a solution containing an absorbent. And a regenerator for extracting the refrigerant vapor by heating the solution to recover the absorbent concentration of the solution,
The absorbent mixed in the refrigerant vapor extracted by the regenerator is separated.
A decomposer to be separated, and a refrigerant from which the absorbent is separated by the decompressor
A condenser for condensing the vapor and recovering the vapor in the evaporator, a first conduit for cooling the cold water passing through the pipe with the refrigerant in the evaporator, a condenser in the absorber and the decompressor.
It is arranged in an extended manner , and the solution in the absorber is cooled by cooling water passing through the tube, and the steam generated by the
Said second conduit for cooling with cooling water passing through the pipe;
An indoor unit for blowing air for cooling and heating into the room, and a sensible heat exchanger for exchanging heat between the cooling water and the cold water and the outside air;
During the cooling operation, the cold water cooled in the first pipe is guided to the indoor unit, and the cooling water that has passed through the second pipe and heated is guided to the sensible heat exchanger. A pipe switching valve for guiding the cold water cooled in the pipe to the sensible heat exchanger and for guiding the cooling water heated through the second pipe to the indoor unit; When the temperature is equal to or lower than the first predetermined value and the pressure value of the condenser is equal to or lower than the second predetermined value.
Means for directly heating the cooling water in the second conduit when at least one of a condition that the pressure difference between the condenser pressure and the evaporator pressure is equal to or less than a third predetermined value is satisfied. Wherein said means for heating directly is heated by said decompressor.
In order to make the refrigerant vapor to be cooled as close as possible to full contraction,
A first feature is that a cooling capacity variable means for increasing the cooling capacity of the decompressor is provided . According to the first feature, during a normal heating operation, a high-efficiency heating operation using a heat pump cycle can be performed. In addition, when the outside air temperature is extremely low, it becomes difficult to pump up heat, or the heating load decreases rapidly. When the pressure of the condenser or the differential pressure between the condenser pressure and the evaporator pressure falls below the respective thresholds, the cooling water circulated to the indoor unit is heated directly to prevent the deterioration of the heating capacity. can do.

【0008】[0008]

【0009】また、本発明は、前記再生器および分縮器
を、高温再生器および該高温再生器に組み合わせられる
高温分縮器ならびに低温再生器および該低温再生器に組
み合わせられる低温分縮器からなる二重効用方式で構成
し、前記冷却容量可変手段を、前記第2管路の冷却水を
前記再生器において前記高温分縮器に導くための切替弁
で構成した点に第の特徴がある。
The present invention also provides a regenerator and a decompressor comprising a high-temperature regenerator, a high-temperature regenerator combined with the high-temperature regenerator, and a low-temperature regenerator and a low-temperature regenerator combined with the low-temperature regenerator. The second feature is that the cooling capacity variable means is configured by a switching valve for guiding the cooling water of the second conduit to the high-temperature decomposer in the regenerator. is there.

【0010】さらに本発明は、前記直火加熱手段による
運転時には、前記冷却水を前記吸収器に循環させないよ
うに構成した点に第の特徴がある。
Further, the present invention has a third feature in that the cooling water is not circulated to the absorber during operation by the direct fire heating means.

【0011】第および第の特徴によれば、外気温度
が極端に低下したときに、第2管路を通過する冷却水の
冷却容量を増大させることにより、特に新たに直火加熱
のための熱源を設けずとも再生器の加熱源をそのまま利
用してこの冷却水によって室内機に搬送される熱量を増
大させることができる。特に、第の特徴によれば、冷
媒蒸気は可及的全縮されて該蒸気の熱量は最大限冷却水
に伝達される。
According to the first and second features, when the outside air temperature is extremely reduced, the cooling capacity of the cooling water passing through the second pipe is increased, particularly for newly direct heating. Even without providing the heat source, the amount of heat transferred to the indoor unit by the cooling water can be increased by using the heating source of the regenerator as it is. In particular, according to the first feature, the refrigerant vapor is compressed as much as possible and the heat of the vapor is transferred to the cooling water to the maximum.

【0012】第の特徴によれば、外気温度が極端に低
下したときに、吸収器の溶液と冷却水との間での熱交換
を阻止し、直火加熱で上昇した冷却水の熱が吸収器部分
で一部吸収されることを防止して、暖房能力を高めるこ
とが可能となる。
According to the third feature, when the outside air temperature is extremely lowered, heat exchange between the solution of the absorber and the cooling water is prevented, and the heat of the cooling water which has risen by direct heating increases. Heating capacity can be increased by preventing partial absorption by the absorber portion.

【0013】また、本発明は、外気温度を検出する温度
感知手段と、該温度感知手段の出力に基づいて外気温度
が予定値以下に低下したか否かを判定する制御手段とを
具備した点に第の特徴がある。
Further, the present invention comprises a temperature sensing means for detecting an outside air temperature, and a control means for judging whether or not the outside air temperature has fallen below a predetermined value based on the output of the temperature sensing means. Has a fourth feature.

【0014】また、本発明は、暖房負荷推定手段と、該
暖房負荷推定手段によって推定された暖房負荷が予定の
暖房負荷を超えた場合に外気温度が予定値以下であると
判定する制御手段とを具備した点に第の特徴がある。
Further, the present invention provides a heating load estimating means, and a control means for judging that the outside air temperature is equal to or lower than a predetermined value when the heating load estimated by the heating load estimating means exceeds a predetermined heating load. There is a fifth feature in that it has the following.

【0015】前記第および第の特徴によれば、外気
温度が予定温度より低くなったことを温度感知手段で直
接感知したり、暖房負荷によって間接的に感知でき、そ
の感知結果に基づいて前記冷却水に伝達される冷媒蒸気
の熱量を自動的に増大させることができる。
According to the fourth and fifth features, the fact that the outside air temperature is lower than the predetermined temperature can be directly sensed by the temperature sensing means, or indirectly sensed by the heating load, and based on the sensing result. The amount of heat of the refrigerant vapor transmitted to the cooling water can be automatically increased.

【0016】[0016]

【発明の実施の形態】以下に、図面を参照して本発明を
詳細に説明する。図1および図2は本発明の一実施形態
に係る吸収式冷暖房装置の要部構成を示す系統ブロック
図であり、図1は暖房運転時、図2は冷房運転時の系統
を示す。図1において、蒸発器1には冷媒としてフッ化
アルコールが、吸収器2には吸収剤を含む溶液としてD
MI誘導体が収容されている。この場合、前記冷媒はフ
ッ化アルコールに限らず非凍結範囲および非結晶範囲が
広くとれるものであればよく、溶液もDMI誘導体に限
らず非結晶範囲が広く取れるものであればよい。したが
って、例えば、水と臭化リチウムの組み合わせは、外気
温度が零度近くになった状態での暖房運転時において、
溶液の温度低下によって冷媒である水が凍結するおそれ
があるために好適とは言い難い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 and FIG. 2 are system block diagrams showing a main part configuration of an absorption type cooling and heating apparatus according to an embodiment of the present invention. FIG. 1 shows a system during a heating operation, and FIG. 2 shows a system during a cooling operation. In FIG. 1, fluorinated alcohol is used as a refrigerant in an evaporator 1 and D as a solution containing an absorbent in an absorber 2.
An MI derivative is contained. In this case, the refrigerant is not limited to the fluorinated alcohol, and may be any refrigerant that can have a wide non-freezing range and a non-crystalline range. The solution is not limited to the DMI derivative, and any refrigerant that has a wide non-crystalline range can be used. Therefore, for example, the combination of water and lithium bromide, during the heating operation in a state where the outside air temperature is close to zero degree,
It is hard to say that it is preferable because water as a refrigerant may freeze due to a decrease in the temperature of the solution.

【0017】蒸発器1と吸収器2とは、蒸発(冷媒)通
路を介して互いに流体的に連結されており、これらを、
例えば30mmHg程度の低圧環境下に保持することによ
り、蒸発器1内の冷媒が蒸発して吸収器2内に入り、こ
の冷媒蒸気を吸収器2の吸収剤溶液が吸収して吸収冷凍
動作が行われる。
The evaporator 1 and the absorber 2 are fluidly connected to each other through an evaporation (refrigerant) passage.
For example, by maintaining the low-pressure environment of about 30 mmHg, the refrigerant in the evaporator 1 evaporates and enters the absorber 2, and the refrigerant vapor is absorbed by the absorbent solution of the absorber 2, and the absorption refrigeration operation is performed. Will be

【0018】まずバーナ7が点火され、再生器によって
吸収器2の溶液濃度が高められると(バーナおよび再生
器ならびに溶液濃縮については後述する)、吸収器2の
溶液が冷媒蒸気を吸収して、該冷媒の蒸発による潜熱で
蒸発器1内は冷却される。蒸発器1内には冷水が通過す
る管路1aが設けられる。冷媒はポンプP1によって蒸
発器1内に設けられた散布手段(図示せず)に導かれ、
前記冷水が通過している管路1a上に散布される。前記
冷媒は管路1a内の冷水から蒸発熱を奪って低圧の冷媒
蒸気となり、蒸発通路を通って吸収器2に流入する。蒸
発器1内の冷媒は前記散布手段に導かれるほか、後で詳
述するように、その一部は第2分縮器6にも給送され
る。なお、管路1aを流れる冷水としてはエチレングレ
コール又はプロピレングレコ−ル水溶液を使用するのが
好ましい。
First, when the burner 7 is ignited and the solution concentration in the absorber 2 is increased by the regenerator (the burner, the regenerator and the solution concentration will be described later), the solution in the absorber 2 absorbs refrigerant vapor, The inside of the evaporator 1 is cooled by the latent heat due to the evaporation of the refrigerant. Inside the evaporator 1, a pipe line 1a through which cold water passes is provided. The refrigerant is guided to a spraying means (not shown) provided in the evaporator 1 by the pump P1,
The cold water is sprayed on the pipeline 1a through which the cold water passes. The refrigerant removes the heat of evaporation from the cold water in the pipe 1a to become low-pressure refrigerant vapor, and flows into the absorber 2 through the evaporation passage. The refrigerant in the evaporator 1 is guided to the spraying means, and a part of the refrigerant is also supplied to the second decompressor 6 as described later in detail. In addition, it is preferable to use an ethylene glycol or propylene glycol aqueous solution as the cold water flowing through the pipeline 1a.

【0019】前記フッ化アルコールの蒸気つまり冷媒蒸
気が吸収器2の溶液に吸収されると、吸収熱によって該
溶液の温度は上昇する。溶液の吸収能力は該溶液の温度
が低いほど、また、溶液濃度が高いほど大きい。そこ
で、該溶液の温度上昇を抑制するため、吸収器2の内部
には管路2aが設けられ、該管路2aには冷却水が通さ
れる。溶液はポンプP2によって吸収器2内に設けられ
た散布手段(図示せず)に導かれ、管路2a上に散布さ
れる。その結果、溶液は管路2aを通っている冷却水で
冷却される。
When the vapor of the fluorinated alcohol, that is, the refrigerant vapor is absorbed by the solution in the absorber 2, the temperature of the solution rises due to the heat of absorption. The absorption capacity of a solution increases as the temperature of the solution decreases and as the concentration of the solution increases. Therefore, in order to suppress a rise in the temperature of the solution, a pipe 2a is provided inside the absorber 2, and cooling water is passed through the pipe 2a. The solution is guided to a spraying means (not shown) provided in the absorber 2 by the pump P2, and is sprayed on the pipeline 2a. As a result, the solution is cooled by the cooling water passing through the pipe 2a.

【0020】吸収器2内の溶液は、冷媒蒸気を吸収する
と、その吸収剤濃度が低下して吸収能力が低下する。そ
こで、冷媒蒸気を分離発生させ、かつ溶液の吸収能力を
回復させるために再生器が設けられる。本実施形態で
は、第1(高温)再生器3および第2(低温)再生器4
が設けられており、第1再生器3には第1(高温)分縮
器5、第2再生器4には第2(低温)分縮器6がそれぞ
れ組み合わせて設けられ、二重効用方式の再生器を構成
している。
When the solution in the absorber 2 absorbs the refrigerant vapor, the concentration of the absorbent decreases and the absorption capacity decreases. Therefore, a regenerator is provided to separate and generate the refrigerant vapor and to recover the solution absorption capacity. In the present embodiment, the first (high-temperature) regenerator 3 and the second (low-temperature) regenerator 4
The first regenerator 3 is provided with a first (high-temperature) decompressor 5 in combination, and the second regenerator 4 is provided with a second (low-temperature) decompressor 6 in combination. Of the regenerator.

【0021】第1および第2分縮器5,6には、前記吸
収器2の管路2aと直列に配管された管路5aおよび6
aがそれぞれ設けられている。第1再生器3は吸収器2
から供給される溶液を加熱するバーナ7を有している。
該バーナ7はガスバーナが好ましいが電熱器等の他の加
熱手段であってもよい。
The first and second decompressors 5 and 6 have pipes 5a and 6 piped in series with the pipe 2a of the absorber 2.
a is provided. The first regenerator 3 is the absorber 2
Has a burner 7 for heating the solution supplied from the apparatus.
The burner 7 is preferably a gas burner, but may be another heating means such as an electric heater.

【0022】吸収器2で冷媒蒸気を吸収して希釈された
溶液つまり希液はポンプP3によりパイプを通じて第1
再生器3に給送される。第1再生器3で加熱されて冷媒
蒸気が抽出されて濃度が高められた溶液(中間液)は第
2再生器4に給送される。第2再生器4では前記中間液
を加熱してさらに冷媒蒸気を発生させて濃度が高められ
る。濃度の高まった溶液(濃液)は、管路7aを介して
前記吸収器2に戻され、再び吸収液として使用される。
A solution diluted by absorbing the refrigerant vapor with the absorber 2, ie, a dilute solution, is first pumped through a pipe by a pump P3.
It is fed to the regenerator 3. The solution (intermediate liquid) heated by the first regenerator 3 to increase the concentration by extracting the refrigerant vapor is supplied to the second regenerator 4. In the second regenerator 4, the intermediate liquid is heated to further generate refrigerant vapor to increase the concentration. The solution (concentrated solution) having an increased concentration is returned to the absorber 2 via a pipe 7a, and is used again as an absorbing solution.

【0023】第1再生器3および第2再生器4、ならび
に第1分縮器5および第2分縮器6の詳細を図3に示し
た。以下、この図3も同時に参照しつつ説明する。な
お、図3においては、第1再生器3の上方に第2再生器
4が配置されているように図示されているが、この配置
関係には限定されない。
FIG. 3 shows the details of the first regenerator 3 and the second regenerator 4 and the first and second decompressors 5 and 6. Hereinafter, description will be made with reference to FIG. Although FIG. 3 shows that the second regenerator 4 is disposed above the first regenerator 3, the arrangement is not limited to this.

【0024】第1再生器3に給送された希液がバーナ7
で加熱されると、冷媒蒸気が発生する。希液から生じた
前記冷媒蒸気は第1分縮器5に給送される。この冷媒蒸
気は第1分縮器5内で冷却水が通っている管路5aによ
って冷却され、該蒸気中に含まれている吸収剤成分が凝
縮分離される。こうして、第1再生器3の底部には濃度
が高められた中間液が溜まる。前記中間液はパイプL2
で第2再生器4に給送される。
The diluted liquid supplied to the first regenerator 3 is supplied to the burner 7
When it is heated at a temperature, refrigerant vapor is generated. The refrigerant vapor generated from the dilute liquid is supplied to the first divider 5. The refrigerant vapor is cooled by the pipe 5a through which the cooling water passes in the first condensing device 5, and the absorbent component contained in the vapor is condensed and separated. Thus, the intermediate liquid having a high concentration is stored at the bottom of the first regenerator 3. The intermediate liquid is pipe L2
At the second regenerator 4.

【0025】第1分縮器5を通過した冷媒蒸気は、依然
として高温を保っており、パイプL1により第2再生器
4に導かれ、その内部の中間液を加熱した後、減圧弁8
を介して凝縮器9に給送される。第2再生器4内の中間
液は該第1再生器3で生じた冷媒蒸気の熱で加熱されて
再度冷媒蒸気を発生し、この冷媒蒸気は第2分縮器6に
給送される。そして、冷却水が通っている管路6aによ
って冷却され、第1分縮器5におけると同様、吸収剤成
分が分離される。こうして、第2再生器4の底部にはさ
らに濃度が高められた濃液が溜まる。この濃液は、前述
のように、管路7aを介して前記吸収器2に戻される。
第2分縮器6を通過した冷媒蒸気は凝縮器9に給送され
る。このようにして凝縮器9に給送される冷媒蒸気の純
度は、おおよそ99.8%にまで高められており、凝縮
器9でファン10による冷却風で冷却されて凝縮液化さ
れた後、減圧弁11を経由して蒸発器1に回収される。
The refrigerant vapor that has passed through the first decompressor 5 is still at a high temperature, is led to the second regenerator 4 by the pipe L1, heats the intermediate liquid therein, and then reduces the pressure by the pressure reducing valve 8.
Is supplied to the condenser 9 via the. The intermediate liquid in the second regenerator 4 is heated by the heat of the refrigerant vapor generated in the first regenerator 3 to generate refrigerant vapor again, and this refrigerant vapor is supplied to the second decompressor 6. Then, it is cooled by the pipe line 6 a through which the cooling water passes, and the absorbent component is separated as in the first decompressor 5. Thus, a concentrated solution having a further increased concentration is stored at the bottom of the second regenerator 4. This concentrated liquid is returned to the absorber 2 through the pipe 7a as described above.
The refrigerant vapor that has passed through the second condenser 6 is supplied to the condenser 9. In this way, the purity of the refrigerant vapor supplied to the condenser 9 is increased to approximately 99.8%. After being cooled by the cooling air from the fan 10 in the condenser 9 and condensed and liquefied, the pressure is reduced. It is collected in the evaporator 1 via the valve 11.

【0026】なお、蒸発器1に回収される蒸気の純度は
極めて高くなってはいるが、還流冷媒中にごくわずかに
混在する吸収剤成分が長時間の運転サイクルによって蓄
積し、蒸発器1内の冷媒の純度が徐々に低下することは
避けられない。そこで、上述のように、蒸発器1から冷
媒のごく一部を第2分縮器6に給送し、中間液から生じ
る冷媒蒸気と共に再び純度を上げるためのサイクルを経
るようにするのが望ましい。
Although the purity of the vapor recovered in the evaporator 1 is extremely high, the absorbent component very slightly mixed in the reflux refrigerant accumulates over a long operation cycle, and It is inevitable that the purity of the refrigerant will gradually decrease. Therefore, as described above, it is desirable that a small portion of the refrigerant is supplied from the evaporator 1 to the second condensing device 6 so as to pass through a cycle for increasing the purity again together with the refrigerant vapor generated from the intermediate liquid. .

【0027】吸収器2と第1再生器3を連結する管路の
中間に設けられた第1の熱交換器12により、第2再生
器4から出た高温の濃液は吸収器2から出た希液と熱交
換して冷却された後、吸収器2に回収される。また、第
1の熱交換器12で予備的に加熱された希液は、第1再
生器3から出た高温の中間液と第2の熱交換器13で熱
交換されてさらに加熱され、第1再生器3へ給送され
る。一方、中間液は冷却されて第2再生器4へ給送され
る。こうして熱効率の向上が図られているが、さらに、
還流される前記濃液の熱を吸収器2から出た冷却水に伝
達するための熱交換器HEX(図示の都合上、2か所に
分離して示している)を設けることにより、吸収器2に
還流される濃液の温度はより一層低下させ、冷却水温度
はさらに上げることができるような構成をとってもよ
い。
The high-temperature concentrated liquid discharged from the second regenerator 4 is discharged from the absorber 2 by the first heat exchanger 12 provided in the middle of the pipe connecting the absorber 2 and the first regenerator 3. After being cooled by heat exchange with the diluted liquid, the liquid is recovered in the absorber 2. Further, the rare liquid preliminarily heated in the first heat exchanger 12 is further exchanged with the high-temperature intermediate liquid coming out of the first regenerator 3 in the second heat exchanger 13 and further heated. 1 It is fed to the regenerator 3. On the other hand, the intermediate liquid is cooled and fed to the second regenerator 4. The thermal efficiency has been improved in this way,
By providing a heat exchanger HEX (for convenience of illustration, shown separately at two places) for transmitting the heat of the concentrated liquid refluxed to the cooling water flowing out of the absorber 2, A configuration may be adopted in which the temperature of the concentrated liquid refluxed to 2 can be further lowered and the temperature of the cooling water can be further raised.

【0028】冷水を外気と熱交換するための顕熱交換器
14には管路14aが通され、室内機15には管路15
aが設けられている。室内機15は冷暖房を行う室内に
備えられるもので、冷風または温風の吹出し用ファン
(両者は共通)と吹出し出口(いずれも図示せず)とが
設けられる。室内機15の管路15aは吸収器2の管路
2aならびに第1分縮器5の管路5aおよび第2分縮器
6の管路6aに直列接続され、顕熱交換器14の管路1
4aは蒸発器1の管路1aに接続される。すなわち、室
内機15の管路15aには吸収器2、第1分縮器5およ
び第2分縮器6で熱を回収した冷却水が管路2a、管路
5aおよび管路6aを介して導かれる。管路15aの熱
は温風の吹出し用ファンによって室内に放出され、暖房
作用を果たす。
A pipe 14a is passed through a sensible heat exchanger 14 for exchanging heat of cold water with the outside air, and a pipe 15a is passed through the indoor unit 15.
a is provided. The indoor unit 15 is provided in a room that performs cooling and heating, and is provided with a fan for blowing out cool air or warm air (both are common) and an outlet (both not shown). The pipe 15a of the indoor unit 15 is connected in series to the pipe 2a of the absorber 2, the pipe 5a of the first decompressor 5, and the pipe 6a of the second decompressor 6, and the pipe of the sensible heat exchanger 14. 1
4a is connected to the pipeline 1a of the evaporator 1. That is, the cooling water whose heat has been recovered by the absorber 2, the first decompressor 5, and the second decompressor 6 is supplied to the pipe 15a of the indoor unit 15 via the pipe 2a, the pipe 5a, and the pipe 6a. Be guided. The heat of the pipe 15a is released into the room by the fan for blowing hot air to perform a heating function.

【0029】前記顕熱交換器14は室外に置かれ、なる
べくは前記凝縮器9を冷却する前記ファン10の風下に
配置するのが望ましい。ファン10による冷風が、凝縮
器9に直接当たり、該凝縮器9を通過した風が、後方の
顕熱交換器14に当たるようになる。そうすると、凝縮
器9から熱を得て温度の上がった冷却排風が顕熱交換器
14を通過するので、蒸発器1の管路1aに循環される
冷却水の温度を上げることができる。そのために、冷媒
の蒸発を促進でき、暖房運転時のサイクル効率を上げる
ことができる。さらに、顕熱交換器14は前記凝縮器9
からの温風を受けるので、外気温度が低い時の着霜を防
止するためにも有効である。
It is desirable that the sensible heat exchanger 14 is placed outside the room, and is arranged, preferably, downwind of the fan 10 that cools the condenser 9. The cool air from the fan 10 directly hits the condenser 9, and the wind passing through the condenser 9 hits the rear sensible heat exchanger 14. Then, since the cooling exhaust air that has obtained heat from the condenser 9 and rises in temperature passes through the sensible heat exchanger 14, the temperature of the cooling water circulated through the pipe 1a of the evaporator 1 can be increased. Therefore, the evaporation of the refrigerant can be promoted, and the cycle efficiency during the heating operation can be increased. Further, the sensible heat exchanger 14 is connected to the condenser 9
Because it receives warm air from the outside, it is also effective to prevent frost formation when the outside air temperature is low.

【0030】次に、暖房運転時において、外気温度が極
めて低いときの動作を説明する。外気温度が極端に低く
なると、顕熱交換器14を介して外気から熱を汲み上げ
にくくなり、暖房運転時の能力が低下する。したがっ
て、このように外気温度が極めて低いときには再生器で
発生した蒸気を可及的全縮させ、バーナ7による加熱熱
量で冷却水をできるだけ昇温させて暖房能力を向上させ
るようにする。
Next, the operation when the outside air temperature is extremely low during the heating operation will be described. When the outside air temperature becomes extremely low, it becomes difficult to pump heat from the outside air via the sensible heat exchanger 14, and the capacity during the heating operation is reduced. Therefore, when the outside air temperature is extremely low, the steam generated in the regenerator is reduced as much as possible, and the cooling water is heated as much as possible by the amount of heat generated by the burner 7, thereby improving the heating capacity.

【0031】このために、図1の実施形態では、第1分
縮器5の管路5aへの入り口に三方弁17を設け、か
つ、管路5aをバイパスする通路5bを設けている。外
気温度が極端に低くない通常の暖房運転時には、管路5
aを通過させる冷却水の量を絞るため、バイパス通路5
bにも冷却水を通過させるように前記三方弁17を切り
替え制御する。
For this purpose, in the embodiment of FIG. 1, a three-way valve 17 is provided at the entrance of the first decompressor 5 to the pipe 5a, and a passage 5b for bypassing the pipe 5a is provided. During a normal heating operation in which the outside air temperature is not extremely low, the pipe 5
a to reduce the amount of cooling water passing through
The three-way valve 17 is switched and controlled so that the cooling water also passes through b.

【0032】一方、外気温度が極端に低い場合には、冷
却水がバイパス通路5bに流れずにすべて管路5aを通
過するように前記三方弁17を切り替える。こうして、
第1分縮器5に給送する冷却水の量を増大させることに
より、第1再生器3で発生した蒸気は全縮されてほとん
ど全部が液化されるようにすることができる。その結
果、冷媒蒸気は凝縮器9に送られなくなり、ヒートポン
プとしてのサイクルは停止する。
On the other hand, when the outside air temperature is extremely low, the three-way valve 17 is switched so that the cooling water does not flow into the bypass passage 5b but entirely passes through the pipe 5a. Thus,
By increasing the amount of cooling water supplied to the first decompressor 5, the steam generated in the first regenerator 3 can be totally reduced and almost all liquefied. As a result, the refrigerant vapor is not sent to the condenser 9, and the cycle as the heat pump stops.

【0033】換言すれば、第1再生器3で希液を加熱す
ることによって発生した蒸気の熱は、管路5aを介して
ほとんど冷却水に伝達され、冷却水の温度が上昇して暖
房能力が高められる。このように、極端に外気温度が低
い場合には、蒸発器1および吸収器2による蒸発・吸収
機能を停止させ、第1再生器3によって発生した蒸気だ
けにより、「直火加熱」の状態で暖房運転を行う。以上
の構成により、熱源を追加することなく、バーナ7によ
る加熱だけで、極端に低温の時でも高い暖房能力を得る
ことができる。
In other words, the heat of the steam generated by heating the dilute liquid in the first regenerator 3 is almost transmitted to the cooling water through the pipe 5a, and the temperature of the cooling water rises to increase the heating capacity. Is enhanced. As described above, when the outside air temperature is extremely low, the evaporation / absorption function of the evaporator 1 and the absorber 2 is stopped, and only the steam generated by the first regenerator 3 causes the state of “direct heating”. Perform heating operation. With the above configuration, a high heating capacity can be obtained even at extremely low temperatures only by heating with the burner 7 without adding a heat source.

【0034】なお、冷却水を吸収器2に導いている管路
2aの直前にも、三方弁17と同様の弁19やバイパス
通路20を設けることによって、ヒートポンプとしての
サイクルを停止したときには、管路2aには冷却水を回
さないこともできる。
By providing a valve 19 and a bypass passage 20 similar to the three-way valve 17 just before the pipe line 2a for guiding the cooling water to the absorber 2, when the cycle as the heat pump is stopped, The cooling water may not be supplied to the passage 2a.

【0035】上述のように、第1分縮器5の管路5bを
通過させる冷却水の量を変化させて該第1分縮器5の分
縮容量を制御するには、スイッチ手段による操作で三方
弁を切り替えればよい。また、室内外の適当な箇所に温
度感知器(図示せず)を設け、該温度感知器によって感
知された温度が予定値以下になったときに、第1再生器
3で発生した蒸気を全縮させるように三方弁を切り替え
る制御装置によって自動制御することもできる。なお、
前記顕熱交換器14周囲の温度低下による着霜に対応す
る観点からは、前記温度感知器は該顕熱交換器14の近
傍に設けるのが好ましい。
As described above, the amount of cooling water passing through the pipe 5b of the first decompressor 5 is controlled to control the decompression capacity of the first decompressor 5 by operating the switch means. The three-way valve can be switched with. In addition, a temperature sensor (not shown) is provided at an appropriate place inside and outside the room, and when the temperature detected by the temperature sensor falls below a predetermined value, the steam generated by the first regenerator 3 is completely discharged. Automatic control can also be performed by a control device that switches the three-way valve so as to contract. In addition,
The temperature sensor is preferably provided near the sensible heat exchanger 14 from the viewpoint of dealing with frost formation due to a decrease in temperature around the sensible heat exchanger 14.

【0036】また、外気温度が予定値以下に低下したこ
とを暖房負荷の大小によって判定するようにしてもよ
い。すなわち、外気温度が低い場合は負荷が大きくなる
ため、この負荷が予定値を超えた場合にヒートポンプ運
転を停止させて「直火加熱」に切り替えるることができ
る。
Further, the fact that the outside air temperature has dropped below the predetermined value may be determined based on the magnitude of the heating load. That is, when the outside air temperature is low, the load increases. Therefore, when the load exceeds a predetermined value, the heat pump operation can be stopped and switched to "direct flame heating".

【0037】暖房負荷の大小によって外気温度を判定す
る例を、以下に詳述する。まず、暖房負荷の大きさは、
暖房のための要求熱量で把握でき、該要求熱量は次の負
荷推定演算式(式1)で計算される。 要求熱量QE =QU +QV −QS −QM −QF …(式1) ここで、符号QU は室内外の温度差による伝熱量、符号
QV は換気による侵入熱量、符号QS は日射による輻射
熱量、符号QM は室内の人間やペットなどの発熱量、符
号QF は冷蔵庫等室内の他の発熱体の発熱量である。
An example in which the outside air temperature is determined based on the magnitude of the heating load will be described in detail below. First, the magnitude of the heating load is
The required heat amount for heating can be grasped, and the required heat amount is calculated by the following load estimation calculation formula (Formula 1). Required heat quantity QE = QU + QV-QS-QM-QF (Equation 1) Here, reference numeral Q is a heat transfer amount due to a difference in temperature between indoor and outdoor, reference numeral QV is a heat amount penetrated by ventilation, reference numeral QS is radiant heat amount by solar radiation, and reference numeral QM. Is a calorific value of a human or a pet in the room, and QF is a calorific value of another heating element such as a refrigerator in the room.

【0038】これらのうち、室内外の温度差による伝熱
量QU は外気温度と室内温度と室内機15が設けられた
部屋に固有の熱伝導率でほぼ一義的に決定される。この
伝熱量QE 以外の侵入熱量QV 、輻射熱量QS 、人間な
どの発熱量QM 、室内の発熱体の発熱量QF などの負荷
に対する影響は、通常は極めて小さいので、要求熱量Q
E は室内外の温度差による伝熱量QU とほぼ同一の値と
みなしてよい。
Of these, the amount of heat transfer QU due to the temperature difference between the indoor and the outdoor is almost uniquely determined by the outside air temperature, the indoor temperature, and the thermal conductivity inherent in the room where the indoor unit 15 is provided. Since the influence on the load other than the heat transfer amount QE, such as the invasion heat amount QV, the radiant heat amount QS, the heat generation amount QM of a person or the like, and the heat generation amount QF of the indoor heating element, is usually extremely small, the required heat amount Q
E may be regarded as substantially the same value as the heat transfer amount QU due to the temperature difference between the inside and outside the room.

【0039】室内外の温度差による前記伝熱量QU は次
の式(式2)によって算出できる。 室内外の温度差による伝熱量QU =U(TR −TAM)…(式2) なお、符号Uは室内機15が設けられた部屋に固有の熱
伝導率を示す定数、符号TR は室内温度、符号TAMは外
気温度である。定数Uは部屋の大きさ、壁の構造等に依
存する値であり、予め、室内機15の制御装置に設定し
ておくことができる。
The heat transfer amount QU due to the temperature difference between the indoor and outdoor areas can be calculated by the following equation (Equation 2). Heat transfer amount QU = U (TR−TAM) due to temperature difference between indoor and outdoor (Equation 2) where U is a constant indicating the thermal conductivity specific to the room in which indoor unit 15 is provided, and TR is the indoor temperature. The symbol TAM is the outside air temperature. The constant U is a value depending on the size of the room, the structure of the wall, and the like, and can be set in the control device of the indoor unit 15 in advance.

【0040】室内温度を測定する温度感知器は、例え
ば、室内機15又は室内機15を操作するため室内で使
用される遠隔操作器(リモコン)に設けることができ
る。外気温度は、前記室外の顕熱交換器14の近傍に設
けた温度感知器で測定することができる。
The temperature sensor for measuring the indoor temperature can be provided, for example, in the indoor unit 15 or a remote controller (remote control) used indoors to operate the indoor unit 15. The outside air temperature can be measured by a temperature sensor provided near the outdoor sensible heat exchanger 14.

【0041】上述のように、負荷つまり要求熱量QE は
室内外の温度差による伝熱量QU で実質上決定される
が、上述の侵入熱量QV 、輻射熱量QS 、人間の発熱量
QM 、室内の発熱体の発熱量QF 等を予め実験や統計な
どに基づいて設定しておき、これらを勘案して前記の式
1による要求熱量QE を計算してもよいことは当然であ
る。例えば、侵入熱量QV は部屋のドアや窓の大きさ等
を考慮し、輻射熱量QSは部屋の立地条件および気象条
件を考慮し、人間の発熱量QM は家族構成を考慮し、室
内の発熱体の発熱量QF は平均的な家庭を考慮して決定
することができる。さらに各要因は、外乱要素によって
微調節できるのが望ましい。
As described above, the load, that is, the required heat amount QE is substantially determined by the heat transfer amount QU due to the temperature difference between the inside and outside of the room. However, the above-mentioned intrusion heat amount QV, radiant heat amount QS, human heat generation amount QM, and indoor heat generation amount. It is a matter of course that the calorific value QF of the body may be set in advance based on experiments, statistics, etc., and the required calorific value QE according to the above equation 1 may be calculated in consideration of these. For example, the amount of invading heat QV takes into account the size of the doors and windows of the room, the amount of radiant heat QS takes into account the location and weather conditions of the room, the amount of human heating QM takes into account the family composition, Can be determined in consideration of the average household. Further, it is desirable that each factor can be finely adjusted by a disturbance element.

【0042】上記要求熱量の計算は、マイクロコンピュ
ータによって計算できる。図4は要求熱量の計算と暖房
方式の切り替えを行うためのマイクロコンピュータの要
部機能を示すブロック図である。同図において、外気温
度感知器23および室内温度感知器24で測定された温
度TAMと温度TR とは要求熱量算出部25に入力され
る。要求熱量算出部25には熱伝導率を示す前記定数U
が入力され、該定数U、温度TAMおよび温度TR によっ
て要求熱量QE が算出される。算出された要求熱量QE
は比較器26で基準値QSDと比較される。この基準値Q
SDはヒートポンプ運転から「直火加熱」運転に移行させ
るための判断基準である。要求熱量QE が基準値QSDよ
り大きい場合は、比較器26は「直火加熱」運転を指示
する出力を発生し、要求熱量QE が基準値QSDより小さ
い場合は、ヒートポンプ運転を指示する出力を発生す
る。この出力に応答して前記三方弁17,19が上記の
ように制御される。なお、必要に応じて、侵入熱量QV
、輻射熱量QS 、人間の発熱量QM 、室内の発熱体の
発熱量QF 等を補正値として要求熱量算出部25に入力
できる。
The calculation of the required heat quantity can be performed by a microcomputer. FIG. 4 is a block diagram showing functions of a main part of a microcomputer for calculating a required heat amount and switching a heating method. In the figure, the temperature TAM and the temperature TR measured by the outside air temperature sensor 23 and the indoor temperature sensor 24 are input to the required calorific value calculation unit 25. The required calorie calculating unit 25 has the constant U indicating the thermal conductivity.
Is input, and the required heat quantity QE is calculated from the constant U, the temperature TAM and the temperature TR. Calculated required heat QE
Is compared with a reference value QSD by a comparator 26. This reference value Q
SD is a criterion for shifting from the heat pump operation to the “open flame heating” operation. When the required heat quantity QE is larger than the reference value QSD, the comparator 26 generates an output for instructing the “direct heating” operation, and when the required heat quantity QE is smaller than the reference value QSD, the comparator 26 generates an output for instructing the heat pump operation. I do. In response to this output, the three-way valves 17, 19 are controlled as described above. In addition, if necessary,
, The amount of radiant heat QS, the amount of heat generated by the person QM, the amount of heat generated by the indoor heating element QF, and the like can be input to the required heat amount calculator 25 as correction values.

【0043】次に、冷房運転時の系統を図2を参照して
説明する。図2において、図1と同符号は同一または同
等部分を示す。冷房運転時は、室内機15の管路15a
は蒸発器1の管路1aと接続され、顕熱交換器14の管
路14aは吸収器2の管路2aならびに第1分縮器5の
管路5aおよび第2分縮器6の管路6aに接続される。
したがって、冷房運転時には蒸発器1の冷媒で冷却され
た冷水が室外機15に導かれ、前記吹出し用ファンによ
り冷風が室内に吹出される。
Next, the system during the cooling operation will be described with reference to FIG. 2, the same reference numerals as those in FIG. 1 denote the same or equivalent parts. During the cooling operation, the pipeline 15a of the indoor unit 15 is used.
Is connected to the line 1a of the evaporator 1, and the line 14a of the sensible heat exchanger 14 is connected to the line 2a of the absorber 2, the line 5a of the first decompressor 5, and the line of the second decompressor 6. 6a.
Therefore, at the time of the cooling operation, the cold water cooled by the refrigerant of the evaporator 1 is guided to the outdoor unit 15, and the blowing fan blows cool air into the room.

【0044】なお、前記暖房運転時および冷房運転時の
管路の切り替えは、周知の四方弁によって実現すること
ができるので、具体例の図示説明は省略する。また、冷
水や冷却水の循環はポンプP4,5によって行われる。
Since the switching of the pipeline during the heating operation and the cooling operation can be realized by a well-known four-way valve, the illustration and description of a specific example will be omitted. Further, the circulation of the cold water or the cooling water is performed by the pumps P4 and P5.

【0045】また、本実施形態では、2組の再生器およ
び分縮器を高温および低温用としてそれぞれ設けた二重
効用式としたが、再生器および分縮器が1組の単効用式
であっても良い
Further, in the present embodiment, the double effect type in which two sets of regenerators and decompressors are provided for high and low temperatures, respectively, is used. There may be .

【0046】次に、本発明の第2実施形態を説明する。
図5は第2実施形態の要部系統を示すブロック図であ
り、図1と同符号は同一または同等部分を示す。同図に
おいて、第2分縮器6の管路6aおよび第1分縮器5の
管路5aと直列に設けられた管路21aを通した給湯器
21が設けられる。暖房運転時において、前記比較器2
6(図4)から「直火加熱」運転の指令が出力される
と、この給湯器21のバーナ22が点火され、これとと
もに冷却水が管路2a,5a,6aは通らず、バイパス
通路20,6b,5bだけを通るように前記三方弁1
7,18,19を切り替える。こうして、外気温度が低
くなった場合には、給湯器21で冷却水を直接加熱して
室内機15に給送することで暖房能力を維持させること
ができる。
Next, a second embodiment of the present invention will be described.
FIG. 5 is a block diagram showing a main part system of the second embodiment, and the same reference numerals as those in FIG. 1 indicate the same or equivalent parts. In the figure, a water heater 21 is provided through a pipe 21a provided in series with a pipe 6a of the second compressor 6 and a pipe 5a of the first compressor 5. During the heating operation, the comparator 2
6 (FIG. 4), when a command for the "direct fire heating" operation is output, the burner 22 of the water heater 21 is ignited, and at the same time, the cooling water does not pass through the pipes 2a, 5a, 6a, and the bypass passage 20 , 6b, 5b through the three-way valve 1
7, 18 and 19 are switched. Thus, when the outside air temperature decreases, the cooling water is directly heated by the water heater 21 and supplied to the indoor unit 15 to maintain the heating capacity.

【0047】なお、この第2実施形態においても、自動
制御に限らず、外気温度の低下を感知した人が冷却水の
通過経路を変えて「直火加熱」運転に切り替えることが
できるように手動スイッチ手段を設けてもよい。また、
前記給湯器21は必ずしも暖房専用に設ける必要はな
く、飲用や浴用等に設備されている給湯装置と兼用して
もよい。
In the second embodiment, not only automatic control but also manual operation is performed so that a person who senses a decrease in the outside air temperature can change the passage of the cooling water and switch to the "direct fire heating" operation. Switch means may be provided. Also,
The water heater 21 does not necessarily need to be provided exclusively for heating, and may also be used as a water heater provided for drinking or bathing.

【0048】上述の第2実施形態では、環境温度が予定
値以下に低下した時に暖房運転モードをヒートポンプサ
イクル運転から直火加熱運転へ切り換えるようにした。
しかし、環境温度が前記予定温度以上であっても、例え
ば暖房機の設定温度が下げられて暖房負荷が急低下した
ような時にはヒートポンプサイクル運転が不可能になる
ことがある。すなわちヒートポンプサイクルでは、高圧
側である凝縮器9および再生器3、4の圧力と低圧側で
ある蒸発器1および吸収器2の圧力との差圧によって冷
媒や溶液の循環が確保されているが、設定温度が下げら
れて暖房負荷が突然低下すると、再生器3、4へ給送さ
れる希液の量が急減し、このために凝縮器9の圧力や前
記圧力差も低下してヒートポンプサイクル運転の継続が
困難もしくは不可能になることがある。
In the above-described second embodiment, the heating operation mode is switched from the heat pump cycle operation to the direct fire heating operation when the environmental temperature falls below the predetermined value.
However, even when the environmental temperature is equal to or higher than the predetermined temperature, for example, when the set temperature of the heater is lowered and the heating load is suddenly reduced, the heat pump cycle operation may not be possible. That is, in the heat pump cycle, the circulation of the refrigerant and the solution is secured by the pressure difference between the pressure of the condenser 9 and the regenerators 3 and 4 on the high pressure side and the pressure of the evaporator 1 and the absorber 2 on the low pressure side. When the set temperature is lowered and the heating load is suddenly reduced, the amount of the diluent supplied to the regenerators 3 and 4 is sharply reduced, and the pressure of the condenser 9 and the pressure difference are also reduced. It may be difficult or impossible to continue driving.

【0049】本発明の第3実施形態はこのような事態に
対処するもので、図1に鎖線で示したように、凝縮器9
内の圧力を検知するための圧力感知器33を設ける。感
知器33の圧力出力は、図6に示すように、圧力比較器
34で圧力基準値35と比較され、濃縮器9内の圧力が
基準値以下に低下したときに、圧力比較器34から切り
替え出力が発生されてヒートポンプサイクルから直火加
熱へ切り替えられる。
The third embodiment of the present invention addresses such a situation. As shown by a chain line in FIG.
A pressure sensor 33 for detecting the internal pressure is provided. As shown in FIG. 6, the pressure output of the sensor 33 is compared with a pressure reference value 35 by a pressure comparator 34, and is switched from the pressure comparator 34 when the pressure in the concentrator 9 falls below the reference value. An output is generated to switch from the heat pump cycle to direct fire heating.

【0050】また図7に示すように、蒸発器1内の圧力
を感知する蒸発器圧力検知器36(図1では図示省略)
をさらに設け、両感知器33、36の出力差すなわち差
圧を減算器37で演算し、得られた差圧を比較器38で
差圧基準値39と比較し、差圧が基準値以下に低下した
ときに、差圧比較器38から切り替え出力が発生されて
ヒートポンプサイクルから直火加熱へ切り替えられるよ
うにしてもよい。
As shown in FIG. 7, an evaporator pressure detector 36 for sensing the pressure in the evaporator 1 (not shown in FIG. 1).
The output difference between the two sensors 33 and 36, that is, the differential pressure is calculated by a subtractor 37, and the obtained differential pressure is compared with a differential pressure reference value 39 by a comparator 38. When the temperature decreases, a switching output may be generated from the differential pressure comparator 38 to switch from the heat pump cycle to direct heating.

【0051】さらに、以上の説明から明らかなように、
凝縮器圧力は外気温度および室内機設定温度の関数とな
るので、凝縮器圧力を外気温度および室内機設定温度の
組合わせで代表し、前記組合わせで決まる動作点が予定
範囲から外れた時に切り替え出力を発生させてヒートポ
ンプサイクルから直火加熱へ切り替えるようにすること
もできる。図8はこの状態を説明するための図である。
凝縮器圧力(縦軸)は外気温度(横軸)および室内機設
定温度の関数であり、設定温度がTl <T0 <Th のよ
うに上昇すると関数関係は曲線Tl 、T0 、Th などで
示すように変化する。ヒートポンプサイクルを有効に運
転するためには、凝縮器圧力がその閾値Ps 以上でなけ
ればならないから、ヒートポンプサイクル運転が可能な
範囲は、温度Tl の場合を斜線で示したように、室内機
設定温度に対応する曲線の右側(高温度側)で、かつ前
記閾値Ps の上側(高圧側)の領域に動作点がある場合
である。
Further, as is apparent from the above description,
Since the condenser pressure is a function of the outside air temperature and the indoor unit set temperature, the condenser pressure is represented by a combination of the outside air temperature and the indoor unit set temperature, and is switched when the operating point determined by the combination deviates from a predetermined range. An output may be generated to switch from a heat pump cycle to direct fire heating. FIG. 8 is a diagram for explaining this state.
The condenser pressure (vertical axis) is a function of the outside air temperature (horizontal axis) and the indoor unit set temperature. When the set temperature rises as Tl <T0 <Th, the functional relationship is represented by curves Tl, T0, Th and the like. Changes to In order to effectively operate the heat pump cycle, the condenser pressure must be equal to or higher than the threshold value Ps. Therefore, the range in which the heat pump cycle can be operated is the indoor unit set temperature as indicated by the hatched area at the temperature Tl. Is the case where the operating point is on the right side (high temperature side) of the curve corresponding to and above the threshold Ps (high pressure side).

【0052】[0052]

【発明の効果】以上の説明から明らかなように、本発明
によれば、通常の暖房時にはヒ−トポンプサイクルを利
用した高効率の暖房運転が行えると共に、外気温度が極
端に低下して熱の汲み上げが難しくなり、ヒートポンプ
サイクルが十分利用できない場合や、暖房負荷が急減し
て凝縮器などの高圧系の圧力が低下したり、凝縮器等の
高圧系の圧力と蒸発器などの低圧系の圧力との差が基準
値以下に低下したりする恐れがある場合、または外気温
度および暖房負荷の組合わせが予定範囲から外れた場合
などの暖房運転においても、室内機に循環させる冷却水
を直火加熱することにより暖房能力の低下を防止して所
望の暖房温度を維持できる。
As is apparent from the above description, according to the present invention, during normal heating, a high-efficiency heating operation using a heat pump cycle can be performed, and the temperature of the outside air is extremely reduced to reduce heat. If pumping becomes difficult and the heat pump cycle cannot be used sufficiently, or the heating load drops sharply, the pressure in the high-pressure system such as the condenser will drop, or the pressure in the high-pressure system such as the condenser and the pressure in the low-pressure system such as the evaporator will decrease. The cooling water circulated through the indoor unit may be directly fired even in the heating operation, such as when the difference from the temperature may drop below the reference value, or when the combination of the outside air temperature and the heating load is out of the planned range. By heating, a desired heating temperature can be maintained by preventing a decrease in the heating capacity.

【0053】また、本発明によれば、冷媒蒸気が全縮さ
れて該蒸気の熱量が最大限冷却水に伝達されるので、加
熱源の熱量を増やすことなく、再生器での溶液の加熱に
よって生じた冷媒蒸気によって前記室内機に循環させる
冷却水の温度を所望暖房に適した温度に維持できる。し
たがって、外気温度が極端に低い場合や暖房負荷が急減
された場合でも、簡単な手段で暖房能力を維持すること
ができる。
Further, according to the present invention, since the refrigerant vapor is totally contracted and the maximum amount of heat of the vapor is transferred to the cooling water, the heating of the solution in the regenerator can be performed without increasing the heat amount of the heating source. The temperature of the cooling water circulated through the indoor unit can be maintained at a temperature suitable for desired heating by the generated refrigerant vapor. Therefore, even when the outside air temperature is extremely low or the heating load is sharply reduced, the heating capacity can be maintained by simple means.

【0054】さらに、請求項および請求項の発明に
よれば、外気温度が予定温度より低いことを温度感知手
段または暖房負荷推定手段によって認識してヒ−トポン
プサイクル運転から直火加熱運転への切り換えを自動的
に行って暖房能力を維持させることができる。
Further, according to the invention of claim 4 and claim 5 , the temperature sensing means or the heating load estimating means recognizes that the outside air temperature is lower than the predetermined temperature, and shifts from the heat pump cycle operation to the direct fire heating operation. Is automatically switched to maintain the heating capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態に係る冷暖房装置の構成お
よび暖房運転時の配管系統を示す図である。
FIG. 1 is a diagram illustrating a configuration of a cooling and heating device according to an embodiment of the present invention and a piping system during a heating operation.

【図2】 本発明の実施形態に係る冷暖房装置の構成お
よび冷房運転時の配管系統を示す図である。
FIG. 2 is a diagram illustrating a configuration of a cooling and heating device according to an embodiment of the present invention and a piping system during a cooling operation.

【図3】 高温再生器および高温分縮器ならびに低温再
生器および低温分縮器の構成を示す図である。
FIG. 3 is a diagram showing a configuration of a high-temperature regenerator, a high-temperature regenerator, and a low-temperature regenerator and a low-temperature regenerator.

【図4】 暖房効率算出のためのコンピュータの要部機
能を示すブロック図である。
FIG. 4 is a block diagram showing main functions of a computer for calculating heating efficiency.

【図5】 本発明の第2実施形態に係る冷暖房装置の構
成および暖房運転時の配管系統の要部を示す図である。
FIG. 5 is a diagram illustrating a configuration of a cooling and heating device according to a second embodiment of the present invention and a main part of a piping system during a heating operation.

【図6】 本発明の第3実施形態におけるヒートポンプ
サイクル運転と、直火加熱運転との切り替えのための制
御回路例の要部ブロック図である。
FIG. 6 is a main part block diagram of an example of a control circuit for switching between a heat pump cycle operation and an open flame heating operation in a third embodiment of the present invention.

【図7】 本発明の第3実施形態におけるヒートポンプ
サイクル運転と、直火加熱運転との切り替えのための他
の制御回路例の要部ブロック図である。
FIG. 7 is a main part block diagram of another control circuit example for switching between a heat pump cycle operation and an open flame heating operation in a third embodiment of the present invention.

【図8】 凝縮器圧力と外気温度との関係を示すグラフ
である。
FIG. 8 is a graph showing a relationship between a condenser pressure and an outside air temperature.

【符号の説明】[Explanation of symbols]

1…蒸発器、 2…吸収器、 3…第1再生器、 4…
第2再生器、 5…第1分縮器、 6…第2分縮器、
7…バーナ、 10…ファン、 14…顕熱交換器、
15…室内機、 21…給湯機、 23…外気温度感知
器、 24…室内温度感知器、 25…要求熱量算出
部、 26…比較器、 33…凝縮器圧力検知器 34
…圧力比較器 35…圧力基準値 36…蒸気圧力感知
器 37…減算器 38…差圧比較器 39…差圧基準
1 ... evaporator, 2 ... absorber, 3 ... first regenerator, 4 ...
2nd regenerator, 5 ... 1st decompressor, 6 ... 2nd decompressor,
7 ... burner, 10 ... fan, 14 ... sensible heat exchanger,
15 ... indoor unit, 21 ... water heater, 23 ... outside air temperature sensor, 24 ... indoor temperature sensor, 25 ... required calorie calculation unit, 26 ... comparator, 33 ... condenser pressure detector 34
... pressure comparator 35 ... pressure reference value 36 ... steam pressure sensor 37 ... subtractor 38 ... differential pressure comparator 39 ... differential pressure reference value

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川口 昇 埼玉県和光市中央一丁目4番1号 株式 会社 本田技術研究所内 (56)参考文献 特開 平6−94322(JP,A) 特開 昭56−87758(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 F25B 15/00 306 F25B 30/04 520 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Noboru Kawaguchi 1-4-1 Chuo, Wako-shi, Saitama Pref. Honda Technology Laboratory Co., Ltd. (56) References JP-A-6-94322 (JP, A) JP-A Sho 56-87758 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 15/00 F25B 15/00 306 F25B 30/04 520

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】冷媒を収容する蒸発器と、 前記蒸発器で発生した冷媒蒸気を吸収して吸収熱を発生
する吸収剤を含む溶液を収容する吸収器と、 前記溶液の一部を加熱して冷媒蒸気を抽出する再生器
と、前記再生器で抽出した冷媒蒸気に混入した吸収剤を分離
する分縮器と、 前記分縮器で吸収剤が分離された 冷媒蒸気を凝縮させて
前記蒸発器に回収する凝縮器と、 前記蒸発器内に配置され、その内部を通過する冷水が前
記蒸発器内の冷媒で冷却される第1管路と、 前記吸収器内および前記分縮器に延長して配置され、そ
の内部を通過する冷却水が前記溶液で昇温されると共に
前記再生器で抽出した冷媒蒸気を管内を通過する冷却水
で冷却する第2管路と、 冷暖房用の風を室内に吹き込むための室内機と、 前記冷却水および冷水の一方と外気との熱交換をする顕
熱交換器と、 冷房運転時には前記第1管路で冷却された冷水を前記室
内機に導くとともに、前記第2管路を通過して昇温され
た冷却水を前記顕熱交換器に導く一方、暖房運転時には
前記第1管路で冷却された冷水を前記顕熱交換器に導く
とともに、前記第2管路を通過して昇温された冷却水を
前記室内機に導くための管路切替弁と、 前記暖房運転時において外気温度が第1予定値以下、前
記凝縮器の圧力値が第2予定値以下、前記凝縮器の圧力
および蒸発器の圧力の差圧が第3予定値以下、外気湿度
および室内機設定温度の組み合わせで決まる動作点が予
定範囲外であることの条件の、少なくとも1つが満足さ
れたときには、前記第2管路内の冷却水を直火加熱する
手段とを具備し 前記直火加熱する手段は、前記分縮器で冷却される冷媒
蒸気を可及的全縮させるため、該分縮器の冷却容量を増
大する冷却容量可変手段を具備し たことを特徴とする吸
収式冷暖房装置。
1. An evaporator for containing a refrigerant, an absorber for containing a solution containing an absorbent that absorbs refrigerant vapor generated in the evaporator to generate absorption heat, and heats a part of the solution. A regenerator that extracts refrigerant vapor by separation and an absorbent mixed in the refrigerant vapor extracted by the regenerator
A condenser that condenses the refrigerant vapor from which the absorbent has been separated by the condenser, and collects the vapor in the evaporator. The cold water that is disposed in the evaporator and passes through the evaporator evaporates the cold water. a first conduit which is cooled by the refrigerant in the vessel, the are arranged so as to extend in the absorber and in the dephlegmator, together with the cooling water passing through the inside is heated by the solution
Cooling water passing through the pipe through the refrigerant vapor extracted by the regenerator
A second pipe line for cooling air in the room, an indoor unit for blowing air for cooling and heating into the room, a sensible heat exchanger for exchanging heat between one of the cooling water and the cold water and outside air, and a first sensible heat exchanger for cooling operation. The cold water cooled in the pipeline is guided to the indoor unit, and the cooling water that has been heated through the second pipeline is guided to the sensible heat exchanger. A pipe switching valve for guiding the cooled water to the sensible heat exchanger, and guiding the cooling water that has passed through the second pipe and has been heated to the indoor unit, and the outside air temperature during the heating operation is reduced. The pressure value of the condenser is equal to or less than the second predetermined value, the differential pressure between the pressure of the condenser and the pressure of the evaporator is equal to or less than the third predetermined value, and is determined by a combination of the outside air humidity and the indoor unit set temperature. At least one of the conditions that the operating point is out of the expected range is satisfied Means for directly heating the cooling water in the second conduit when the cooling water in the second conduit is provided , wherein the means for directly heating the cooling water is a refrigerant cooled by the decompressor.
Increase the cooling capacity of the condenser in order to reduce steam as much as possible.
An absorption type air conditioner comprising a cooling capacity variable means .
【請求項2】前記再生器および分縮器を、高温再生器お
よび該高温再生器に組み合わせられる高温分縮器ならび
に低温再生器および該低温再生器に組み合わせられる低
温分縮器からなる二重効用方式で構成し、 前記冷却容量可変手段を、前記第2管路の冷却水を前記
再生器において前記高温分縮器に導くための切替弁で構
成したことを特徴とする請求項記載の吸収式冷暖房装
置。
2. A double effect system comprising a regenerator and a decompressor, comprising a high-temperature regenerator and a high-temperature regenerator combined with the high-temperature regenerator, and a low-temperature regenerator and a low-temperature regenerator combined with the low-temperature regenerator. 2. The absorption system according to claim 1 , wherein the cooling capacity variable unit is configured by a switching valve for guiding the cooling water in the second conduit to the high-temperature decomposer in the regenerator. 3. Type air conditioner.
【請求項3】前記直火加熱する手段による運転時には、
前記冷却水を前記吸収器に循環させないように構成した
ことを特徴とする請求項1または2に記載の吸収式冷暖
房装置。
3. During operation by the means for heating directly,
The absorption-type cooling and heating apparatus according to claim 1 or 2 , wherein the cooling water is not circulated through the absorber.
【請求項4】外気温度を検出する温度感知手段と、 該温度感知手段の出力に基づいて外気温度が前記第1予
定値以下であること判定する制御手段とを具備したこと
を特徴とする請求項1ないし3のいずれかに記載の吸収
式冷暖房装置。
4. A temperature detecting means for detecting an outside air temperature, and a control means for judging that the outside air temperature is equal to or less than the first predetermined value based on an output of the temperature sensing means. Item 4. An absorption type cooling / heating device according to any one of Items 1 to 3 .
【請求項5】暖房負荷推定手段と、 該暖房負荷推定手段によって推定された暖房負荷が第4
予定値を超えた場合に外気温度が第1予定値以下である
と判定する制御手段とを具備したことを特徴とする請求
1ないし3のいずれかに記載の吸収式冷暖房装置。
5. A heating load estimating means, wherein the heating load estimated by the heating load estimating means is a fourth heating load.
Absorption cooling and heating apparatus according to any one of claims 1 to 3, characterized in that the outside air temperature is provided and determining control means to be equal to or less than the first predetermined value when it exceeds a predetermined value.
【請求項6】前記凝縮器は空冷式である請求項1ないし
のいずれかに記載の吸収式冷暖房装置。
Wherein said condenser claims 1 is air-cooled
5. The absorption-type cooling and heating apparatus according to any one of 5 .
JP33305696A 1996-03-26 1996-11-29 Absorption air conditioner Expired - Fee Related JP3272968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33305696A JP3272968B2 (en) 1996-03-26 1996-11-29 Absorption air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9471496 1996-03-26
JP8-94714 1996-03-26
JP33305696A JP3272968B2 (en) 1996-03-26 1996-11-29 Absorption air conditioner

Publications (2)

Publication Number Publication Date
JPH09318183A JPH09318183A (en) 1997-12-12
JP3272968B2 true JP3272968B2 (en) 2002-04-08

Family

ID=26435975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33305696A Expired - Fee Related JP3272968B2 (en) 1996-03-26 1996-11-29 Absorption air conditioner

Country Status (1)

Country Link
JP (1) JP3272968B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5901567A (en) * 1996-12-18 1999-05-11 Honda Giken Kogyo Kabushiki Kaisha Absorption refrigerating/heating apparatus
JP3393780B2 (en) * 1997-01-10 2003-04-07 本田技研工業株式会社 Absorption air conditioner
JP4062479B2 (en) 2001-02-14 2008-03-19 本田技研工業株式会社 Absorption air conditioner
CN104132413A (en) * 2014-08-07 2014-11-05 程博 Temperature and humidity independent control air conditioning unit based on absorption refrigeration

Also Published As

Publication number Publication date
JPH09318183A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
JP6257801B2 (en) Refrigeration cycle apparatus and refrigeration cycle apparatus abnormality detection system
US4308042A (en) Heat pump with freeze-up prevention
US5941089A (en) Absorption refrigerating/heating apparatus
KR100337208B1 (en) Cooling and heating apparatus of absorption type
US5109677A (en) Supplemental heat exchanger system for heat pump
US4722197A (en) High-efficiency, ambient-assisted, integrated heating and cooling system
JP4229881B2 (en) Heat pump system
CN106839518A (en) The double cold and hot pump assemblys of integral type
EP3764026B1 (en) Heating and cooling systems, and apparatus for conversion of an existing heating system and an existing refrigeration system into a heating and cooling system
JP3272968B2 (en) Absorption air conditioner
CN205536293U (en) Multi -functional energy -conserving central air -conditioning system of integrated form
US8726684B2 (en) Reversible system for recovering of heat energy by sampling and transfer of calories from one or more media into one or more other such media
JP3390672B2 (en) Absorption refrigeration equipment
KR101500068B1 (en) Heat pump system including inverter compressor
KR100585517B1 (en) Sola cooling/heating system used geothermy and heat-pump unit
KR100563305B1 (en) Heat source apparatus of heating and cooling system for preventing winter-sowing
CN113357691A (en) Air conditioner, floor heating and hot water three-in-one low-temperature air source heat pump unit
CN104279789B (en) A kind of trilogy supply air-conditioning system
CN112303761A (en) Fluorine pump air conditioning system for adjusting central heating temperature and control method
JPS60101458A (en) Double effect absorption type refrigerator
RU2808026C1 (en) Heat pump unit
CN218955072U (en) Air conditioning unit
KR200366285Y1 (en) Heat source apparatus of heating and cooling system for preventing winter-sowing
CN211552130U (en) Energy-saving reation kettle and refrigeration heating temperature control system for test equipment
CN215489945U (en) Air conditioner, floor heating and hot water three-in-one low-temperature air source heat pump unit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees