JP3271296B2 - Defrosting operation control device for refrigeration system - Google Patents

Defrosting operation control device for refrigeration system

Info

Publication number
JP3271296B2
JP3271296B2 JP12377692A JP12377692A JP3271296B2 JP 3271296 B2 JP3271296 B2 JP 3271296B2 JP 12377692 A JP12377692 A JP 12377692A JP 12377692 A JP12377692 A JP 12377692A JP 3271296 B2 JP3271296 B2 JP 3271296B2
Authority
JP
Japan
Prior art keywords
opening
electric expansion
temperature
evaporators
defrosting operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12377692A
Other languages
Japanese (ja)
Other versions
JPH05322388A (en
Inventor
洋 朝妻
幸雄 重永
直樹 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP12377692A priority Critical patent/JP3271296B2/en
Publication of JPH05322388A publication Critical patent/JPH05322388A/en
Application granted granted Critical
Publication of JP3271296B2 publication Critical patent/JP3271296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷媒回路に複数の蒸発
器を並列配置してなる冷凍装置の除霜運転制御装置に係
り、特に除霜時間の短縮対策に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defrosting operation control device for a refrigeration system having a plurality of evaporators arranged in parallel in a refrigerant circuit, and more particularly to a measure for reducing the defrosting time.

【0002】[0002]

【従来の技術】従来より、冷凍装置の除霜運転制御装置
として、例えば特開昭60―235964号公報に開示
される如く、運転中に蒸発器が着霜して除霜指令が出力
されると、四路切換弁を冷房側に切り換えて吐出冷媒を
直接蒸発器に導入し、除霜運転中には減圧弁を全開に制
御することにより、速やかに蒸発器の着霜を融解しよう
とするものは公知の技術である。
2. Description of the Related Art Conventionally, as a defrosting operation control device for a refrigeration system, for example, as disclosed in Japanese Patent Application Laid-Open No. 60-235964, an evaporator frosts during operation and a defrosting command is output. By switching the four-way switching valve to the cooling side to directly introduce the discharged refrigerant into the evaporator, and during the defrosting operation, the pressure reducing valve is controlled to be fully opened, thereby promptly melting the frost formed on the evaporator. Those are known technologies.

【0003】[0003]

【発明が解決しようとする課題】ところで、冷媒回路の
複数の蒸発器を配置することにより、蒸発能力の調整幅
を広くすることが可能であるが、かかる複数の蒸発器を
備えたいわゆる多面熱交形冷凍装置では、下記のような
問題があった。
By arranging a plurality of evaporators of the refrigerant circuit, it is possible to widen the range of adjustment of the evaporation capacity. The following problems have been encountered with the alternating refrigeration system.

【0004】すなわち、図5に示すように、一方の蒸発
器の温度T1が他の蒸発器の温度T2よりも低い場合を
想定すると、除霜運転は、低温側蒸発器の熱交温度T1
が除霜開始温度Tinに達すると開始されるが(図中の時
刻to )、そのときの各蒸発器の着霜量には差がある。
したがって、各蒸発器の温度T1,T2は均一に変化す
るのではなく、各蒸発器の着霜が完了した時点(図中の
時刻t1 )では、低温側蒸発器の熱交温度T1は着霜の
融解状態に相当する除霜終了温度Tout であるが、高温
側蒸発器の熱交温度T2はかなり高い温度に達してお
り、その分除霜時間が不必要に長くなり、運転効率の低
下や空気調和装置における快適性の悪化とを招くという
問題があった。
That is, as shown in FIG. 5, assuming that the temperature T1 of one evaporator is lower than the temperature T2 of the other evaporator, the defrosting operation is performed by the heat exchange temperature T1 of the low-temperature side evaporator.
Is started when the temperature reaches the defrost start temperature Tin (time to in the figure), but there is a difference in the amount of frost formed by each evaporator at that time.
Therefore, the temperatures T1 and T2 of the evaporators do not change uniformly, and at the time when the frost formation of each evaporator is completed (time t1 in the figure), the heat exchange temperature T1 of the low-temperature side evaporator is frosted. Is the defrosting end temperature Tout corresponding to the melting state, but the heat exchange temperature T2 of the high-temperature side evaporator has reached a considerably high temperature. There has been a problem that the comfort of the air conditioner is deteriorated.

【0005】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、冷媒回路に複数の蒸発器を並列配置
してなる冷凍装置において、除霜運転中における各蒸発
器の除霜度合いを均一化する手段を講ずることにより、
除霜時間の短縮を図ることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and an object of the present invention is to provide a refrigeration system having a plurality of evaporators arranged in parallel in a refrigerant circuit, in which a defrost operation of each evaporator during a defrost operation is performed. By taking measures to equalize the degree,
It is to shorten the defrosting time.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の講じた手段は、図1に示すよう
に、冷媒回路(14)に、複数の蒸発器(6a),(6
b)及び該各蒸発器(6a),(6b)用の電動膨張弁
(8a),(8b)の組を互いに並列に配置してなる冷
凍装置を前提とする。
In order to achieve the above-mentioned object, the means adopted in the first aspect of the present invention is to provide a refrigerant circuit (14) with a plurality of evaporators (6a), (6) as shown in FIG. 6
b) and a refrigerating apparatus in which a set of electric expansion valves (8a) and (8b) for the evaporators (6a) and (6b) are arranged in parallel with each other.

【0007】そして、冷凍装置の除霜運転制御装置とし
て、運転中に着霜指令を受け、上記各蒸発器(6a),
(6b)に吐出ガス冷媒を導入するよう制御する除霜運
転制御手段と、上記各蒸発器(6a),(6b)の熱交
温度を個別に検出する熱交温度検出手段(Tha2 ),
(Thb2 )と、該各熱交温度検出手段(Tha2 ),(T
hb2 )の検出値を比較して、上記除霜運転制御手段の制
御中、低温側蒸発器(6a又は6b)の電動膨張弁(8
a又は8b)の開度を高温側蒸発器(6b又は6a)の
電動膨張弁(8b又は8a)の開度よりも大きくするよ
う制御する開度制御手段(51)とを設ける構成とす
る。
[0007] As a defrosting operation control device for the refrigerating device, a frosting command is received during operation, and each of the evaporators (6a),
(6b) a defrosting operation control means for controlling the introduction of the discharge gas refrigerant, a heat exchange temperature detecting means (Th2) for individually detecting the heat exchange temperature of each of the evaporators (6a) and (6b),
(Thb2) and the respective heat exchange temperature detecting means (Tha2), (T
hb2), the electric expansion valve (8) of the low-temperature side evaporator (6a or 6b) is controlled during the control of the defrosting operation control means.
The opening degree control means (51) for controlling the opening degree of the electric expansion valve (8b or 8a) of the high temperature side evaporator (6b or 6a) to be larger than the opening degree of the high temperature side evaporator (6b or 6a) is provided.

【0008】請求項2の発明の講じた手段は、請求項1
の発明において、開度制御手段(51)を、各熱交温度
検出手段(Tha2 ),(Thb2 )の検出値の差が所定値
以下のときには、各電動膨張弁(8a),(8b)の開
度を同じ開度に制御するように構成したものである。
[0008] The measures taken by the invention of claim 2 are the following.
In the invention, when the difference between the detected values of the heat exchange temperature detecting means (Tha2) and (Thb2) is equal to or smaller than a predetermined value, the opening degree control means (51) is controlled by the electric expansion valves (8a) and (8b). The opening is controlled to the same opening.

【0009】[0009]

【作用】以上の構成により、請求項1の発明では、冷凍
装置の運転中に蒸発器(6a),(6b)が着霜して、
除霜指令が出力されると、除霜運転制御手段により、各
蒸発器(6a),(6b)に高温の吐出冷媒が導入され
る。そして、開度制御手段(51)により、各熱交温度
検出手段(Tha2 ),(Thb2 )の検出値を比較して、
低温側蒸発器(6a又は6b)つまり着霜の融解が遅れ
ている側の電動膨張弁(8a又は8b)の開度が高温側
蒸発器(6b又は6a)の電動膨張弁(8b又は8a)
の開度よりも大きくなるように制御されるので、両蒸発
器(6a),(6b)の着霜の融解度合いが均一化さ
れ、各蒸発器(6a),(6b)の熱交温度がほぼ等し
い状態に近付く。したがって、除霜の均一化により除霜
時間が短縮されることになる。
With the above arrangement, according to the first aspect of the present invention, the evaporators (6a) and (6b) become frosted during the operation of the refrigeration system,
When the defrost command is output, the high-temperature discharge refrigerant is introduced into each of the evaporators (6a) and (6b) by the defrost operation control means. Then, the opening degree control means (51) compares the detection values of the heat exchange temperature detection means (Th2) and (Thb2), and
The opening of the low-temperature side evaporator (6a or 6b), that is, the motor-operated expansion valve (8a or 8b) on the side where the melting of frost is delayed is the electric expansion valve (8b or 8a) of the high-temperature side evaporator (6b or 6a).
Is controlled so as to be larger than the opening degree of the evaporators (6a) and (6b), the degree of melting of frost is made uniform, and the heat exchange temperature of each evaporator (6a) and (6b) is reduced. Approximately equal. Therefore, the defrosting time is shortened by uniform defrosting.

【0010】請求項2の発明では、上記請求項1の発明
において、両蒸発器(6a),(6b)の熱交温度の温
度差が所定値以下のときには、各電動膨張弁(8a)及
び(8b)の開度が等しくなるように制御されるので、
各蒸発器(6a),(6b)自体に着霜の融解の分布が
あっても、検出値の誤差による電動膨張弁(8a),
(8b)の開度の誤制御が防止されることになる。
According to a second aspect of the present invention, when the temperature difference between the heat exchange temperatures of the two evaporators (6a) and (6b) is equal to or smaller than a predetermined value, each of the electric expansion valves (8a) and Since the opening degree of (8b) is controlled to be equal,
Even if each of the evaporators (6a) and (6b) itself has a distribution of frost melting, the electric expansion valve (8a),
The erroneous control of the opening degree in (8b) is prevented.

【0011】[0011]

【実施例】以下、本発明の実施例について、図2以下の
図面に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS.

【0012】図2は本発明の実施例に係るマルチ型空気
調和装置の冷媒配管系統を示し、(X)は室外ユニッ
ト、(Y1),(Y2),…は該室外ユニット(X)に
並列に接続された室内ユニットである。上記室外ユニッ
ト(X)の内部には、2つの三方切換弁(SV1),(S
V2)の切換えにより、運転容量が100%,67%,3
3%の3段階に調節される圧縮機(1)と、上記圧縮機
(1)から吐出されるガス冷媒中の油を分離する第1,
第2油分離器(4a),(4b)と、冷房運転時には図
中実線の如く切換わり暖房運転時には図中破線の如く切
換わる四路切換弁(5)と、冷房運転時に凝縮器、暖房
運転時に蒸発器となる一対の室外熱交換器(6a),
(6b)及び該室外熱交換器(6a),(6b)に付設
された2台の室外ファン(F1),(F2)とが配設さ
れている。上記各室外熱交換器(6a),(6b)は、
回路中で並列に配置されており、各室外熱交換器(6
a),(6b)に対して、冷房運転時には冷媒流量を調
節し、暖房運転時には冷媒の絞り作用を行う一対の室外
電動膨張弁(8a1),(8a2)及び(8b1),(8b2)
が配設されている。さらに室外ユニット(X)には、液
化した冷媒を貯蔵するためのレシ―バ(9)と、一対の
第1,第2アキュムレータ(10a),(10b)とが
配設されていて、該各機器(1)〜(10b)は、順次
冷媒配管(11)により冷媒の流通可能に接続されてい
る。また上記室内ユニット(Y1),(Y2),…は同
一構成であり、各々、冷房運転時には蒸発器、暖房運転
時には凝縮器となる室内熱交換器(12)およびそのフ
ァン(12a)と、暖房運転時に冷媒流量を調節し、冷
房運転時に冷媒の絞り作用を行う室内電動膨張弁(1
3)とがそれぞれ配設され、合流後液側手動閉鎖弁(1
7)及びガス側手動閉鎖弁(18)を介し液側連絡配管
(11a)及びガス側連絡配管(11b)によって室外
ユニット(X)との間を接続されている。すなわち、以
上の各機器は冷媒配管(11)により、冷媒の流通可能
に接続されていて、室外空気との熱交換により得た熱を
室内空気に放出するようにした主冷媒回路(14)が構
成されている。
FIG. 2 shows a refrigerant piping system of a multi-type air conditioner according to an embodiment of the present invention, wherein (X) is an outdoor unit, and (Y1), (Y2),. This is an indoor unit connected to. Inside the outdoor unit (X), two three-way switching valves (SV1), (SV1)
By switching V2), the operating capacity becomes 100%, 67%, 3%.
A compressor (1) adjusted to three stages of 3%, and a first (1) for separating oil in a gas refrigerant discharged from the compressor (1).
A second oil separator (4a), (4b), a four-way switching valve (5) that switches during cooling operation as shown by a solid line in the drawing and switches during heating operation as shown by a broken line in the drawing, a condenser and a heating device during cooling operation A pair of outdoor heat exchangers (6a) serving as evaporators during operation,
(6b) and two outdoor fans (F1) and (F2) attached to the outdoor heat exchangers (6a) and (6b). Each of the above outdoor heat exchangers (6a) and (6b)
It is arranged in parallel in the circuit, and each outdoor heat exchanger (6
Contrary to (a) and (6b), a pair of outdoor electric expansion valves (8a1), (8a2) and (8b1), (8b2) that adjusts the refrigerant flow rate during the cooling operation and performs the throttling operation of the refrigerant during the heating operation.
Are arranged. Further, the outdoor unit (X) is provided with a receiver (9) for storing the liquefied refrigerant and a pair of first and second accumulators (10a) and (10b). The devices (1) to (10b) are sequentially connected by a refrigerant pipe (11) so that the refrigerant can flow. The indoor units (Y1), (Y2),... Have the same configuration, and include an indoor heat exchanger (12) and a fan (12a), which serve as an evaporator during a cooling operation and a condenser during a heating operation, respectively, and a heating unit. An indoor electric expansion valve (1) that adjusts the flow rate of the refrigerant during operation and performs a throttling operation of the refrigerant during cooling operation.
3) are arranged respectively, and after merging, the liquid side manual shutoff valve (1)
7) and a liquid side communication pipe (11a) and a gas side communication pipe (11b) are connected to the outdoor unit (X) via the gas side manual shutoff valve (18). That is, each of the above devices is connected by a refrigerant pipe (11) so that refrigerant can flow therethrough, and a main refrigerant circuit (14) configured to release heat obtained by heat exchange with outdoor air to indoor air is provided. It is configured.

【0013】次に、上記各主要機器以外に補助用の諸機
器が設けられている。吐出管と吸入管との間には、圧縮
機(1)の停止時等に高圧側圧力と低圧側圧力とを均圧
化するための均圧ホットガスバイパス路(11d)が設
けられ、該均圧ホットガスバイパス路(11d)には、
サ―モオフ状態等による圧縮機(1)の停止時、再起動
前に一定時間開作動する均圧用開閉弁(21)が介設さ
れている。また、上記第1,第2油分離器(4a),
(4b)から第2アキュムレータ(10b)出口の立上
がり配管まで、キャピラリチュ―ブ(32)を介して油
を戻すための油戻し管(33)が設けられている。さら
に、上記油分離器(4a),(4b)−四路切換弁
(5)間の吐出管とレシーバ(9)上部とを接続する暖
房過負荷制御回路(11e)が設けられており、該暖房
過負荷制御回路(11e)には、吐出管側から順に、補
助熱交換器(6c)、キャピラリチュ―ブ(23)、過
負荷制御開閉弁(SVS)が介設されている。また、各室
外電動膨張弁(8a1)〜(8b2)−レシーバ(9)間の
液管とアキュムレータ(10)上流側の吸入管とをバイ
パス接続するリキッドインジェクションバイパス路(1
1f)が設けられており、該バイパス路(11f)に
は、吸入冷媒の過熱を調節すべく開閉するインジェクシ
ョン開閉弁(SVL)が介設されている。なお、(GP)
はゲ―ジポ―トである。
Next, auxiliary devices are provided in addition to the above main devices. An equalizing hot gas bypass passage (11d) is provided between the discharge pipe and the suction pipe to equalize the high pressure side and the low pressure side pressure when the compressor (1) is stopped. In the equalizing hot gas bypass passage (11d),
When the compressor (1) is stopped due to a thermo-off state or the like, a pressure equalizing opening / closing valve (21) that opens for a predetermined time before restarting is provided. Further, the first and second oil separators (4a),
An oil return pipe (33) for returning oil through a capillary tube (32) is provided from (4b) to the rising pipe at the outlet of the second accumulator (10b). Further, a heating overload control circuit (11e) for connecting a discharge pipe between the oil separators (4a), (4b) and the four-way switching valve (5) and an upper portion of the receiver (9) is provided. In the heating overload control circuit (11e), an auxiliary heat exchanger (6c), a capillary tube (23), and an overload control on-off valve (SVS) are provided in this order from the discharge pipe side. A liquid injection bypass passage (1) for bypass-connecting a liquid pipe between each of the outdoor electric expansion valves (8a1) to (8b2) and the receiver (9) and a suction pipe upstream of the accumulator (10).
1f) is provided, and an injection opening / closing valve (SVL) is provided in the bypass passage (11f) to open and close to regulate overheating of the suction refrigerant. (GP)
Is a gageport.

【0014】また、装置には多くのセンサ類が配置され
ていて、(Th1a),(Th1b)は各室外熱交換器(6a),
(6b)のガス管温度を検出するガス管センサ、(Th2
a),(Th2b)は各室外熱交換器(6a),(6b)の液管
温度を検出する本発明でいう熱交温度検出手段としての
液管センサ、(Thd)は圧縮機(1)の吐出管温度を検
出する吐出管センサ、(Thr)は各室内ユニット(Y
1)の空気吸込口に配設され、吸込空気温度(室温)を
検出する室内吸込センサ、(LP)は吸入圧力(低圧側
圧力)を検出する低圧センサ、(63QL)は吸入圧力と
油圧との圧力差を検出する差圧センサ、(HP)は吐出
圧力(高圧側圧力)を検出する高圧センサ、(63H)
は圧縮機保護用の高圧圧力開閉器であって、これらのセ
ンサ類の信号は、空気調和装置のコントローラ(図示せ
ず)に入力可能になされている。
Further, the apparatus is provided with many sensors, and (Th1a) and (Th1b) are the outdoor heat exchangers (6a) and (Th1b).
(6b) a gas pipe sensor for detecting the gas pipe temperature, (Th2
a) and (Th2b) are liquid tube sensors as heat exchange temperature detecting means in the present invention for detecting liquid tube temperatures of the outdoor heat exchangers (6a) and (6b), and (Thd) is a compressor (1) A discharge pipe sensor for detecting the discharge pipe temperature of the indoor unit (Y)
1) An indoor suction sensor that is disposed at the air suction port and detects the suction air temperature (room temperature), (LP) is a low pressure sensor that detects suction pressure (low pressure side pressure), and (63QL) is suction pressure and oil pressure. (HP) is a high pressure sensor that detects discharge pressure (high pressure side pressure), (63H)
Is a high-pressure switch for protecting the compressor, and signals from these sensors can be input to a controller (not shown) of the air conditioner.

【0015】図2において、空気調和装置の冷房運転
時、四路切換弁(5)が図中実線側に切換わり、圧縮機
(1)で圧縮された冷媒が各室外熱交換器(6a),
(6b)で凝縮され、レシーバ(9)に貯溜された後、
液側連絡配管(11a)を経て各室内ユニット(Y
1),(Y2),…に分岐して送られる。各室内ユニッ
ト(Y1),(Y2),…では、冷媒が各室内電動膨張
弁(13)で減圧され、各室内熱交換器(12)で蒸発
した後合流して、ガス側連絡配管(11b)を経て室外
ユニット(X)に戻り、アキュムレータ(10a),
(10b)で混入している液冷媒が除去されてから、圧
縮機(1)に吸入されるように循環する。
In FIG. 2, during the cooling operation of the air conditioner, the four-way switching valve (5) switches to the solid line side in the figure, and the refrigerant compressed by the compressor (1) is supplied to each outdoor heat exchanger (6a). ,
After being condensed in (6b) and stored in the receiver (9),
Through the liquid side connection pipe (11a), each indoor unit (Y
1), (Y2),... In each of the indoor units (Y1), (Y2),..., The refrigerant is decompressed by each of the indoor electric expansion valves (13), evaporated in each of the indoor heat exchangers (12), and then joined to form a gas-side communication pipe (11b). ), Return to the outdoor unit (X), and accumulators (10a),
After the mixed liquid refrigerant is removed in (10b), the refrigerant is circulated so as to be sucked into the compressor (1).

【0016】また、暖房運転時には、四路切換弁(5)
が図中破線側に切換わり、冷媒の流れは上記冷房運転時
と逆となって、圧縮機(1)で圧縮された冷媒が各室内
熱交換器(12),(12),…で凝縮され、合流して
液状態で室外ユニット(X)に流れ、レシーバ(9)に
貯溜される。そして、各室外電動膨張弁(8a1)〜(8
b2)により減圧され、各室外熱交換器(6a),(6
b)で蒸発した後圧縮機(1)に戻るように循環する。
During the heating operation, the four-way switching valve (5)
Is switched to the broken line side in the figure, and the flow of the refrigerant is opposite to that in the cooling operation, and the refrigerant compressed in the compressor (1) is condensed in the indoor heat exchangers (12), (12),. Then, they merge and flow in a liquid state to the outdoor unit (X), and are stored in the receiver (9). Then, each of the outdoor electric expansion valves (8a1) to (8
The pressure is reduced by b2) and each outdoor heat exchanger (6a), (6
After evaporating in b), it circulates back to the compressor (1).

【0017】次に、空気調和装置の電気回路について、
図3に基づき説明する。図3において、三相交流電源
(TeS)には、外部機器回路(100)が接続されてい
るとともに、三相交流電源中の二相配線に、メイン機器
駆動用基板(110)と、弁駆動用基板(120)とが
接続されている。さらに、上記メイン機器駆動用基板
(110)に対し、第1変圧器(Tr1)を介して制御用
基板(130)が接続されている。
Next, regarding the electric circuit of the air conditioner,
This will be described with reference to FIG. In FIG. 3, an external device circuit (100) is connected to a three-phase AC power supply (TeS), and a main device drive board (110) and a valve drive And a connection substrate (120). Further, a control substrate (130) is connected to the main device driving substrate (110) via a first transformer (Tr1).

【0018】上記外部機器回路(100)において、
(MC)は圧縮機(1)を駆動するための圧縮機モー
タ、(MF1),(MF2)はそれぞれ二台の室外ファン
(F1),(F2)を駆動するためのファンモータであ
って、上記圧縮機モータ(MC)には、後述の起動,停
止用の電磁リレー(52C)の常開接点(52C-1)と、後
述の過電流保護スイッチ(51C)を開作動させるための
ヒューズ(51C-f)とが直列に接続され、さらに、起動
時制御用の電磁リレー(42C),(6C)の常開接点
(42C-1),(6C-1)が付設されている。また、各フ
ァンモータ(MF1),(MF2)には、後述の起動,停止
用の電磁リレー(52F1),(52F2)の常開接点(52F1-
1),(52F2-1)と、過電流保護スイッチ(51F1),(51
F2)を開作動させるためのヒューズ(51F1-f),(51F2
-f)とが直列に接続されている。
In the external device circuit (100),
(MC) is a compressor motor for driving the compressor (1), (MF1) and (MF2) are fan motors for driving two outdoor fans (F1) and (F2), respectively. The compressor motor (MC) has a normally open contact (52C-1) of an electromagnetic relay (52C) for starting and stopping described later and a fuse (52C) for opening an overcurrent protection switch (51C) described later. 51C-f) are connected in series, and the normally open contacts (42C-1) and (6C-1) of the electromagnetic relays (42C) and (6C) for startup control are additionally provided. Each fan motor (MF1) and (MF2) has a normally open contact (52F1--F) for starting and stopping electromagnetic relays (52F1) and (52F2) described later.
1), (52F2-1) and overcurrent protection switch (51F1), (51F1)
Fuse (51F1-f) for opening operation of F2), (51F2
-f) are connected in series.

【0019】また、メイン機器駆動用基板(110)に
は、高圧保護用スイッチ(63H),圧縮機(1)の過電
流保護スイッチ(51C),圧縮機(1)の温度上昇保護
スイッチ(49C)及びファン過電流保護スイッチ(51F
1),(51F2)とを配置してなる保護回路(111)
と、各々常開のリレー接点(RY2),(RY4),(RY
6),(RY7)及び(RY8)に直列に接続されたファン
駆動用電磁リレー(52F1),(52F2),圧縮機駆動用電
磁リレー(52C)及び圧縮機起動制御用電磁リレー(42
C),(6C)を配設してなる第1アクチュエータ駆動
回路(112)と、各々常開のリレー接点((RY9)〜
(RY15 )に直列に接続された異常表示用電磁リレー
(WL),上記四路切換弁(2)を切換えるための電磁
リレー(20S),上記アンローダ用三方切換弁(SV
1),(SV2)を切換えるための電磁リレー(20RS1),
(20RS2),上記均圧用開閉弁(SVP)を開閉するための
電磁リレー(20R1),上記過負荷制御開閉弁(SVS)を
開閉するための電磁リレー(20R2)及び上記インジェ
クション開閉弁(SVL)を開閉するための電磁リレー
(20R3)を配設してなる第2アクチュエータ駆動回路
(113)とが主要回路として設けられている。
The main equipment driving board (110) includes a high-voltage protection switch (63H), an overcurrent protection switch (51C) for the compressor (1), and a temperature rise protection switch (49C) for the compressor (1). ) And fan overcurrent protection switch (51F
Protection circuit (111) including (1) and (51F2)
And normally open relay contacts (RY2), (RY4), (RY
6), (RY7) and (RY8), the fan drive electromagnetic relays (52F1) and (52F2), the compressor drive electromagnetic relay (52C) and the compressor start control electromagnetic relay (42
C) and (6C), a first actuator drive circuit (112), and normally open relay contacts ((RY9) to (RY9) to
(RY15), an electromagnetic relay (WL) for abnormality indication, an electromagnetic relay (20S) for switching the four-way switching valve (2), and a three-way switching valve (SV) for the unloader.
1), electromagnetic relay (20RS1) for switching (SV2),
(20RS2), an electromagnetic relay (20R1) for opening and closing the equalizing on-off valve (SVP), an electromagnetic relay (20R2) for opening and closing the overload control on-off valve (SVS), and the injection on-off valve (SVL) And a second actuator drive circuit (113) provided with an electromagnetic relay (20R3) for opening and closing the actuator.

【0020】なお、(CH)はクランクケースヒータ、
(52C-2)は上記圧縮機駆動用電磁リレー(52C)の常
開接点であって、上記クランクケースヒータ(CH)を
オン.オフするもの、(Q1)は電源生成用パワートラ
ンジスタである。
(CH) is a crankcase heater,
(52C-2) is a normally open contact of the compressor driving electromagnetic relay (52C), which turns on the crankcase heater (CH). The transistor which is turned off, (Q1) is a power transistor for generating power.

【0021】一方、上記弁駆動用基板(120)には、
第2変圧器(Tr2)を介して、4個の室外電動膨張弁
(8a1)〜(8b2)のパルスモータ(20E1) 〜(20E4)が
配設されている。
On the other hand, the valve driving substrate (120) includes:
Pulse motors (20E1) to (20E4) of four outdoor electric expansion valves (8a1) to (8b2) are arranged via the second transformer (Tr2).

【0022】さらに、上記制御用基板(130)には、
サービスモード切換スイッチ(DS1),圧縮機強制運転
又は油圧保護リセット設定スイッチ(SS1)、低騒音入
力切換スイッチ(SS2)、冷暖切換スイッチ(SS3)、
配管長設定スイッチ(SS4)、高圧調節スイッチ(SS
5)、デフロスト切換スイッチ(SS6)及び圧縮機強制
運転ボタンスイッチ又は油圧保護リセットボタンスイッ
チ(BS1)が設けられているとともに、上記油圧の差圧
センサ(63QL)、各ガス管センサ(Th1a),(Th1b)、
吐出管センサ(Thd)、各液管センサ(Th2b),(Th2
b)、高圧センサ(HP)及び低圧センサ(LP)が信号
線を介して接続されている。
Further, the control board (130) includes:
Service mode changeover switch (DS1), compressor forced operation or oil pressure protection reset setting switch (SS1), low noise input changeover switch (SS2), cooling / heating changeover switch (SS3),
Pipe length setting switch (SS4), high pressure adjustment switch (SS
5), a defrost changeover switch (SS6) and a compressor forced operation button switch or a hydraulic pressure protection reset button switch (BS1) are provided, and the differential pressure sensor for pressure (63QL), each gas pipe sensor (Th1a), (Th1b),
Discharge pipe sensor (Thd), each liquid pipe sensor (Th2b), (Th2
b), a high pressure sensor (HP) and a low pressure sensor (LP) are connected via a signal line.

【0023】次に、暖房運転中における除霜運転中の制
御について、図4のフロ―チャ―トに基づき説明する。
Next, control during the defrosting operation during the heating operation will be described with reference to the flowchart of FIG.

【0024】空気調和装置の運転中に、室外熱交換器
(6a),(6b)が着霜すると、各液管センサ(Tha
2 ),(Thb2 )で検出される液管温度Ta2,Tb2から
その着霜状態が判断され、除霜運転を開始指令がなされ
る。そして、上記四路切換弁(5)を暖房運転側に切り
換え、吐出冷媒を各室外熱交換器(6a),(6b)側
に導入する逆サイクルによる除霜運転が行われる。
When the outdoor heat exchangers (6a) and (6b) are frosted during the operation of the air conditioner, each liquid tube sensor (Tha
2) The frost formation state is determined from the liquid pipe temperatures Ta2 and Tb2 detected at (Thb2), and a command to start the defrosting operation is issued. Then, the four-way switching valve (5) is switched to the heating operation side, and a defrosting operation is performed by a reverse cycle in which the discharged refrigerant is introduced into each of the outdoor heat exchangers (6a) and (6b).

【0025】この除霜運転において、ステップST1
で、上記液管センサ(Tha2 )で検出される第1室外熱
交換器(6a)の液管温度Ta2が除霜終了温度Tout よ
りも高いか否かを判別し、Ta2>Tout でなければ、S
T2に進んで、各液管センサ(Tha2 ),(Thb2 )の
検出値Ta2,Tb2の温度差(Ta2−Tb2)と所定値(5
℃)とを比較し、Ta2−Tb2>5(℃)でなければ、さ
らにステップST3に進んで、逆にTb2−Ta2>5
(℃)か否かを判別する。
In this defrosting operation, step ST1
Then, it is determined whether or not the liquid pipe temperature Ta2 of the first outdoor heat exchanger (6a) detected by the liquid pipe sensor (Tha2) is higher than the defrost end temperature Tout. If Ta2> Tout is not satisfied, S
Proceeding to T2, the temperature difference (Ta2-Tb2) between the detected values Ta2 and Tb2 of the liquid tube sensors (Th2) and (Thb2) and a predetermined value (5
.Degree. C.), and if Ta2-Tb2> 5 (.degree. C.), the process proceeds to step ST3, and conversely, Tb2-Ta2> 5.
(° C.).

【0026】そして、ステップST3の判別で、Tb2−
Ta2>5(℃)でなければ、各室外熱交換器(6a),
(6b)の除霜の進行度合いにそれほどの差はないと判
断して、ステップST4に進み、各室外電動膨張弁(8
a1),(8a2)及び(8b1),(8b2)をいずれも全開
の2000パルス(一対の電動膨張弁の合計開度)とす
る一方、Tb2−Ta2>5(℃)であれば、第1室外熱交
換器(6a)側の着霜の融解が遅れていると判断して、
ステップST5に進み、第1室外熱交換器(6a)側の
室外電動膨張弁(8a1),(8a2)を全開(2000パ
ルス)に、第2室外熱交換器(6b)側の室外電動膨張
弁(8b1),(8b2)を半開(1000パルス)に制御
する。また、上記ステップST2の判別で、Ta2−Tb2
>5(℃)であれば、第2室外熱交換器(6b)側の着
霜の融解が遅れていると判断して、ステップST6に進
み、第1室外熱交換器(6a)側の室外電動膨張弁(8
a1),(8a2)を半開(1000パルス)に、第2室外
熱交換器(6b)側の室外電動膨張弁(8b1),(8b
2) を全開(2000パルス)に制御する。
Then, in the determination of step ST3, Tb2-
Unless Ta2> 5 (° C.), each outdoor heat exchanger (6a),
It is determined that the degree of progress of the defrosting of (6b) is not so different, and the process proceeds to step ST4, where each outdoor electric expansion valve (8
a1), (8a2) and (8b1), (8b2) are all 2000 pulses (total opening of a pair of electric expansion valves) that are fully open, while Tb2-Ta2> 5 (° C.) Judging that the frost formation on the outdoor heat exchanger (6a) side is delayed,
Proceeding to step ST5, the outdoor electric expansion valves (8a1) and (8a2) on the first outdoor heat exchanger (6a) side are fully opened (2000 pulses), and the outdoor electric expansion valves on the second outdoor heat exchanger (6b) side. (8b1) and (8b2) are controlled to be half-open (1000 pulses). Also, in the determination in step ST2, Ta2-Tb2
If> 5 (° C.), it is determined that the frost formation on the second outdoor heat exchanger (6b) side is delayed, and the process proceeds to step ST6, where the outdoor side on the first outdoor heat exchanger (6a) side is determined. Electric expansion valve (8
a1) and (8a2) are opened halfway (1000 pulses), and the outdoor electric expansion valves (8b1) and (8b1) on the second outdoor heat exchanger (6b) side
2) is controlled to fully open (2000 pulses).

【0027】そして、着霜の融解が進んで、上記ステッ
プST1の判別で、第1室外熱交換器(6a)の液管温
度Ta2が除霜終了温度Tout に達すると(Ta2>Tout
になると)、ステップST7に進み、第2室外熱交換器
(6b)の液管温度Tb2が除霜終了温度Tout に達した
か(Tb2>Tout になったか)否かを判別し、Tb2>T
out になるまでは、上記ステップST2の制御に移行す
る一方、Tb2>Toutになると、除霜が完了したと判断
して、ステップST8に進み、通常運転の制御に移行す
る。
Then, as the melting of frost progresses and the liquid tube temperature Ta2 of the first outdoor heat exchanger (6a) reaches the defrost end temperature Tout (Ta2> Tout) in the determination of step ST1.
), The process proceeds to step ST7, where it is determined whether or not the liquid tube temperature Tb2 of the second outdoor heat exchanger (6b) has reached the defrost end temperature Tout (Tb2> Tout), and Tb2> T
Until out, control proceeds to step ST2, while if Tb2> Tout, it is determined that defrosting has been completed, the process proceeds to step ST8, and control proceeds to normal operation.

【0028】以上のフローにおいて、ステップST5及
びST6の制御により、請求項1の発明にいう開度制御
手段(51)が構成され、ステップST4の制御によ
り、請求項2の発明にいう各室外熱交換器(6a),
(6b)の液管温度Ta2,Tb2の温度差が所定値以下の
ときに両電動膨張弁の開度を等しく制御する開度制御手
段(51)の機能が構成されている。
In the above flow, the opening degree control means (51) according to the first aspect of the present invention is constituted by the control of steps ST5 and ST6, and the outdoor heat control according to the second aspect of the invention is controlled by the control of step ST4. Exchanger (6a),
The function of the opening control means (51) for equally controlling the opening of both electric expansion valves when the temperature difference between the liquid pipe temperatures Ta2 and Tb2 in (6b) is equal to or less than a predetermined value is configured.

【0029】したがって、上記実施例では、空気調和装
置の暖房運転中に室外熱交換器(6a),(6b)が着
霜して、除霜指令が出力されると、除霜運転制御手段に
より、暖房運転中には蒸発器として機能する各室外熱交
換器(6a),(6b)に高温の吐出冷媒が導入され
る。そのとき、各室外熱交換器(6a),(6b)によ
って除霜の進行に差があるので、一律に冷媒を流通させ
ると、不均一な除霜により除霜時間が過大になる虞れが
ある。
Therefore, in the above embodiment, when the outdoor heat exchangers (6a) and (6b) are frosted during the heating operation of the air conditioner and a defrosting command is output, the defrosting operation control means. During the heating operation, a high-temperature discharge refrigerant is introduced into each of the outdoor heat exchangers (6a) and (6b) functioning as an evaporator. At this time, since the progress of defrosting is different between the outdoor heat exchangers (6a) and (6b), if the refrigerant is uniformly distributed, the defrosting time may be excessive due to uneven defrosting. is there.

【0030】ここで、本発明では、開度制御手段(5
1)により、低温側室外熱交換器(例えば6a)つまり
着霜の融解が遅れている側の室外電動膨張弁(8a1),
(8a2)の開度が高温側室外熱交換器(6b)の室外電
動膨張弁(8b1),(8b2)の開度よりも大きくなるよ
う制御されるので、両者の着霜の融解度合いが均一化さ
れる。例えば、図5の破線部分に示すように、各室外熱
交換器(6a),(6b)の液管温度Ta2,Tb2がほぼ
等しい状態に近付く。よって、除霜の均一化による除霜
時間の短縮を図ることができるのである。
In the present invention, the opening control means (5
According to 1), the low-temperature side outdoor heat exchanger (for example, 6a), that is, the outdoor electric expansion valve (8a1) on the side where the melting of frost is delayed,
Since the degree of opening of (8a2) is controlled to be larger than the degrees of opening of the outdoor electric expansion valves (8b1) and (8b2) of the high-temperature side outdoor heat exchanger (6b), the degree of frost formation of both is uniform. Be transformed into For example, as shown by the broken line portion in FIG. 5, the liquid tube temperatures Ta2 and Tb2 of the outdoor heat exchangers (6a) and (6b) are almost equal. Therefore, the defrosting time can be reduced by making the defrost uniform.

【0031】なお、各室外熱交換器(6a),(6b)
の液管温度Ta2,Tb2が逆転することもありうるが、上
記フローのように、除霜運転中にたえず両液管温度Ta
2,Tb2を比較して、両電動膨張弁(8a1),(8a2)
と(8b1),(8b2)の開度をその都度液管温度Ta2,
Tb2に基づき制御することで、除霜の進行度合いをほぼ
均一にすることができる。
Each of the outdoor heat exchangers (6a), (6b)
It is possible that the liquid pipe temperatures Ta2 and Tb2 are reversed, but as shown in the above flow, both liquid pipe temperatures Ta are constantly
2 and Tb2, the two electric expansion valves (8a1) and (8a2)
And the opening degree of (8b1) and (8b2) is changed by the liquid pipe temperature Ta2,
By controlling based on Tb2, the degree of progress of defrost can be made substantially uniform.

【0032】また、両室外熱交換器(6a),(6b)
の液管温度Ta2,Tb2の温度差が所定値(上記実施例で
は5℃)以下のときには、各室外電動膨張弁(8a1),
(8a2)及び(8b1),(8b2)の開度を等しくするよ
うにした場合(上記実施例におけるステップST4の制
御)、各室外熱交換器(6a),(6b)自体に着霜の
融解の分布があるときにも、それによる検出誤差を考慮
した制御を行いうる。すなわち、熱交換器の伝熱管にお
ける温度分布に起因する検出値の誤差により、かえっ
て、各室外熱交換器(6a),(6b)の着霜の不均一
化をきたすことを有効に防止することができる利点があ
る。
Further, both outdoor heat exchangers (6a), (6b)
When the temperature difference between the liquid pipe temperatures Ta2 and Tb2 is equal to or less than a predetermined value (5 ° C. in the above embodiment), each of the outdoor electric expansion valves (8a1),
When the opening degrees of (8a2), (8b1), and (8b2) are set to be equal (control in step ST4 in the above embodiment), melting of frost on the outdoor heat exchangers (6a), (6b) themselves. Can be controlled in consideration of the detection error caused by the distribution. That is, it is possible to effectively prevent nonuniform frost formation on each of the outdoor heat exchangers (6a) and (6b) due to an error in the detected value caused by the temperature distribution in the heat exchanger tubes of the heat exchanger. There are advantages that can be.

【0033】なお、上記実施例では、2台の室外熱交換
器(6a),(6b)を配置した例について説明した
が、本発明はかかる実施例に限定されるものではなく、
3台以上の室外熱交換器及び電動膨張弁の組を並列配置
したものについても、それらの熱交温度に応じて各電動
膨張弁の開度を制御することで、同様の効果を得ること
ができる。
In the above embodiment, an example in which two outdoor heat exchangers (6a) and (6b) are arranged has been described. However, the present invention is not limited to such an embodiment.
The same effect can be obtained by controlling the degree of opening of each electric expansion valve in accordance with the heat exchange temperature of a set of three or more outdoor heat exchangers and electric expansion valves arranged in parallel. it can.

【0034】また、上記実施例では、冷凍装置としてマ
ルチ形空気調和装置に適用した例を説明したが、本発明
はかかる実施例に限定されるものではなく、単一の室内
ユニットを備えたセパレート形空気調和装置や、給湯用
冷凍装置、冷凍庫内を冷凍するための冷凍機等にも適用
しうるものである。
Further, in the above embodiment, an example was described in which the present invention was applied to a multi-type air conditioner as a refrigerating device. However, the present invention is not limited to such an embodiment, and the present invention is not limited to this. The present invention can also be applied to a shape air conditioner, a chiller for hot water supply, a refrigerator for freezing the inside of a freezer, and the like.

【0035】また、上記実施例では、逆サイクルによる
除霜運転を行ったが、ホットガスバイパスによる正サイ
クル除霜を行うものでもよいことは言うまでもない。
In the above embodiment, the defrosting operation is performed in the reverse cycle. However, it is needless to say that the normal cycle defrosting may be performed by the hot gas bypass.

【0036】[0036]

【発明の効果】以上説明したように、請求項1の発明に
よれば、冷媒回路に複数の蒸発器及び電動膨張弁の組を
並列配置してなる冷凍装置の除霜運転制御装置として、
除霜運転中に各蒸発器の熱交温度を検出して比較し、低
温側蒸発器の電動膨張弁の開度を高温側蒸発器の電動膨
張弁の開度よりも大きくするようにしたので、両蒸発器
の着霜の融解度合いの均一化により、除霜時間の短縮を
図ることができる。
As described above, according to the first aspect of the present invention, there is provided a defrosting operation control device for a refrigeration system in which a plurality of sets of evaporators and electric expansion valves are arranged in parallel in a refrigerant circuit.
Since the heat exchange temperature of each evaporator is detected and compared during the defrosting operation, the opening of the electric expansion valve of the low-temperature evaporator is set to be larger than the opening of the electric expansion valve of the high-temperature evaporator. The defrosting time can be shortened by equalizing the degree of frost melting of both evaporators.

【0037】請求項2の発明によれば、上記請求項1の
発明において、両蒸発器の熱交温度の温度差が所定値以
下のときには、各電動膨張弁の開度を等しくするように
したので、各蒸発器自体に着霜の融解の分布があって
も、検出値の誤差による電動膨張弁の開度の誤制御を有
効に防止することができる。
According to a second aspect of the present invention, in the first aspect of the present invention, when the temperature difference between the heat exchange temperatures of the two evaporators is equal to or less than a predetermined value, the opening degrees of the electric expansion valves are made equal. Therefore, even if each evaporator itself has a distribution of melting of frost, erroneous control of the opening degree of the electric expansion valve due to an error in the detected value can be effectively prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示す図である。FIG. 1 is a diagram showing a configuration of the present invention.

【図2】実施例に係る空気調和装置の冷媒配管系統図で
ある。
FIG. 2 is a refrigerant piping system diagram of the air-conditioning apparatus according to the embodiment.

【図3】実施例に係る空気調和装置の電気回路図であ
る。
FIG. 3 is an electric circuit diagram of the air conditioner according to the embodiment.

【図4】除霜運転の制御内容を示すフロ―チャ―ト図で
ある。
FIG. 4 is a flowchart showing the control contents of a defrosting operation.

【図5】多面熱交における従来の除霜運転と本発明の除
霜運転との熱交温度変化の相違を示す特性図である。
FIG. 5 is a characteristic diagram showing a difference in heat exchange temperature change between a conventional defrosting operation and a defrosting operation of the present invention in multi-sided heat exchange.

【符号の説明】[Explanation of symbols]

6a 第1室外熱交換器(蒸発器) 6b 第2室外熱交換器(蒸発器) 8a1,8a2 第1室外電動膨張弁 8b1,8b2 第2室外電動膨張弁 14 主冷媒回路 51 開度制御手段 Tha2 第1液管センサ(熱交温度検出手段) Thb2 第2液管センサ(熱交温度検出手段) 6a First outdoor heat exchanger (evaporator) 6b Second outdoor heat exchanger (evaporator) 8a1, 8a2 First outdoor electric expansion valve 8b1, 8b2 Second outdoor electric expansion valve 14 Main refrigerant circuit 51 Opening control means Th2 First liquid pipe sensor (heat exchange temperature detection means) Thb2 Second liquid pipe sensor (heat exchange temperature detection means)

フロントページの続き (56)参考文献 特開 平4−344085(JP,A) 特開 昭63−32269(JP,A) 特開 昭56−12973(JP,A) 特開 昭55−53666(JP,A) 特開 平4−90461(JP,A) 特開 昭62−17551(JP,A) 実開 昭59−115271(JP,U) 実開 昭61−54125(JP,U) 実開 昭55−91459(JP,U) 実開 昭57−145958(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 47/02 550 Continuation of front page (56) References JP-A-4-344085 (JP, A) JP-A-63-32269 (JP, A) JP-A-56-12973 (JP, A) JP-A-55-53666 (JP) JP-A-4-90461 (JP, A) JP-A-62-17551 (JP, A) JP-A-59-115271 (JP, U) JP-A-61-54125 (JP, U) JP-A-61-54125 (JP, U) 55-91459 (JP, U) Japanese Utility Model Showa 57-145958 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) F25B 47/02 550

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷媒回路(14)に、複数の蒸発器(6
a),(6b)及び該各蒸発器(6a),(6b)用の
電動膨張弁(8a),(8b)の組を互いに並列に配置
してなる冷凍装置において、 運転中に着霜指令を受け、上記各蒸発器(6a),(6
b)に吐出ガス冷媒を導入するよう制御する除霜運転制
御手段と、 上記各蒸発器(6a),(6b)の熱交温度を個別に検
出する熱交温度検出手段(Tha2 ),(Thb2 )と、 該各熱交温度検出手段(Tha2 ),(Thb2 )の検出値
を比較して、上記除霜運転制御手段の制御中、低温側蒸
発器(6a又は6b)の電動膨張弁(8a又は8b)の
開度を高温側蒸発器(6b又は6a)の電動膨張弁(8
b又は8a)の開度よりも大きくするよう制御する開度
制御手段(51)とを備えたことを特徴とする冷凍装置
の除霜運転制御装置。
A refrigerant circuit (14) includes a plurality of evaporators (6).
a), (6b) and a set of electric expansion valves (8a), (8b) for the evaporators (6a), (6b) are arranged in parallel with each other. And the above evaporators (6a), (6
b) defrosting operation control means for controlling the introduction of the discharge gas refrigerant, and heat exchange temperature detection means (Th2) and (Thb2) for individually detecting the heat exchange temperatures of the evaporators (6a) and (6b). ) And the detected values of the heat exchange temperature detecting means (Th2) and (Thb2), and the electric expansion valve (8a) of the low-temperature side evaporator (6a or 6b) during the control of the defrosting operation control means. Or, the opening degree of the electric expansion valve (8) of the high-temperature side evaporator (6b or 6a)
A defrosting operation control device for a refrigeration system, comprising: an opening control means (51) for controlling the opening to be larger than the opening of b or 8a).
【請求項2】 請求項1記載の冷凍装置の除霜運転制御
装置において、 開度制御手段(51)は、各熱交温度検出手段(Tha2
),(Thb2 )の検出値の差が所定値以下のときに
は、各電動膨張弁(8a),(8b)の開度を同じ開度
に制御することを特徴とする冷凍装置の除霜運転制御装
置。
2. The defrosting operation control device for a refrigeration system according to claim 1, wherein the opening degree control means (51) includes a heat exchange temperature detection means (Th2).
When the difference between the detected values of (Thb2) and (Thb2) is equal to or smaller than a predetermined value, the opening of each of the electric expansion valves (8a) and (8b) is controlled to the same opening. apparatus.
JP12377692A 1992-05-15 1992-05-15 Defrosting operation control device for refrigeration system Expired - Fee Related JP3271296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12377692A JP3271296B2 (en) 1992-05-15 1992-05-15 Defrosting operation control device for refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12377692A JP3271296B2 (en) 1992-05-15 1992-05-15 Defrosting operation control device for refrigeration system

Publications (2)

Publication Number Publication Date
JPH05322388A JPH05322388A (en) 1993-12-07
JP3271296B2 true JP3271296B2 (en) 2002-04-02

Family

ID=14869003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12377692A Expired - Fee Related JP3271296B2 (en) 1992-05-15 1992-05-15 Defrosting operation control device for refrigeration system

Country Status (1)

Country Link
JP (1) JP3271296B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705183B2 (en) 2005-11-21 2010-04-27 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device employing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258197B2 (en) * 2007-01-16 2013-08-07 三菱電機株式会社 Air conditioning system
JP4990221B2 (en) * 2008-05-26 2012-08-01 日立アプライアンス株式会社 Air conditioner
JP2012063033A (en) * 2010-09-14 2012-03-29 Panasonic Corp Air conditioner
JP6157723B2 (en) * 2014-04-04 2017-07-05 三菱電機株式会社 Air conditioner
JP2018109463A (en) 2016-12-28 2018-07-12 三菱重工サーマルシステムズ株式会社 Controller of multiple-type air conditioner, multiple-type air conditioner, method of controlling multiple-type air conditioner, and control program for multiple-type air conditioner
JP6835116B2 (en) * 2019-02-18 2021-02-24 ダイキン工業株式会社 Refrigeration equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705183B2 (en) 2005-11-21 2010-04-27 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device employing the same

Also Published As

Publication number Publication date
JPH05322388A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
US5467604A (en) Multiroom air conditioner and driving method therefor
GB2249168A (en) Air-conditioning and heating
EP0813033B1 (en) Mixed refrigerant injection method
JP3235262B2 (en) Operation control device for air conditioner
JP3271296B2 (en) Defrosting operation control device for refrigeration system
JPH03175230A (en) Operation controller of air conditioner
JP3284588B2 (en) Operation control device for refrigeration equipment
JP2877552B2 (en) Air conditioner
JPH05264113A (en) Operation control device of air conditioner
JP3584514B2 (en) Refrigeration equipment
JPH0627588B2 (en) Air conditioner
JP3208837B2 (en) Start-up control device for refrigeration equipment
JP3341486B2 (en) Operation control device for air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JPS6071838A (en) Air conditioner
JP3245947B2 (en) Air conditioner
JPH08166183A (en) Air-conditioning equipment
JPH10132406A (en) Refrigerating system
JPH11211186A (en) Controlling device of defrosting of air conditioner
JPH03211380A (en) Air conditioner
JP2541172B2 (en) Operation control device for air conditioner
JP2964774B2 (en) Operation control device for air conditioner
JPH0571832A (en) Air-conditioner
JPH05256526A (en) Opening control device for motor-operated expansion valve
JPH0623880Y2 (en) Heat pump device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees