JP3269417B2 - Residual heat removal system - Google Patents

Residual heat removal system

Info

Publication number
JP3269417B2
JP3269417B2 JP03463497A JP3463497A JP3269417B2 JP 3269417 B2 JP3269417 B2 JP 3269417B2 JP 03463497 A JP03463497 A JP 03463497A JP 3463497 A JP3463497 A JP 3463497A JP 3269417 B2 JP3269417 B2 JP 3269417B2
Authority
JP
Japan
Prior art keywords
reactor
pipe
residual heat
reactor water
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03463497A
Other languages
Japanese (ja)
Other versions
JPH10232295A (en
Inventor
直人 植竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03463497A priority Critical patent/JP3269417B2/en
Publication of JPH10232295A publication Critical patent/JPH10232295A/en
Application granted granted Critical
Publication of JP3269417B2 publication Critical patent/JP3269417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physical Water Treatments (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は原子炉の残留熱除去
系に係わり、特に沸騰水型原子炉(BWR)の残留熱除
去系に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a residual heat removal system for a nuclear reactor, and more particularly, to a residual heat removal system for a boiling water reactor (BWR).

【0002】[0002]

【従来の技術】BWRプラントでは、炉水の放射能が配
管に付着して定期検査時の作業員の被曝の原因となって
おり、炉水放射能の付着低減の努力がなされている。特
に、原子炉運転中に炉水が通水される再循環系配管及び
炉水浄化系配管に対して一定条件で予備の酸化膜を形成
させるプレフィルミングを適用する技術が、特開昭62−
95498 号公報に記載されている。
2. Description of the Related Art In a BWR plant, radioactivity of reactor water adheres to a pipe and causes exposure of workers during a periodic inspection, and efforts are being made to reduce the deposition of reactor water radioactivity. In particular, Japanese Patent Application Laid-Open No. Sho 62 (1995) discloses a technique of applying prefilming for forming a preliminary oxide film under certain conditions on a recirculation system pipe through which reactor water flows during reactor operation and a reactor water purification system pipe. −
No. 95498.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、原子炉停止時に炉水が通水される残留熱除
去系配管については考慮されていないので、残留熱除去
系配管への放射能付着は抑制できなかった。残留熱除去
系配管の線量への影響は小さくはなく、特に再循環系の
ない改良型沸騰水型原子炉(ABWR)では最大の被曝
源となる。
However, in the above prior art, no consideration is given to the residual heat removal system piping through which reactor water flows when the reactor is shut down, so that radioactive deposition on the residual heat removal system piping is not considered. Could not be suppressed. The effect of the residual heat removal system piping on the dose is not small, and it is the largest exposure source, especially in an advanced boiling water reactor (ABWR) without a recirculation system.

【0004】本発明の目的は、残留熱除去系配管への放
射能付着を抑制できる残留熱除去系を提供することにあ
る。
An object of the present invention is to provide a residual heat removal system that can suppress the adhesion of radioactivity to the residual heat removal system piping.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、原子炉圧力容器に接続された第1の配管
及び第2の配管と、原子炉停止時に前記第1の配管を通
して前記原子炉圧力容器から供給された炉水の残留熱を
除去し該残留熱を除去された炉水を前記第2の配管を通
して前記原子炉圧力容器に戻すための熱交換器とを備え
た残留熱除去系において、前記第1の配管の内面に、該
内面と前記炉水との直接接触を防ぐ皮膜を設け、前記第
2の配管の内面には前記皮膜を設けない
In order to achieve the above object, the present invention comprises a first pipe and a second pipe connected to a reactor pressure vessel and the first pipe when the reactor is stopped. A heat exchanger for removing residual heat of the reactor water supplied from the reactor pressure vessel and returning the reactor water from which the residual heat has been removed to the reactor pressure vessel through the second pipe. in heat removal system, the inner surface of the first pipe, provided with a coating to prevent direct contact between the reactor water and inner surface, said first
No coating is provided on the inner surface of the pipe No. 2 .

【0006】以下、本発明による作用について説明す
る。原子炉運転中に炉水が通水される再循環系配管及び
炉水浄化系配管に比べて、残留熱除去系配管は原子炉停
止時にのみ炉水が通水される点に特徴がある。このた
め、残留熱除去系配管に通水される炉水温度は150℃
以下と低いので、残留熱除去系配管への放射能付着のメ
カニズムは再循環系配管及び炉水浄化系配管と異なると
推定される。
The operation of the present invention will be described below. Compared with the recirculation system piping and reactor water purification system piping through which reactor water flows during operation of the reactor, the residual heat removal system piping is characterized in that reactor water flows only when the reactor is stopped. For this reason, the temperature of the reactor water flowing through the residual heat removal system piping is 150 ° C.
It is presumed that the mechanism of radioactive adhesion to the residual heat removal system piping is different from that of the recirculation system piping and reactor water purification system piping because it is low as follows.

【0007】再循環系配管及び炉水浄化系配管では、腐
食による酸化膜の成長に伴って炉水中の放射性イオンが
酸化膜中に取り込まれることにより、主に放射能の蓄積
が生じる。しかし、残留熱除去系配管では炉水温度が低
いため腐食速度が小さいので、上記プロセスの寄与は小
さい。このため、発明者らが残留熱除去系配管への放射
能の蓄積メカニズムを詳細に検討した結果、以下のよう
に、高温水中とは異なるプロセスで放射性イオンの付着
が生じていることが判明した。
[0007] In the recirculation system piping and the reactor water purification system piping, radioactive ions in the reactor water are taken into the oxide film as the oxide film grows due to corrosion, so that radioactivity is mainly accumulated. However, in the residual heat removal system piping, the furnace water temperature is low and the corrosion rate is low, so the contribution of the above process is small. For this reason, the inventors examined the mechanism of accumulation of radioactivity in the residual heat removal system piping in detail, and as a result, it was found that radioactive ions were attached in a process different from that in high-temperature water as follows. .

【0008】残留熱除去系配管に使われている炭素鋼
は、高温水中で腐食してヘマタイトやマグネタイトなど
のフェライトを生成する。しかし、低温水中では、水酸
化鉄が主な腐食生成物となる。水酸化鉄は表面積が大き
く、水中のイオンを吸着する性質が強い。従って、炉水
中の放射性イオンを吸着するが、その後に炉水(特に、
放射能濃度の低い炉水)が流れてくれば吸着している放
射性イオンは容易に脱離する(図3(a)参照)。実際
には、炉水中の放射性イオン濃度は時間とともに一度最
大となった後は減少するので、配管に一旦付着した放射
性イオンが脱離することにより放射能の蓄積は生じにく
い。
[0008] The carbon steel used in the residual heat removal system piping is corroded in high-temperature water to produce ferrite such as hematite and magnetite. However, in low temperature water, iron hydroxide is the main corrosion product. Iron hydroxide has a large surface area and has a strong property of adsorbing ions in water. Therefore, radioactive ions in the reactor water are adsorbed, but the reactor water (especially,
The adsorbed radioactive ions are easily desorbed when reactor water (low in radioactivity concentration) flows (see FIG. 3A). Actually, since the radioactive ion concentration in the reactor water once reaches a maximum with time and then decreases, radioactive ions that have once adhered to the pipe are desorbed, so that accumulation of radioactivity hardly occurs.

【0009】しかし、図3(b)に示すように、水酸化
鉄は約100℃以上でNiなどの炉水中の金属イオンと
反応してフェライトとなる。この際に放射性イオンも入
り込むので、この温度領域で付着した放射性イオンは脱
離し難くなる。即ち、残留熱除去系配管における放射能
の蓄積はこのメカニズムによるものと考えられる。
However, as shown in FIG. 3 (b), iron hydroxide reacts with metal ions in the furnace water such as Ni at about 100 ° C. or more to form ferrite. At this time, since radioactive ions also enter, the radioactive ions attached in this temperature region are hardly desorbed. That is, the accumulation of radioactivity in the residual heat removal system piping is considered to be due to this mechanism.

【0010】従って、残留熱除去系配管への放射性イオ
ンの付着防止は、炭素鋼の腐食で水酸化鉄が生成しない
ようにすることで実現できる。具体的な方法としては、
炭素鋼の表面に被膜を設けて炭素鋼と水との接触を防止
する方法、炭素鋼を他の合金に取り替えて腐食に伴う水
酸化鉄の発生を防止する方法などが考えられる。
Therefore, the prevention of the adhesion of radioactive ions to the residual heat removal system piping can be realized by preventing iron hydroxide from being generated by the corrosion of carbon steel. Specifically,
A method of preventing the contact between the carbon steel and water by providing a coating on the surface of the carbon steel, a method of replacing the carbon steel with another alloy to prevent the generation of iron hydroxide due to corrosion, and the like can be considered.

【0011】高温水中で耐えることのできる被膜は限ら
れており高価であるが、150℃以下の炉水しか流れな
い残留熱除去系配管に対しては、多くの材質が適用可能
である。材質選定に際しては、コスト,施工性,他の用
途での実績などを考慮して最適のものを選ぶべきであ
る。
The coatings that can withstand high-temperature water are limited and expensive, but many materials can be applied to the residual heat removal system piping through which only reactor water of 150 ° C. or less flows. When selecting a material, the best one should be selected in consideration of cost, workability, performance in other applications, and the like.

【0012】被膜の材質としては、有機物の塗膜が比較
的安価で施工が容易である。しかし、150℃程度の高
温水に耐える必要があるので、この点を考慮するとテフ
ロン,ポリイミドなどの耐熱性樹脂を用いるのが適切で
ある。特に、テフロンは不活性でイオンの吸着も生じに
くいので、大きな効果が期待できる。
As the material of the coating, an organic coating is relatively inexpensive and easy to apply. However, since it is necessary to withstand high-temperature water of about 150 ° C., it is appropriate to use a heat-resistant resin such as Teflon or polyimide in consideration of this point. In particular, since Teflon is inactive and hardly causes adsorption of ions, a great effect can be expected.

【0013】また、セラミックもコーティング材として
は耐食性が高く適切である。但し、多孔質の被膜になり
易く、一部にCoに対する吸着性を有するものがあるの
で、この点を考慮して選ぶ必要がある。具体的には、ア
ルミナ,ガラス(シリカ)などが使用できる。これら
は、耐磨耗性があるため被膜が長持ちし、炉水中の固体
粒子による磨耗で消耗しにくい利点がある。
[0013] Ceramics are also suitable as coating materials because of their high corrosion resistance. However, since it is easy to become a porous film and some of them have absorptivity to Co, it is necessary to select in consideration of this point. Specifically, alumina, glass (silica) and the like can be used. These have the advantage that the coatings last longer because of their abrasion resistance and are less likely to be consumed by abrasion due to solid particles in the reactor water.

【0014】金属もコーティング材として適切である
が、コストの観点から安価なものを選ぶべきである。非
鉄金属としては、アルミニウム,黒鉛,クロム,銅など
の純金属を用いることができる。このうち、クロムや亜
鉛はメッキできるために製造が容易となるので、コスト
的に有利である。
[0014] Metals are also suitable as coatings, but inexpensive ones should be selected from a cost standpoint. As the non-ferrous metal, a pure metal such as aluminum, graphite, chromium, and copper can be used. Of these, chromium and zinc can be easily manufactured because they can be plated, which is advantageous in terms of cost.

【0015】しかし、銅は炉水中に溶出して燃料棒表面
に付着すると部分的な腐食を誘起して燃料破損の原因と
なる可能性があるので、避けた方が良い。また、インコ
ネルのような耐食性の高いFe含有量の少ない合金(イ
ンコネル系合金)も用いることができる。
However, copper elutes into the reactor water and adheres to the fuel rod surface, which may induce partial corrosion and cause fuel damage. Further, an alloy having high Fe and a low corrosion resistance (Inconel alloy) such as Inconel can be used.

【0016】[0016]

【発明の実施の形態】以下、図1を用いて本発明による
残留熱除去系の第1実施例を説明する。本実施例は、A
BWRに本発明を適用した例である。原子炉周りは、主
に原子炉圧力容器1,残留熱除去系4及び5,炉水浄化
系8,給水系12,主蒸気系17などから構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a residual heat removing system according to the present invention will be described below with reference to FIG. In this embodiment, A
This is an example in which the present invention is applied to a BWR. Around the reactor is mainly composed of a reactor pressure vessel 1, a residual heat removal system 4 and 5, a reactor water purification system 8, a water supply system 12, a main steam system 17, and the like.

【0017】原子炉圧力容器1の中に核燃料を装荷した
炉心2が設置されており、炉心2が炉水を加熱・沸騰さ
せて蒸気として主蒸気系17を介してタービン系(図示
せず)に送り、タービン系で発電を行う。炉水は、複数
のインターナルポンプ3により再循環される。従来のB
WRと異なり、ABWRでは再循環系配管がなく、原子
炉圧力容器1に接続されている配管は、2系統の残留熱
除去系4及び5が主体となる。
A reactor core 2 loaded with nuclear fuel is installed in a reactor pressure vessel 1. The reactor core 2 heats and boils the reactor water to produce steam as steam through a main steam system 17 through a turbine system (not shown). To generate electricity in the turbine system. The reactor water is recirculated by the plurality of internal pumps 3. Conventional B
Unlike the WR, the ABWR has no recirculation system piping, and the piping connected to the reactor pressure vessel 1 is mainly composed of two systems of residual heat removal systems 4 and 5.

【0018】原子炉運転中は残留熱除去系には炉水は通
水されず、原子炉停止時にのみ150℃以下の炉水が残留
熱除去系に通水される。残留熱除去系にはポンプ6,熱
交換器7が設置されており、炉水は熱交換器7で常温
(室温)近くまで冷却され、再び原子炉圧力容器1に戻
される。
During reactor operation, reactor water is not passed through the residual heat removal system, but only when the reactor is stopped, reactor water at 150 ° C. or lower is passed through the residual heat removal system. A pump 6 and a heat exchanger 7 are installed in the residual heat removal system. The reactor water is cooled to near normal temperature (room temperature) by the heat exchanger 7 and returned to the reactor pressure vessel 1 again.

【0019】一方の残留熱除去系4からは炉水浄化系8
が分岐しており、炉水浄化系8には原子炉運転中に高温
の炉水が通水される。炉水浄化系8には熱交換器9,ポ
ンプ10,浄化装置11が設置されており、炉水は熱交
換器9で冷却されポンプ10で昇圧された後、浄化装置
11で不純物が除去され、給水系12に合流して再び原
子炉圧力容器1に戻される。
On the other hand, from the residual heat removal system 4, a reactor water purification system 8 is provided.
Are branched, and high-temperature reactor water flows through the reactor water purification system 8 during operation of the reactor. The reactor water purification system 8 is provided with a heat exchanger 9, a pump 10, and a purification device 11. The reactor water is cooled by the heat exchanger 9, pressurized by the pump 10, and then impurities are removed by the purification device 11. , And is returned to the reactor pressure vessel 1 again.

【0020】本実施例では、残留熱除去系4のうち炉水
浄化系8との分岐点から熱交換器7の入口までの範囲の
配管(図中に太線で示す)、及び残留熱除去系5のうち
原子炉圧力容器1の出口から熱交換器7の入口までの範
囲の配管(図中に太線で示す)の内面に、テフロンをコー
ティングしている。即ち、これらの範囲の炭素鋼配管1
4の内面にテフロンコーティング13を施している。
In this embodiment, the piping (indicated by a thick line in the drawing) in the range from the branch point of the residual heat removal system 4 to the reactor water purification system 8 to the inlet of the heat exchanger 7 and the residual heat removal system 5 is coated with Teflon on the inner surface of a pipe (indicated by a thick line in the figure) in the range from the outlet of the reactor pressure vessel 1 to the inlet of the heat exchanger 7. That is, the carbon steel pipe 1 in these ranges
4 is provided with a Teflon coating 13 on its inner surface.

【0021】本構成によれば、テフロンコーティングは
放射性イオンの付着を防ぐだけでなく、微粒子の付着も
防ぐので、炉水中の放射性クラッドの配管への堆積を抑
制できる。この際、上記範囲における炉水温度は常時2
00℃以下であり、テフロンコーティングは200℃以
下ではほとんど変質しないので、長期間にわたって上記
の効果を安定して得られる。
According to this configuration, the Teflon coating not only prevents the deposition of radioactive ions but also the deposition of fine particles, so that the deposition of the radioactive cladding in the reactor water on the piping can be suppressed. At this time, the reactor water temperature in the above range is always 2
The temperature is not higher than 00 ° C., and the Teflon coating hardly deteriorates at a temperature of 200 ° C. or lower, so that the above effects can be stably obtained over a long period of time.

【0022】また、残留熱除去系のうち熱交換器7より
下流側は炉水温度が低温となるため、一度配管に放射性
イオンが付着しても、その後で炉水(特に、放射能濃度
の低い炉水)が流れれば付着している放射性イオンは脱
離する。よって、熱交換器7より下流側の配管は、テフ
ロンコーティングなしでも線量率が高くなることはな
い。
Further, since the temperature of the reactor water downstream of the heat exchanger 7 in the residual heat removal system is low, even if radioactive ions adhere to the pipe once, the reactor water (particularly, the If low reactor water flows, the attached radioactive ions are desorbed. Therefore, the dose rate of the pipe downstream of the heat exchanger 7 does not increase even without the Teflon coating.

【0023】尚、より厳密には、残留熱除去系4のうち
炉水浄化系8との分岐点近くの下流側、及び残留熱除去
系5のうち原子炉圧力容器1の出口近くの下流側には、
それぞれバルブ(図示せず)が設置されている。残留熱
除去系は原子炉停止時のみに通水されるので、これらの
バルブは原子炉運転中は閉、原子炉停止時は開となるよ
うに、自動又は手動で制御される。よって、より厳密に
は、これらのバルブ出口から熱交換器7の入口までの範
囲の配管にテフロンコーティングを施すことになる。
More specifically, the downstream side of the residual heat removal system 4 near the branch point with the reactor water purification system 8 and the downstream side of the residual heat removal system 5 near the outlet of the reactor pressure vessel 1. In
Each is provided with a valve (not shown). Since the residual heat removal system is supplied with water only when the reactor is stopped, these valves are automatically or manually controlled so as to be closed when the reactor is operating and open when the reactor is stopped. Therefore, more strictly, the Teflon coating is applied to the pipes in the range from the valve outlet to the inlet of the heat exchanger 7.

【0024】以上説明したように、本実施例によれば残
留熱除去系配管に炉水中の放射能が付着することを抑制
できる。
As described above, according to the present embodiment, it is possible to suppress the radioactivity in the reactor water from adhering to the residual heat removal system piping.

【0025】次に、図2を用いて本発明による残留熱除
去系の第2実施例を説明する。本実施例が第1実施例と
異なる点は、残留熱除去系4及び5の何れも、原子炉圧
力容器1の出口から熱交換器7の出口までの範囲の配管
の内面にクロムをメッキしていることである。即ち、こ
れらの範囲の炭素鋼配管16の内面にクロムメッキ15
を施している。
Next, a second embodiment of the residual heat removing system according to the present invention will be described with reference to FIG. This embodiment is different from the first embodiment in that both of the residual heat removal systems 4 and 5 are plated with chromium on the inner surface of the pipe in the range from the outlet of the reactor pressure vessel 1 to the outlet of the heat exchanger 7. That is. That is, the chrome plating 15 is applied to the inner surface of the carbon steel pipe 16 in these ranges.
Has been given.

【0026】クロムメッキは比較的耐熱性に優れている
ので、炉水温度が高くなる部分(残留熱除去系4のうち
原子炉圧力容器1の出口から炉水浄化系8との分岐点ま
での範囲の配管)にも使用できる。この炉水温度が高く
なる部分では、メッキされたクロムの一部は炉水中に溶
解するものの、炉水中に溶解したクロムは炉水浄化系8
の浄化装置11で除去されるので、問題とはならない。
Since the chromium plating is relatively excellent in heat resistance, the portion where the reactor water temperature becomes high (the portion of the residual heat removal system 4 from the outlet of the reactor pressure vessel 1 to the branch point with the reactor water purification system 8). Range of piping). In the part where the reactor water temperature is high, a part of the plated chromium dissolves in the reactor water, but the chromium dissolved in the reactor water is supplied to the reactor water purification system 8.
This is not a problem because it is removed by the purifying device 11 described above.

【0027】また、クロムメッキは伝熱にほとんど影響
しないので、熱交換器7内の配管にも適用できる。これ
により、残留熱除去系のより広い範囲の配管に対して、
放射性イオンの付着を防止できる。
Further, since chromium plating hardly affects heat transfer, it can be applied to piping in the heat exchanger 7. This allows for a wider range of piping in the residual heat removal system
The attachment of radioactive ions can be prevented.

【0028】本実施例でも、第1実施例と同様に、残留
熱除去系配管への炉水中の放射能の付着抑制効果を得る
ことができる。更に、本実施例の場合、残留熱除去系4
の炉水温度が高くなる部分、及び熱交換器7内の配管に
放射能が付着することも抑制できるので、第1実施例に
比べてより効果的となる。
In this embodiment, as in the first embodiment, an effect of suppressing the adhesion of radioactivity in the reactor water to the residual heat removal system piping can be obtained. Further, in the case of this embodiment, the residual heat removal system 4
Since it is also possible to suppress the radioactivity from adhering to the part where the reactor water temperature becomes high and to the pipes inside the heat exchanger 7, it becomes more effective than the first embodiment.

【0029】[0029]

【発明の効果】本発明によれば、残留熱除去系配管に炉
水中の放射能が付着することを抑制することができる。
According to the present invention, it is possible to suppress the radioactivity in the reactor water from adhering to the residual heat removal piping.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による残留熱除去系の第1実施例を示す
概略構成図。
FIG. 1 is a schematic configuration diagram showing a first embodiment of a residual heat removal system according to the present invention.

【図2】本発明による残留熱除去系の第2実施例を示す
概略構成図。
FIG. 2 is a schematic configuration diagram showing a second embodiment of the residual heat removal system according to the present invention.

【図3】残留熱除去系における放射性イオンの付着メカ
ニズムを示す模式図。
FIG. 3 is a schematic diagram showing a mechanism of attaching radioactive ions in a residual heat removal system.

【符号の説明】[Explanation of symbols]

1…原子炉圧力容器、4,5…残留熱除去系、6…ポン
プ、7…熱交換器、8…炉水浄化系、12…給水系、1
3…テフロンコーティング、14,16…炭素鋼配管、
15…クロムメッキ。
DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 4, 5 ... Residual heat removal system, 6 ... Pump, 7 ... Heat exchanger, 8 ... Reactor water purification system, 12 ... Water supply system, 1
3: Teflon coating, 14, 16: Carbon steel pipe,
15: Chrome plating.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−281285(JP,A) 特開 平9−5489(JP,A) 特開 平8−292290(JP,A) 特開 昭62−278497(JP,A) 特開 昭61−17993(JP,A) 実開 昭63−86496(JP,U) (58)調査した分野(Int.Cl.7,DB名) G21D 3/00 G21D 1/00 G21C 15/18 G21F 9/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-9-281285 (JP, A) JP-A-9-5489 (JP, A) JP-A 8-292290 (JP, A) JP-A 62-281 278497 (JP, A) JP-A-61-17993 (JP, A) JP-A-63-86496 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G21D 3/00 G21D 1 / 00 G21C 15/18 G21F 9/00

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子炉圧力容器に接続された第1の配管及
び第2の配管と、 原子炉停止時に前記第1の配管を通して前記原子炉圧力
容器から供給された炉水の残留熱を除去し該残留熱を除
去された炉水を前記第2の配管を通して前記原子炉圧力
容器に戻すための熱交換器とを備えた残留熱除去系にお
いて、 前記第1の配管の内面に、該内面と前記炉水との直接接
触を防ぐ皮膜を設け 前記第2の配管の内面には前記皮膜を設けない ことを特
徴とする残留熱除去系。
A first pipe connected to a reactor pressure vessel and a second pipe connected to the reactor pressure vessel; and removing residual heat of the reactor water supplied from the reactor pressure vessel through the first pipe when the reactor is stopped. A heat exchanger for returning the reactor water from which the residual heat has been removed to the reactor pressure vessel through the second pipe, wherein the inner surface of the first pipe is A residual heat removing system , wherein a coating for preventing direct contact between the second pipe and the reactor water is provided , and the coating is not provided on the inner surface of the second pipe .
【請求項2】請求項1において、前記皮膜を設ける範囲
は、第1の配管のうち炉水浄化系との分岐点から熱交換
器の入口までの範囲であることを特徴とする残留熱除去
系。
2. The residual heat removal method according to claim 1, wherein the range in which the coating is provided is a range from a branch point of the first pipe to the reactor water purification system to an inlet of the heat exchanger. system.
【請求項3】請求項1において、更に、熱交換器内の配
管にも前記皮膜を設けたことを特徴とする残留熱除去
系。
3. The residual heat removing system according to claim 1, wherein said coating is further provided on a pipe in a heat exchanger.
【請求項4】請求項1又は2において、前記皮膜は、テ
フロン,耐熱性樹脂,セラミックの何れかで構成される
ことを特徴とする残留熱除去系。
4. The residual heat removing system according to claim 1, wherein said film is made of any one of Teflon, heat resistant resin and ceramic.
【請求項5】請求項1又は3において、前記皮膜は、ア
ルミニウム,クロム,インコネル系合金の何れかで構成
されることを特徴とする残留熱除去系。
5. The residual heat removal system according to claim 1, wherein the coating is made of any one of aluminum, chromium, and an inconel alloy.
【請求項6】複数のインターナルポンプを有する原子炉
圧力容器と、原子炉停止時に炉水の残留熱を除去する残
留熱除去系と、炉水中の不純物を除去する炉水浄化系と
を備えたBWRプラントにおいて、原子炉圧力容器に接続された第1の配管及び第2の配管
と、 原子炉停止時に前記第1の配管を通して前記原子炉圧力
容器から供給された炉水の残留熱を除去し該残留熱を除
去された炉水を前記第2の配管を通して前記原子炉圧力
容器に戻すための熱交換器とを備えた残留熱除去系の前
記第1の配管の 内面に、該内面と前記炉水との直接接触
を防ぐ皮膜を設け、 前記第2の配管の内面には前記皮膜を設けない ことを特
徴とするBWRプラント。
6. A reactor pressure vessel having a plurality of internal pumps, a residual heat removal system for removing residual heat of reactor water when the reactor is stopped, and a reactor water purification system for removing impurities in the reactor water. Pipe and a second pipe connected to a reactor pressure vessel in a BWR plant
And the reactor pressure through the first pipe when the reactor is stopped
The residual heat of the reactor water supplied from the vessel is removed and the residual heat is removed.
The removed reactor water is passed through the second pipe to the reactor pressure.
Before the residual heat removal system with a heat exchanger for returning to the vessel
Direct contact between the inner surface of the first pipe and the reactor water;
The coating prevents provided, BWR plant, characterized in that it is provided with the coating on the inner surface of the second pipe.
【請求項7】7. 請求項6において、前記皮膜を設ける範囲7. The area according to claim 6, wherein the film is provided.
は、第1の配管のうち炉水浄化系との分岐点から熱交換Is heat exchange from the branch point of the first piping with the reactor water purification system.
器の入口までの範囲であることを特徴とするBWRプラBWR plug, characterized by the range up to the inlet of the vessel
ント。And
【請求項8】Claim 8. 請求項7において、更に、熱交換器内の配8. The arrangement according to claim 7, further comprising a heat exchanger.
管にも前記皮膜を設けたことを特徴とするBWRプランBWR plan characterized in that the coating is provided on the pipe
ト。G.
【請求項9】9. 請求項6乃至8の何れかにおいて、前記皮The leather according to any one of claims 6 to 8,
膜は、テフロン,耐熱性樹脂,セラミックの何れかで構The film is made of Teflon, heat-resistant resin, or ceramic.
成されることを特徴とするBWRプラント。A BWR plant characterized by being formed.
【請求項10】10. 請求項6乃至8の何れかにおいて、前記The method according to any one of claims 6 to 8, wherein
皮膜は、アルミニウム,クロム,インコネル系合金の何The coating is made of aluminum, chromium, or inconel alloy.
れかで構成されることを特徴とするBWRプラント。A BWR plant, comprising:
JP03463497A 1997-02-19 1997-02-19 Residual heat removal system Expired - Fee Related JP3269417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03463497A JP3269417B2 (en) 1997-02-19 1997-02-19 Residual heat removal system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03463497A JP3269417B2 (en) 1997-02-19 1997-02-19 Residual heat removal system

Publications (2)

Publication Number Publication Date
JPH10232295A JPH10232295A (en) 1998-09-02
JP3269417B2 true JP3269417B2 (en) 2002-03-25

Family

ID=12419848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03463497A Expired - Fee Related JP3269417B2 (en) 1997-02-19 1997-02-19 Residual heat removal system

Country Status (1)

Country Link
JP (1) JP3269417B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5934569B2 (en) * 2012-04-27 2016-06-15 日立Geニュークリア・エナジー株式会社 Heat exchanger with protective member

Also Published As

Publication number Publication date
JPH10232295A (en) 1998-09-02

Similar Documents

Publication Publication Date Title
US6856665B2 (en) Method for controlling water quality in nuclear reactor and nuclear power plant to which the method is applied
AU2011283740B2 (en) Method for suppressing corrosion of plant, and plant
JPH10339793A (en) Water quality control system and water quality control method
JP3269417B2 (en) Residual heat removal system
EP2180483B1 (en) Method of inhibiting adhesion of radioactive substance
JP2000352597A (en) Nuclear power plant and method for operating it
JP5398124B2 (en) Corrosion-inhibiting film generation method and nuclear power plant
JP3620128B2 (en) Surface treatment method for carbon steel member for nuclear power plant
JP7132162B2 (en) Corrosion suppression method for carbon steel piping
JPS6295498A (en) Constitutional member of nuclear power plant
JPS6230269B2 (en)
JP2000292590A (en) Condensible medium circulating plant and its water quality control method
JPH0229364Y2 (en)
KR102309765B1 (en) Method for inner-contour passivation of steel surfaces of nuclear reactor
JPS629296A (en) Structural material of nuclear-reactor primary cooling system
Breden et al. Summary of Corrosion Investigations on High-Temperature Aluminum Alloys. Period Covered: February 1955-October 1956
JPH0361918B2 (en)
Tsubakizaki et al. Achievement on OT (Oxygenated Feed-Water Treatment) application and introduction of countermeasures for powdered scale deposit
JPH0862384A (en) Dosage reducing method for boiling water reactor
JPH03153858A (en) Stainless steel having elution resistance in high temperature water
JPH06148386A (en) Reducing method of corrosion product of nuclear power plant
JPH08304584A (en) Radioactive concentration reducing method in reactor primary system water
JPS6296898A (en) Power plant
Griess et al. SOLUTION CORROSION GROUP QUARTERLY REPORT FOR THE PERIOD ENDING APRIL 30, 1956
JP2009280840A (en) Corrosion-resistant coating method of turbine casing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees