JP3268214B2 - Superheated steam production equipment using waste incineration heat - Google Patents

Superheated steam production equipment using waste incineration heat

Info

Publication number
JP3268214B2
JP3268214B2 JP26680696A JP26680696A JP3268214B2 JP 3268214 B2 JP3268214 B2 JP 3268214B2 JP 26680696 A JP26680696 A JP 26680696A JP 26680696 A JP26680696 A JP 26680696A JP 3268214 B2 JP3268214 B2 JP 3268214B2
Authority
JP
Japan
Prior art keywords
pyrolysis
waste
char
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26680696A
Other languages
Japanese (ja)
Other versions
JPH1089648A (en
Inventor
浩俊 堀添
佐藤  淳
義仁 清水
静生 保田
勝彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26680696A priority Critical patent/JP3268214B2/en
Publication of JPH1089648A publication Critical patent/JPH1089648A/en
Application granted granted Critical
Publication of JP3268214B2 publication Critical patent/JP3268214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみや産業廃
棄物等を焼却し、その燃焼排ガスの熱により蒸気を製造
して、例えば該蒸気を発電プラント等に用いる過熱蒸気
製造に関する発明で、より具体的には廃棄物の焼却装置
と該廃棄物の焼却熱を利用した過熱蒸気製造装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of superheated steam by incinerating municipal solid waste or industrial waste and producing steam using the heat of the combustion exhaust gas. More specifically, the present invention relates to a waste incineration apparatus and a superheated steam production apparatus using the heat of incineration of the waste.

【0002】[0002]

【従来の技術】従来より都市ごみ等の廃棄物を焼却する
焼却装置には流動床焼却装置が多く用いられ、かかる装
置は流動床焼却炉内の分散板(例えば多孔板)上に収容
された砂等の流動媒体に分散板下方より空気または焼却
排ガス等を吹き込むことにより流動媒体を流動化すると
ともに加熱し、そのようにして形成された流動床内に都
市ごみ等の廃棄物を投入して燃焼させる。この燃焼によ
り発生した燃焼ガスは、燃焼ガス出口ラインを経てボイ
ラに至り、該ボイラ内で温水との熱接触により蒸気を発
生させ、該蒸気を発電プラント等のタービン駆動源とし
て用いるものである。
2. Description of the Related Art Conventionally, fluidized bed incinerators are often used as incinerators for incinerating waste such as municipal solid waste, and such apparatuses are accommodated on a dispersion plate (for example, a perforated plate) in a fluidized bed incinerator. The fluidized medium is fluidized and heated by blowing air or incineration exhaust gas etc. from below the dispersion plate into the fluidized medium such as sand, and waste such as municipal solid waste is thrown into the fluidized bed thus formed. Burn. The combustion gas generated by the combustion reaches a boiler via a combustion gas outlet line, generates steam by thermal contact with hot water in the boiler, and uses the steam as a turbine drive source of a power plant or the like.

【0003】さてかかる都市ごみ等の廃棄物中には塩ビ
プラスチック等の含塩素有機化合物が混入しており、可
燃分中にC1として約0.2〜0.5%含有されてい
る。そして都市ごみ等の廃棄物中に混入した塩ビプラス
チック等に含まれる塩素は、燃焼によってHC1となり
(通常、都市ごみ燃焼排ガス中のHC1は約500〜1
000ppm)、焼却炉の後流に設置された蒸気発生用ボ
イラのチューブに作用してこれを腐食させる。特にチュ
ーブ表面温度が約350℃以上では温度の増加とともに
高温腐食が顕著となる。この為、従来、チューブ表面温
度は350℃以下にする必要があり、製造される蒸気の
温度は約300℃が限界であった。その結果、従来のご
み焼却による発電効率は約15%以下であって、塩素を
殆ど含有しない重油やLNG等を燃料とし、ボイラチュ
ーブ温度を500〜600℃にできるプラントの発電効
率約30〜40%に比べて著しく低く、その改善が強く
望まれていた。
The waste such as municipal waste contains a chlorine-containing organic compound such as vinyl chloride plastic, and the content of combustibles is about 0.2 to 0.5% as C1. Chlorine contained in PVC plastics and the like mixed into waste such as municipal waste becomes HC1 by combustion (usually, HC1 in municipal waste combustion exhaust gas is about 500 to 1).
000 ppm), which acts on the tubes of the steam generator boiler installed downstream of the incinerator to corrode them. In particular, when the tube surface temperature is about 350 ° C. or higher, high-temperature corrosion becomes remarkable as the temperature increases. For this reason, conventionally, the tube surface temperature had to be 350 ° C. or less, and the temperature of the produced steam was limited to about 300 ° C. As a result, the power generation efficiency of the conventional refuse incineration is about 15% or less, and the power generation efficiency of a plant using boiler tube temperature of 500 to 600 ° C. using heavy oil or LNG containing almost no chlorine as fuel is used. %, Which is significantly lower than the above, and its improvement has been strongly desired.

【0004】かかる課題を解決する為、先の特願平8−
69067において、ボイラ水の加熱を少なくとも2段
階以上の複数段階とし、少なくとも一の段階加熱を所定
温度以上の流動媒体を含む空間内に廃棄物を供給して熱
分解反応を行なわせる熱分解工程で得た熱分解ガスの燃
焼熱エネルギーを利用して直接若しくは間接的に行な
い、一方他の段階加熱を、前記熱分解手段より取り出さ
れた未分解残渣および流動媒体から成るチャー混合物を
空気または燃焼排ガスによって流動させながら前記未分
解残渣を燃焼させるチャー燃焼工程により得られた熱エ
ネルギーを利用して行なう過熱蒸気製造方法を提案して
いる。
In order to solve such a problem, Japanese Patent Application No. Hei.
In 69067, the boiler water is heated in a plurality of stages of at least two or more stages, and at least one stage of heating is performed in a pyrolysis step in which waste is supplied to a space containing a fluidized medium having a predetermined temperature or more to perform a pyrolysis reaction. Directly or indirectly by utilizing the combustion heat energy of the obtained pyrolysis gas, while another stage heating is performed by air or combustion exhaust gas by using a char mixture comprising the undecomposed residue and the fluidized medium taken out by the pyrolysis means. A superheated steam production method is proposed in which heat energy obtained in a char burning step of burning the undecomposed residue while fluidizing is used.

【0005】すなわち、前記複数段階加熱の作用は、例
えば図3に示すように、都市ごみ等の廃棄物を熱分解
(本先願発明では、温度300℃以上の空間内に廃棄物
を供給して熱分解反応を行なわせ、その反応により発生
した熱分解ガスと未分解残渣および流動媒体から成るチ
ャー混合物と不燃物とを互いに分離する熱分解手段によ
り構成している。)してその熱分解ガス中にHCl等が
含有する含塩素熱分解ガスであっても、該含塩素熱分解
ガスの熱エネルギーによるボイラ水の加熱は、略200
℃〜320℃前後の略沸点温度としている為に、含塩素
熱分解ガスが蒸気発生用ボイラのチューブに作用しても
チューブ表面温度が約350℃以上とならない為に、こ
れを腐食させる事にならない。この場合前記ボイラ水は
加圧により沸点を略200℃〜320℃前後に設定して
ある為に前記含塩素熱分解ガスのボイラ水への熱エネル
ギーの付与にバラツキが生じていてもそれは該ボイラ水
の潛熱の吸収(言い換えれば水から蒸気への相変換にの
み使用され温度上昇分として作用しない)に使用される
為に、ボイラ水の熱交換チューブの表面温度が塩素腐触
温度以上に上昇する事なく、安定した加熱温度のボイラ
水若しくは蒸気を得る事が出来る。
[0005] That is, the action of the multi-stage heating is, for example, as shown in Fig. 3, by thermally decomposing waste such as municipal waste (in the present invention, the waste is supplied into a space having a temperature of 300 ° C or higher. And a pyrolysis means for separating a pyrolysis gas generated by the reaction, a char mixture comprising an undecomposed residue and a fluid medium, and an incombustible material from each other.) Even if the gas contains chlorine-containing pyrolysis gas containing HCl or the like, heating of the boiler water by the thermal energy of the chlorine-containing pyrolysis gas takes approximately 200 hours.
Approximately boiling point temperature of about ℃ ~ 320 ℃, even if the chlorine-containing pyrolysis gas acts on the tube of the steam generating boiler, the tube surface temperature will not be about 350 ℃ or more No. In this case, since the boiling point of the boiler water is set to about 200 ° C. to 320 ° C. by pressurization, even if the application of thermal energy to the boiler water by the chlorine-containing pyrolysis gas varies, it does not affect the boiler water. The surface temperature of the boiler water heat exchange tube rises above the chlorine corrosion temperature because it is used to absorb the latent heat of water (in other words, it is used only for phase conversion from water to steam and does not act as a temperature rise) Without this, it is possible to obtain boiler water or steam at a stable heating temperature.

【0006】そして前記略300℃〜500℃の熱分解
により分解されなかった未分解残渣は既に脱塩素されて
いる為に、これを燃焼させて得られる、例えば500〜
950℃前後の熱エネルギー(本先願発明では前記熱分
解手段より取り出された未分解残渣および流動媒体から
成るチャー混合物を、空気によって流動させながら前記
未分解残渣を燃焼させるチャー燃焼手段により500〜
950℃前後の熱エネルギーを得ている。)を主として
利用して前記略200℃〜320℃前後に一次加熱した
ボイラ水若しくは蒸気を二次〜三次加熱して400〜5
00℃の加熱蒸気(ボイラチューブ温度を約450〜5
50℃)を得てもチューブ腐触が生じる恐れがない。こ
れによりごみ焼却による発電を行なった場合において
も、塩素を殆ど含有しない重油やLNG等を燃料とした
プラントと同様な30〜40%の発電効率を得る事が出
来る。
Since the undecomposed residue not decomposed by the thermal decomposition at about 300 ° C. to 500 ° C. has already been dechlorinated, it can be obtained by burning it.
Thermal energy of about 950 ° C. (In the present invention, the char mixture comprising the undecomposed residue and the fluidized medium taken out by the pyrolysis means is flowed by air to burn the undecomposed residue.
Heat energy of around 950 ° C is obtained. ) Is mainly used to boiler water or steam that has been primarily heated to about 200 ° C. to 320 ° C., and then secondary to tertiary heated to 400 to 5
00 ° C heating steam (boiler tube temperature is about 450-5
(50 ° C.), there is no risk of tube corrosion. As a result, even when power is generated by incineration of refuse, a power generation efficiency of 30 to 40% can be obtained, which is similar to that of a plant using heavy oil or LNG that contains almost no chlorine as fuel.

【0007】[0007]

【発明が解決しようとする課題】かかる先願技術によれ
ば熱分解手段とチャー燃焼手段及びボイラやスーパヒー
タによる一次加熱と二〜三次加熱を効率よく組合せる事
により、塩素の低減ともに且つ高温度の過熱蒸気を得る
ことの出来るが、前記熱分解手段とチャー燃焼手段間の
流動砂、チャー混合物の循環および熱エネルギーの有効
利用を図る必要があり、これにより本発明の実用化が一
層効率的に進むこととなる。又本出願人は特願平8−6
9090において、前記熱分解ガス若しくは燃焼ガスを
分離して得られた灰を溶融して骨材等の製造が可能とな
る過熱蒸気の製造装置として前記熱分解手段と第1の蒸
気製造手段との間に、前記熱分解ガスの第1次燃焼熱に
より、チャー燃焼手段若しくは熱分解手段より取り出さ
れた夫々のガスより分離された灰分の溶融分離を行う灰
分溶融分離手段を設けた技術を提案しているが、かかる
灰分溶融に必要な温度は1300℃以上と高温であり、
この為前記熱分解ガスに酸素富化ガス等を導入しなけれ
ば高温が得られず、コストアップにつながる。本発明
は、かかる先願技術の課題を解決することを目的とす
る。
According to the prior art, by efficiently combining the primary heating and the secondary or tertiary heating with the pyrolysis means and the char combustion means and the boiler or superheater, it is possible to reduce the chlorine and increase the temperature. Can be obtained, but it is necessary to circulate the fluidized sand between the pyrolysis means and the char combustion means, to circulate the char mixture, and to effectively use the heat energy, whereby the practical use of the present invention is more efficient. It will go to. Also, the applicant has filed Japanese Patent Application No. 8-6.
At 9090, the ash obtained by separating the pyrolysis gas or the combustion gas is melted, and the pyrolysis means and the first steam production means are used as a superheated steam production apparatus capable of producing aggregates and the like. In the meantime, there is proposed a technique in which ash melt separation means for melting and separating ash separated from each gas taken out from the char combustion means or the pyrolysis means by the primary combustion heat of the pyrolysis gas is provided. However, the temperature required for such ash melting is as high as 1300 ° C or higher,
Therefore, unless an oxygen-enriched gas or the like is introduced into the pyrolysis gas, a high temperature cannot be obtained, leading to an increase in cost. An object of the present invention is to solve the problems of the prior art.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は、
度300℃以上の空間内に廃棄物を供給して熱分解反
応を行なわせ、その反応により発生した熱分解ガスと未
分解残渣および流動媒体から成るチャー混合物と不燃物
とを互いに分離する熱分解手段と、前記熱分解手段より
導かれた未分解残渣および流動媒体から成るチャー混合
物を、空気によって流動させながら前記未分解残渣を燃
焼させるチャー燃焼手段と、前記熱分解ガスの燃焼熱エ
ネルギーを利用して約400℃以下の温水または蒸気を
製造する一又は複数の第1の蒸気製造手段と、 前記チャ
ー燃焼手段により得られた熱エネルギーにより前記第1
の蒸気製造手段で製造された温水または蒸気を過熱蒸気
とする一又は複数の第2の蒸気製造手段と、 前記熱分解
手段と第1の蒸気製造手段との間に、前記熱分解ガスの
第1次燃焼熱により、チャー燃焼手段若しくは熱分解手
段より取り出された夫々のガスより分離された灰分の溶
融分離を行う灰分溶融分離手段とを設け、 前記熱分解ガ
スを前記灰分溶融分離手段に送給して灰溶融を行うとと
もに、 前記チャー燃焼手段より熱分解手段への高温の流
動媒体の戻し搬送に利用した高温気流を前記灰分溶融分
離手段に導入する事を特徴とする
According to the first aspect of the present invention,
Heat by supplying waste temperature 300 ° C. or higher in space to perform the thermal decomposition reaction, separating the char mixture and incombustible consisting pyrolysis gas and undecomposed residue and the fluidized medium generated by the reaction with each other a decomposing unit, a guided undegraded residue and consisting of the fluidized medium char mixture from the pyrolysis unit, a char combustion means for combusting the undecomposed residue under fluidization with air, combustion heat et of the pyrolysis gas
Using hot water or steam of about 400 ° C or less using energy
And one or more first steam producing means for producing, said tea
The heat energy obtained by the combustion means
Superheated steam or hot water produced by steam production means
And one or more second steam producing means to said pyrolysis
Between the means and the first steam producing means.
Due to the primary combustion heat, char combustion means or pyrolysis
Dissolution of ash separated from each gas extracted from the stage
It provided an ash melting separation means for performing fusion separation, the pyrolysis gas
When the ash is melted by feeding the ash to the ash melt separation means,
Moni, hot flow to the pyrolysis unit from the char combustion means
The high-temperature air stream used for returning the moving medium is
It is characterized in that it is introduced into separation means .

【0009】そして前記灰分溶融分離手段で燃焼された
1300℃以上の熱分解ガスの熱エネルギーはそのまま
捨てる事なく、後記する水冷壁ボイラ36及び第1のボ
イラ27に供給するのがよい。この際前記乾燥工程で得
られた湿気ガスも合せて熱分解ガス燃焼炉30Bに導入
する事により臭気成分、有害成分を完全燃焼する事が出
来る。 又熱分解ガスにおける灰分溶融分離手段での燃焼
はその約8割、水冷壁ボイラ36での熱分解ガスの燃焼
はその約2割前後であり、灰分溶融分離手段通過後の水
冷壁ボイラ36及び第1のボイラ27の熱交換は実質的
に燃焼により生じた高温ガスの保有エネルギーによると
ころが多い。
The ash is separated by the ash melting and separating means.
Thermal energy of pyrolysis gas of 1300 ℃ or higher
The water-cooled wall boiler 36 and the first
It is good to supply to Ira 27. In this case, the drying step
The introduced moisture gas is also introduced into the pyrolysis gas combustion furnace 30B.
By doing so, it is possible to completely burn odorous and harmful components.
come. Combustion by means of ash melt separation in pyrolysis gas
Is about 80% of that, combustion of pyrolysis gas in the water wall boiler 36
Is about 20% of that, and the water after passing through the ash melt separation means
The heat exchange between the cold wall boiler 36 and the first boiler 27 is substantially
According to the energy of hot gas generated by combustion
There are many rollers.

【0010】請求項2記載の発明は、前記熱分解手段よ
りチャー燃焼手段へのチャー混合物の搬送を重力搬送若
しくは押込み搬送により、前記チャー燃焼手段より熱分
解手段への高温の流動媒体の戻し搬送を気流搬送により
夫々行うことを特徴とする
[0010] The second aspect of the present invention is the invention, wherein the thermal decomposition means is used.
Transfer of the char mixture to the char combustion means by gravity transfer
Or by intrusion transfer, the heat
Return transport of the hot fluid medium to the solution by airflow transport
It is characterized by doing each

【0011】従来破砕された生ごみ等の未燃焼の廃棄物
はスクリューフィーダ等の機械的搬送手段を用いている
が、熱分解後の流動砂を含む未分解残渣については既に
300℃以上の高温である為に、スクリューフィーダ等
の機械的搬送手段を用いると軸受部等の熱劣化が生じや
すい部分が持たない恐れがある。そしてこの熱劣化はチ
ャー燃焼手段より熱分解手段へ流動媒体を搬送する場合
に更に深刻で、前記流動媒体は500〜950℃の加熱
温度を保有している為前記熱劣化が一層促進される。そ
こで未分解残渣と流動砂のチャー混合物の搬送は重力搬
送若しくはプッシャ等の押込み搬送により行い、前記チ
ャー燃焼手段よりの高温の流動媒体の戻し搬送は気流搬
送により夫々行うようにして前記欠点の解消を図ってい
る。さらに、前記チャー燃焼手段よりの高温の流動媒体
の戻し搬送を気流搬送により行った場合、その搬送後の
気流は500〜950℃の加熱温度を保有しており、こ
の熱エネルギーをチャー燃焼手段若しくは熱分解手段よ
り取り出された夫々のガスより分離された灰分の溶融分
離を行う灰分溶融分離手段の加熱温度の上昇及びかかる
灰分溶融手段に導入する熱分解ガスの支燃性ガスとして
利用する事により、熱エネルギーの有効利用のみなら
ず、その分酸素富化ガスの使用削減につながる。
Unburned waste such as conventionally crushed garbage
Uses mechanical conveyance means such as a screw feeder
However, undecomposed residues including liquid sand after pyrolysis have already been
Screw feeder etc. due to high temperature of 300 ℃ or more
If mechanical transfer means is used, thermal deterioration of bearings etc. may occur.
There is a risk that the pan does not have it. And this thermal degradation is
When transferring a fluid medium from the combustion unit to the pyrolysis unit
More seriously, the fluid medium is heated to 500 to 950 ° C.
Since the temperature is maintained, the thermal deterioration is further promoted. So
The char mixture of undecomposed residue and fluidized sand is transported by gravity.
Or push-in such as a pusher.
Return transport of the hot fluid medium from the burner
The above-mentioned drawbacks are eliminated by performing
You. Furthermore, a high temperature fluid medium from the char combustion means
If the return transport of the
The air stream has a heating temperature of 500 to 950 ° C.
Heat energy from char combustion means or pyrolysis means
Of ash separated from each gas extracted
Of the heating temperature of the ash melt-separating means to separate
As a supportive gas for pyrolysis gas introduced into ash melting means
By using it, only effective use of heat energy
And this leads to a reduction in the use of oxygen-enriched gas.

【0012】さて前記図3の作用を達成する為には熱分
解ガスとチャー混合物の熱カロリー比が「約7(熱分解
ガス):約3(チャー混合物)」になるように熱分解を
行うことが好ましい。これは、加温すべきボイラ水を1
00Kgf/cm2前後に加圧してその沸点を309℃
前後に設定している為に、熱分解ガスでは後記図1に示
す水冷壁ボイラ36及び第1のボイラ27(両者を第1
の蒸気製造工程(手段)という)でボイラ水を常温より
「沸点309℃+蒸発潜熱」言換えれば309℃で殆ど
蒸気化するまで立上げるカロリーと、該立上げた蒸気を
沸点309℃より500℃まで立上げるカロリーの比
は、約7:3である事による。従って熱分解ガスの熱エ
ネルギーは十分に大きくする必要があるが、前記した通
り生ごみを含んだ都市ごみ等の廃棄物を直接熱分解炉に
投入すると前記した通り、カロリバランスに変動が生じ
てしまう。
In order to achieve the effect shown in FIG. 3, the thermal decomposition is performed so that the thermal calorie ratio of the pyrolysis gas and the char mixture becomes "about 7 (pyrolysis gas): about 3 (char mixture)". Is preferred. This means one boiler water to be heated
Pressurized to about 00Kgf / cm 2 to raise its boiling point to 309 ° C
Since it is set before and after, the pyrolysis gas is used for the water-cooled wall boiler 36 and the first boiler 27 (both of which are the first
In the steam production process (means), boiler water is heated from room temperature to “boiling point 309 ° C. + latent heat of vaporization”. The ratio of calories to be raised to ° C. is about 7: 3. Therefore, the thermal energy of the pyrolysis gas needs to be sufficiently large, but as described above, if waste such as municipal waste including garbage is directly introduced into the pyrolysis furnace, the calorie balance fluctuates as described above. I will.

【0013】そこで、請求項3記載の発明において、
記熱分解手段の前段側に、100〜300℃の温度の酸
素不足下で廃棄物を乾燥する手段を設けると共に、前記
乾燥手段より熱分解手段への乾燥廃棄物の搬送を重力搬
送若しくは押込み搬送により行うことを特徴とする過熱
蒸気製造装置を提案する。これにより本発明は前記乾燥
された廃棄物の搬送は重力搬送若しくはプッシャ等の押
込み搬送により行っている為に、より効果的な結果をも
たらすこととなる
[0013] Therefore, in the invention of claim 3, wherein, prior to
An acid at a temperature of 100 to 300 ° C.
A superheated steam production apparatus is proposed , wherein a means for drying waste under element shortage is provided, and the dry waste is conveyed from the drying means to the thermal decomposition means by gravity or by pushing. Accordingly, the present invention provides a more effective result because the dried waste is transported by gravity transport or push transport such as a pusher.
It will work .

【0014】尚前記都市ごみの乾燥温度は、300℃以
上で行うと炭化水素ガスが発生し好ましくなく、又10
0℃以下では十分な蒸発が出来ない。又乾燥雰囲気は酸
素不足下で低温燃焼が生じず、好ましい。従って、前記
乾燥手段も熱分解手段と同様な構成で温度管理のみ行う
ような方策がよい。すなわち、乾燥手段も熱分解手段と
同様なチャー燃焼手段より得られた高温砂を利用して廃
棄物の乾燥を行う流動床、キルン、横型攪拌槽のいずれ
かであるのがよく、これにより、熱エネルギーの有効利
用が図れる。
When the drying temperature of the above-mentioned municipal solid waste is higher than 300 ° C., hydrocarbon gas is generated, which is not preferable.
Below 0 ° C., sufficient evaporation cannot be achieved. A dry atmosphere is preferable because low-temperature combustion does not occur under insufficient oxygen. Therefore, it is preferable that the drying unit has a configuration similar to that of the thermal decomposition unit and performs only temperature control. That is, the drying means may be any one of a fluidized bed, a kiln, and a horizontal stirring tank for drying wastes using high-temperature sand obtained from a char combustion means similar to the pyrolysis means, whereby Effective use of heat energy can be achieved.

【0015】そこで例えば請求項4記載の発明において
は、機械的攪拌手段で構成された前記熱分解手段と乾燥
手段を重力差をもたせて配設するとともに、乾燥手段よ
り熱分解手段への廃棄物の移送を重力を利用して行うこ
とを特徴としている。この場合請求項5記載の発明のよ
うに、前記熱分解手段若しくは乾燥手段を、流動媒体が
機械的に攪拌搬送される攪拌空間底部の適宜箇所に気流
散気部を配設し、該散気部より噴出される気流により、
流動媒体とともに廃棄物を流動させるように構成する事
により、乾燥、及び熱分解の容易化とともに、流動媒体
等のつまり等も防止できる。そして、前記熱分解工程に
投入される廃棄物をチャー燃焼工程より得られた高温砂
を利用して十分に乾燥させるのがよい。これにより前記
課題の解決とともに、チャー燃焼工程より得られる高温
砂は温度的にも又熱容量的にも十分なる大きさを有する
為に、容易に乾燥が可能である。
Therefore, for example, in the invention according to claim 4, the thermal decomposition means and the drying means, which are constituted by mechanical stirring means, are provided with a gravity difference, and the waste from the drying means to the thermal decomposition means is disposed. Is characterized in that gravity is transferred using gravity. In this case, as in the invention according to claim 5, the thermal decomposition means or the drying means is provided with an air flow diffuser at an appropriate position on the bottom of the stirring space where the fluid medium is mechanically stirred and conveyed. By the air current gushing from the part,
By configuring the waste to flow together with the flowing medium, drying and thermal decomposition can be facilitated, and clogging of the flowing medium can be prevented. Then, it is preferable that the waste put into the pyrolysis step is sufficiently dried by using the high-temperature sand obtained from the char combustion step. In addition to solving the above-mentioned problem, the high-temperature sand obtained from the char burning step has a sufficient size in terms of both temperature and heat capacity, and can be easily dried.

【0016】[0016]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施例を例示的に詳しく説明する。但しこの実施例
に記載されている構成部品の寸法、材質、形状、その相
対的配置等は特に特定的な記載がないかぎりは、この発
明の範囲をそれに限定する趣旨ではなく、単なる説明例
にすぎない。図1は本発明の実施例に係る廃棄物の焼却
熱を利用した過熱蒸気製造装置を示し、図中、1A、1
Bは夫々流動床からなる熱分解炉と乾燥炉で、多孔板等
の分散板3−1上に流動砂等の流動媒体を堆積させて流
動床を形成し、該流動床内を下降流と上昇流により回流
可能に中央仕切板3ー3により左右2つの流動域に分割
され、そして前記仕切り板3ー3は流動床上部と底部が
夫々開口されている。又、分散板3ー1は出口側に向け
下向きに傾斜されており、前記仕切り板3ー3により夫
々仕切られる分散板3ー1下方空間の底部には夫々燃焼
排ガス供給ライン25/6−1/6−2に接続された分
岐ライン6A/6Bが接続されており、そして該分岐ラ
イン6A/6Bには夫々不図示の流量調整弁が設けら
れ、仕切り板3−3により2分割される夫々の流動域に
供給される空気流を制御可能に構成される。すなわち分
岐ライン6Aの空気流量を分岐ライン6Bより少なくす
ることにより、左側流動域部が固体(流動媒体)の下降
流域となり、右側に位置する流動域は固体の上昇流域と
することが出来る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be illustratively described in detail below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only. FIG. 1 shows an apparatus for producing superheated steam using the heat of incineration of waste according to an embodiment of the present invention.
B is a pyrolysis furnace and a drying furnace each composed of a fluidized bed, and a fluidized medium such as fluidized sand is deposited on a dispersion plate 3-1 such as a perforated plate to form a fluidized bed. The central partition plate 3-3 divides the fluidized bed into two flow areas on the left and right sides so as to be able to circulate by the upward flow, and the partition plate 3-3 is opened at the top and bottom of the fluidized bed. Further, the dispersion plate 3-1 is inclined downward toward the outlet side, and a combustion exhaust gas supply line 25 / 6-1 is provided at the bottom of the space below the dispersion plate 3-1 which is partitioned by the partition plate 3-3. / 6-2 are connected to branch lines 6A / 6B, and the branch lines 6A / 6B are each provided with a flow control valve (not shown), which is divided into two by a partition plate 3-3. Is configured to be able to control the air flow supplied to the flow area of the air. That is, by making the air flow rate of the branch line 6A smaller than that of the branch line 6B, the flow region on the left side can be a downward flow region of solids (fluid medium), and the flow region on the right side can be an upward flow region of solids.

【0017】そして乾燥炉1B側の流動槽においては下
降流側の流動床上部に廃棄物供給ライン4を設け、該ラ
イン4より都市ごみ等の廃棄物が、又その下側に、チャ
ー燃焼炉10の流動砂がサイクロン18を介して戻入さ
れる分岐ライン52の出口端を接続し、該ライン52の
出口端より650℃前後の高温の流動砂が夫々投入可能
に構成される。そして前記上昇流側の流動床上面には熱
分解炉1Aの下降流側の流動床内に乾燥廃棄物が重力に
より投入可能に、熱分解炉側に向けて下向きに傾斜され
た傾斜出口ライン9−2を設ける。この際流動媒体もそ
の多くは傾斜出口ライン9−2より熱分解炉1Aに投入
されるが、該流動媒体中の不燃物の移送を行う為に、前
記上昇流側の流動床底面の分散板上に、プッシャ9−3
を介した移送ライン9−1を設けるのがよい。
In the fluidizing tank on the drying furnace 1B side, a waste supply line 4 is provided above the fluidized bed on the downflow side, from which waste such as municipal waste and a char combustion furnace are provided below. The outlet end of the branch line 52 into which the 10 fluidized sands are returned via the cyclone 18 is connected, and high-temperature fluidized sand at about 650 ° C. can be introduced from the outlet end of the line 52. On the upper surface of the fluidized bed on the ascending flow side, an inclined outlet line 9 inclined downward toward the pyrolyzing furnace side so that dry waste can be introduced by gravity into the fluidized bed on the descending flow side of the pyrolysis furnace 1A. -2 is provided. At this time, most of the fluid medium is also introduced into the pyrolysis furnace 1A through the inclined outlet line 9-2. However, in order to transfer incombustibles in the fluid medium, the dispersion plate on the bottom of the fluidized bed on the upflow side is used. On top, pusher 9-3
It is preferable to provide a transfer line 9-1 via the.

【0018】かかる乾燥炉1Bによれば燃焼排ガス入口
ライン6−1より分岐ライン6A/6Bを介して夫々供
給された燃焼排ガス等(本乾燥炉は基本的には酸素不足
下の乾燥の為に、供給されるガスは酸素を消費した燃焼
排ガスが大部分である)により、ライン4よりの都市ご
み等の廃棄物と、ライン52よりの650℃前後の高温
の流動砂とが流動床内で下降流と上昇流を繰り返しなが
ら温度100〜300℃、好ましくは100〜250℃
の循環流動床空間を生成し、廃棄物の乾燥を行なわせ、
その蒸発により発生した湿気ガスは出口ライン72より
流量調整弁57を介してボイラ36が収納された熱分解
ガス燃焼部30Bに導入され、一方乾燥した廃棄物は流
動砂とともに下向きに傾斜された傾斜出口ライン9−2
より重力により熱分解炉1Aに投入される。又流動媒体
の一部は、プッシャ9−3を介した移送ライン9−1に
より不燃物とともに、熱分解炉1A側に移送し流動媒体
の循環制御を行う。
According to the drying furnace 1B, the combustion exhaust gas or the like supplied from the combustion exhaust gas inlet line 6-1 through the branch lines 6A / 6B (this drying furnace is basically used for drying under a lack of oxygen. Most of the supplied gas is flue gas that has consumed oxygen), so that waste such as municipal solid waste from the line 4 and high-temperature fluidized sand at about 650 ° C. from the line 52 are formed in the fluidized bed. Temperature of 100 to 300 ° C, preferably 100 to 250 ° C while repeating descending and rising flows
To create a circulating fluidized bed space for drying the waste,
The moisture gas generated by the evaporation is introduced from the outlet line 72 to the pyrolysis gas combustion section 30B in which the boiler 36 is housed via the flow control valve 57, while the dried waste is inclined downward together with the fluidized sand. Exit line 9-2
It is charged into the pyrolysis furnace 1A by gravity. In addition, a part of the fluid medium is transferred to the pyrolysis furnace 1A together with the non-combustible material by the transfer line 9-1 via the pusher 9-3 to control the circulation of the fluid medium.

【0019】そして乾燥廃棄物および流動砂が導入され
た熱分解炉1Aは、前記乾燥炉1Bと同様に、下降流側
の流動床内に、サイクロン18を介してチャー燃焼炉1
0の砂戻入用分岐ライン51を開口し、該ライン51よ
り650℃前後の高温の流動砂が投入可能に構成する。
そして前記上昇流側の流動床上面にはチャー燃焼炉10
の流動床内にチャー混合物が重力により投入可能に、チ
ャー燃焼炉10側に向けて下向きに傾斜されたチャー混
合物取り出しライン9を設ける。この際熱分解炉1Aの
分散板3−1上に溜まった不燃物は、前記上昇流側の流
動床底面の分散板3−1上に不燃物排出ライン8を設
け、該ライン8経路途中に配したふるい80にて大型不
燃物を除去した後、その残余のチャー混合物はバケット
コンベア等からなる戻入ライン5を介して乾燥炉1B又
はチャー燃焼部10に戻入される。尚、大型不燃物を除
去した後のチャー混合物は既にふるい80等の熱接触に
より150℃以下冷却されている為に、必ずしも気流搬
送手段で構成する必要はなく通常のバケットコンベアで
よい。
The pyrolysis furnace 1A, into which the dried waste and the fluidized sand are introduced, is placed in the fluidized bed on the downflow side through the cyclone 18 in the same manner as the drying furnace 1B.
A branch line 51 for returning sand is opened so that high-temperature fluidized sand of about 650 ° C. can be introduced from the line 51.
The char combustion furnace 10 is placed on the upper surface of the fluidized bed on the upflow side.
A char mixture take-out line 9 inclined downward toward the char combustion furnace 10 is provided so that the char mixture can be charged by gravity into the fluidized bed. At this time, the incombustible material accumulated on the dispersion plate 3-1 of the pyrolysis furnace 1A is provided with a noncombustible material discharge line 8 on the dispersion plate 3-1 on the bottom of the fluidized bed on the upward flow side. After the large incombustibles are removed by the arranged sieve 80, the remaining char mixture is returned to the drying furnace 1B or the char combustion section 10 through the return line 5 composed of a bucket conveyor or the like. Since the char mixture from which large incombustible substances have been removed has already been cooled to 150 ° C. or less by thermal contact with a sieve 80 or the like, it is not always necessary to constitute a pneumatic conveying means, and a normal bucket conveyor may be used.

【0020】そして前記熱分解炉1Aの不燃物排出ライ
ン8に設けるふるい80は5mm程度の網径を有する振
動篩で、前記ライン8より排出された排出物について大
型不燃物と他のチャー混合物等を分離する。かかる熱分
解炉1Aによれば燃焼排ガス入口ライン6−2より分岐
ライン6A/6Bを介して夫々供給された燃焼排ガス等
により、又ライン9−2より乾燥廃棄物混合物が、又チ
ャー燃焼炉10の砂が循環戻入するライン51より65
0℃の高温の流動砂が夫々投入され、これにより350
〜500℃の下降流と上昇流を繰り返し循環する流動床
空間で乾燥廃棄物の熱分解反応を行なわせ、その反応に
より発生した熱分解ガスは熱分解ガス出口ライン71よ
り灰溶融炉31に導入される。又未分解残渣および流動
砂から成るチャー混合物はチャー混合物取り出しライン
9よりチャー燃焼炉10に、又不燃物は不燃物排出ライ
ン8より、夫々互いに分離して取り出す。
A sieve 80 provided in the incombustible discharge line 8 of the pyrolysis furnace 1A is a vibrating sieve having a mesh diameter of about 5 mm, and a large incombustible and other char mixture etc. are discharged from the line 8. Is separated. According to the pyrolysis furnace 1A, the combustion waste gas or the like supplied from the combustion exhaust gas inlet line 6-2 through the branch lines 6A / 6B, the dry waste mixture from the line 9-2, and the char combustion furnace 10 It is 65 from the line 51 where the sand circulates back
Each of the high-temperature fluidized sand of 0 ° C.
A pyrolysis reaction of the dried waste is performed in a fluidized bed space in which a descending flow and an increasing flow of up to 500 ° C. are repeatedly circulated, and the pyrolysis gas generated by the reaction is introduced into the ash melting furnace 31 through a pyrolysis gas outlet line 71. Is done. The char mixture composed of the undecomposed residue and the fluidized sand is taken out from the char mixture take-out line 9 to the char combustion furnace 10, and the incombustibles are taken out from the incombustibles discharge line 8 separately.

【0021】流動床炉からなるチャー燃焼炉10は、図
2に示すように、底部に不燃物出口部側に向け下向きに
傾斜させて配した分散板11上部の流動床内にチャー混
合物導入ライン9と流動媒体取り出しライン160を夫
々接続するとともに、前記導入ライン9より導入された
チャー混合物からなる主流動床10Aの分散板11の傾
斜下方側部に仕切壁10Cを介して副流動床10Bを形
成する。そして前記分散板11下方の空気供給ライン1
2より主流動床10Aと副流動床10Bに夫々空気が供
給されて、先ず主流動床10A内で600〜750℃に
加熱して未分解残渣の燃焼を行い、更に主流動床10A
と仕切壁10Cを介して隣接している副流動床10Bと
の間で未分解残渣の燃焼と流動砂が循環するように構成
し、そして前記副流動床(副チャー燃焼部)10Bの流
動媒体内に第3スーパヒータ29−2を配設し、チャー
燃焼炉10の上方域に配設された第2スーパヒータ29
−1とライン40を介して接続している。
As shown in FIG. 2, a char combustion furnace 10 composed of a fluidized bed furnace has a char mixture introduction line in a fluidized bed above a dispersion plate 11 which is disposed at the bottom and is inclined downward toward an incombustible substance outlet side. 9 and the fluid medium take-out line 160, respectively, and the sub-fluidized bed 10B via the partition wall 10C on the inclined lower side of the dispersion plate 11 of the main fluidized bed 10A made of the char mixture introduced from the introduction line 9. Form. The air supply line 1 below the dispersion plate 11
2, air is supplied to the main fluidized bed 10A and the sub fluidized bed 10B, respectively. First, the air is heated to 600 to 750 ° C. in the main fluidized bed 10A to burn the undecomposed residue.
And combustion of undecomposed residue and fluidized sand circulate between the fluidized bed and the auxiliary fluidized bed 10B adjacent via the partition wall 10C, and the fluidized medium of the auxiliary fluidized bed (subchar combustion section) 10B A third superheater 29-2 is disposed therein, and a second superheater 29 disposed above the char combustion furnace 10 is provided.
-1 via a line 40.

【0022】尚、チャー燃焼炉10上方に配設された第
2スーパヒータ29−1は、第1スーパヒータ28より
ライン28−1を介して導入された過熱蒸気の過熱とと
もに、950〜1300℃前後と無用に高くなった燃焼
ガス温度を約850℃に落とす役目を、又チャー燃焼炉
10上方ダクト域にはボイラ36ー2が配設され、無用
に高くなった燃焼ガスの温度を下げる役目をする。尚前
記のように燃焼ガス温度を約850℃に落としても第1
スーパヒータ28における蒸気温度を400〜520℃
に維持する上で何の支障もない。そして前記チャー燃焼
炉10で燃焼されない小型の不燃物は不燃物排出ライン
14より取り出され、そして前記不燃物排出ライン14
には網目が2mm前後の第2ふるい140が介装され、
前記ライン14より排出された排出物について小型不燃
物と流動砂・灰分とを分離し、前記バケットコンベア等
のライン5より流動砂を乾燥炉1Bの流動床下降流域又
はチャー燃焼炉10に給送するように構成している。さ
て前記チャー燃焼炉10内の流動媒体は出口通路より気
流搬送機構16に導かれ、該搬送機構16で空気流によ
る搬送力が付与された後、ライン17を介して気・固分
離装置例えばサイクロン18に導入され、ここで流動媒
体と高温空気流に分離され、高温空気流はライン19を
介して灰溶融炉31に、高温流動媒体は分岐弁50、分
岐ライン51,52を介して夫々乾燥炉1Bと熱分解炉
1Aに戻入される。
The second superheater 29-1 disposed above the char combustion furnace 10 is heated to about 950 to 1300 ° C. together with the superheat of the superheated steam introduced from the first superheater 28 via the line 28-1. A boiler 36-2 is provided in the upper duct area of the char combustion furnace 10 to reduce the temperature of the uselessly increased combustion gas to reduce the temperature of the uselessly increased combustion gas to about 850 ° C. . Even if the temperature of the combustion gas is reduced to about 850 ° C.
The steam temperature in the superheater 28 is set to 400 to 520 ° C.
There is no hindrance in maintaining it. Then, small incombustibles that are not burned in the char combustion furnace 10 are taken out from the incombustibles discharge line 14, and the incombustibles discharge line 14
Is equipped with a second sieve 140 having a mesh of about 2 mm,
Small incombustibles and fluidized sand / ash are separated from the waste discharged from the line 14, and the fluidized sand is fed to the fluidized bed downflow area of the drying furnace 1B or the char combustion furnace 10 from the line 5 such as the bucket conveyor. It is configured to be. The fluid medium in the char combustion furnace 10 is guided from an outlet passage to an airflow transport mechanism 16, where the transport mechanism 16 imparts a transport force by an airflow, and then a gas-solid separation device such as a cyclone through a line 17. 18 where it is separated into a flowing medium and a hot air stream, the hot air stream being dried via line 19 into the ash melting furnace 31 and the hot flowing medium being dried via branch valve 50 and branch lines 51 and 52, respectively. It is returned to the furnace 1B and the pyrolysis furnace 1A.

【0023】灰溶融炉31は、該灰溶融炉31内に前記
サイクロン18を介してチャー燃焼炉よりの高温空気及
びライン71を介して熱分解炉よりの熱分解ガスが導入
され、更に徐塵バグフィルタ37より取り出したダスト
29及び/又はライン14からの小型不燃物をライン3
0より気流等を介して導入して、例えば旋回流により砂
混合熱分解ガス灰を旋回分離させながら、前記高温空気
と熱分解ガスとの燃焼熱により1300℃以上として前
記ダスト29や不煙分を溶融して、該溶融した灰分を溶
融灰出口ラインを介して不図示の水貯溜部に落下させ、
数mm程度の水冷スラッグを生成し、該スラッグを建築
用骨材として利用するように構成する。又、前記灰溶融
炉31の上方域には熱分解ガス燃焼炉30Bが配設さ
れ、該熱分解ガス燃焼炉30B内に配設した水冷壁ボイ
ラ36の加熱を行い沸点200〜309℃近くまで立上
げる蒸気/ボイラ水を製造する。
The ash melting furnace 31 is supplied with high-temperature air from a char combustion furnace via the cyclone 18 and pyrolysis gas from a pyrolysis furnace via a line 71 into the ash melting furnace 31. The dust 29 taken out from the bag filter 37 and / or the small incombustibles from the line 14 are supplied to the line 3
0 through an air stream or the like, for example, while the sand mixed pyrolysis gas ash is swirled and separated by a swirling flow, the temperature is raised to 1300 ° C. or more by the heat of combustion of the high-temperature air and the pyrolysis gas, and the dust 29 and the smoke Is melted, and the molten ash is dropped into a water reservoir (not shown) through a molten ash outlet line,
A water-cooled slag of about several mm is generated, and the slag is configured to be used as building aggregate. Further, a pyrolysis gas combustion furnace 30B is disposed above the ash melting furnace 31, and the water-cooled wall boiler 36 disposed in the pyrolysis gas combustion furnace 30B is heated to a boiling point of about 200 to 309 ° C. Produce steam / boiler water to start up.

【0024】20は第1スーパヒータ28及びボイラ2
7が配設された熱交換部で、該熱交換塔20頂部に灰溶
融炉31よりの燃焼ガス及び第2スーパヒータ29ー1
を介してチャー燃焼炉10よりの燃焼ガスが夫々導入さ
れ、先ず第1スーパヒータ28での冷却によりガス温度
を落とした後、第1ボイラ27で冷却する。この結果、
第1ボイラ27でボイラ水入口26より取込んだボイラ
水を300℃前後に加熱し、第1ボイラ出口ライン25
より第1スーパヒータ28に蒸気若しくは加熱水を供給
する。ボイラ水は分岐ライン26”、26’を介してチ
ャー燃焼炉10のボイラ36−2及び灰溶融炉31のの
ボイラ36にも導入され分岐ライン25”、25’を介
して第1スーパヒータ28に蒸気若しくは加熱水を供給
する。
Reference numeral 20 denotes a first superheater 28 and a boiler 2
7 is disposed in the heat exchange section, and the combustion gas from the ash melting furnace 31 and the second superheater 29-1 are disposed on the top of the heat exchange tower 20.
Then, the combustion gas from the char combustion furnace 10 is introduced through the first and second superheaters 28, respectively, and then cooled by the first superheater 28, and then cooled by the first boiler 27. As a result,
The first boiler 27 heats the boiler water taken in from the boiler water inlet 26 to about 300 ° C., and the first boiler outlet line 25
Then, steam or heated water is supplied to the first superheater 28. Boiler water is also introduced into the boiler 36-2 of the char combustion furnace 10 and the boiler 36 of the ash melting furnace 31 via branch lines 26 "and 26 ', and to the first superheater 28 via branch lines 25" and 25'. Supply steam or heated water.

【0025】尚、100Kgf/cm2前後に加圧して
その沸点を309℃前後に設定している前記ボイラ水は
ボイラ27、36、36ー2に導入されて第1段階の加
熱を行うわけであるが、その加熱温度が前記沸点近くの
309℃前後になるようにその通水量を制御している。
この結果、前記各ボイラ27、36、36−2のチュー
ブ表面壁温度は、前記加温水に追従して309℃前後に
維持でき、例え熱交換される熱分解ガスに塩素若しくは
HClを含んでいても腐食が生じる事はない。
The boiler water, which is pressurized to about 100 kgf / cm 2 and its boiling point is set at about 309 ° C., is introduced into the boilers 27, 36, and 36-2 to perform the first stage heating. However, the water flow rate is controlled so that the heating temperature is about 309 ° C., which is near the boiling point.
As a result, the tube surface wall temperature of each of the boilers 27, 36, and 36-2 can be maintained at about 309 ° C. following the heated water, for example, when the heat-exchanged pyrolysis gas contains chlorine or HCl. No corrosion occurs.

【0026】第1スーパヒータ28では前記各ボイラ2
7、36、36−2の出口ライン25、25’、25”
より取り出した蒸気/加熱水を導入して、前記850℃
前後の燃焼ガスにより400〜550℃前後の過熱蒸気
を製造し、以下蒸気出口ライン28ー1より第2スーパ
ヒータ29−1に、更にライン28−2より第3スーパ
ヒータ29−2に夫々直列若しくは並列に導入して40
0〜550℃に過熱された過熱蒸気を取り出し、発電機
に送給する。
In the first superheater 28, each of the boilers 2
Exit lines 25, 25 ', 25 "at 7, 36, 36-2
850 ° C.
The superheated steam of about 400 to 550 ° C. is produced by the front and rear combustion gases, and the steam outlet line 28-1 is connected in series or parallel to the second superheater 29-1 from the steam outlet line 28-1, and the line 28-2 to the third superheater 29-2. Introduce to 40
The superheated steam superheated to 0 to 550 ° C is taken out and sent to the generator.

【0027】図2は前記チャー燃焼炉10内の流動媒体
出口ライン160側に設けた気流搬送機構で、前記サイ
クロン18に通じる垂直通路部161の底側側壁に前記
出口ライン160の終端と連設する水平通路部162を
設け、前記垂直通路部161の底面より20〜200℃
前後の常圧空気流を連続的に、又水平通路部162側端
より20〜200℃前後の3〜6Kgf/cm2の圧縮
空気流を間欠的に夫々送給する。そして前記流動媒体と
空気流の固気重量比を、(砂/空気):1/1〜5/1
に設定する事により前記流動媒体をサイクロンまで円滑
に搬送できる気流搬送力を得る事が出来る。
FIG. 2 shows an air flow transfer mechanism provided on the fluid medium outlet line 160 side in the char combustion furnace 10. The air flow transfer mechanism is provided on the bottom side wall of the vertical passage portion 161 communicating with the cyclone 18 at the end of the outlet line 160. A horizontal passage portion 162, which is 20 to 200 ° C. below the bottom of the vertical passage portion 161.
The front and rear normal pressure air flows are continuously supplied, and the compressed air flow of 3 to 6 kgf / cm 2 at about 20 to 200 ° C. is intermittently supplied from the end of the horizontal passage 162. Then, the solid-gas weight ratio of the fluid medium and the air flow is calculated as (sand / air): 1/1 to 5/1.
With this setting, it is possible to obtain an air current carrying force capable of smoothly carrying the fluid medium to the cyclone.

【0028】次に前記実施例の作用を簡単に説明する
に、乾燥炉1Bには前記したチャー燃焼炉10から出口
ライン160、気流搬送機構16、サイクロン18及び
分岐ライン51/52を通して気流搬送により600〜
700℃、具体的には650℃の循環流動砂が供給さ
れ、一方廃棄物供給ライン4から都市ごみ等の含水廃棄
物が供給され、更に下部の空気または燃焼排ガス入口ラ
イン6−1から燃焼排ガスに必要に応じて僅かな温度調
整用空気を供給して流動砂を流動させた流動床内で下降
流と上昇流とにより循環流動させながら、乾燥炉1B内
温度を100〜300℃に維持して乾燥を行った後、乾
燥後の廃棄物および流動砂から成る乾燥廃棄物混合物は
ライン9−2より熱分解炉1Aに導入される。又前記乾
燥炉1B内での乾燥により発生した湿気ガスは出口ライ
ン72よりボイラ36が収納された灰溶融炉31上方の
熱分解ガス燃焼炉30Bに導入され、熱分解ガス燃焼炉
30B内の燃焼ガス温度を850℃前後に制御する。
Next, the operation of the above embodiment will be briefly described. In the drying furnace 1B, the above-mentioned char combustion furnace 10 is supplied by air flow through the outlet line 160, the air flow transport mechanism 16, the cyclone 18, and the branch lines 51/52. 600 ~
Circulating fluidized sand at 700 ° C., specifically 650 ° C., is supplied, while water-containing waste such as municipal waste is supplied from a waste supply line 4, and furthermore, flue gas is supplied from the lower air or flue gas inlet line 6-1. The temperature in the drying furnace 1B is maintained at 100 to 300 ° C. while circulating and flowing by a downward flow and an upward flow in the fluidized bed in which the fluidized sand is fluidized by supplying a small amount of air for temperature adjustment as needed. After drying, the dried waste mixture comprising the dried waste and the fluidized sand is introduced into the pyrolysis furnace 1A through the line 9-2. The moisture gas generated by drying in the drying furnace 1B is introduced from an outlet line 72 into a pyrolysis gas combustion furnace 30B above the ash melting furnace 31 in which the boiler 36 is housed, and burns in the pyrolysis gas combustion furnace 30B. The gas temperature is controlled around 850 ° C.

【0029】さて前記都市ごみ等の廃棄物中には塩ビプ
ラスチック等の含塩素有機化合物が混入しており、可燃
分中に塩素として約0.2〜0.5%含有されている。
そしてライン9−2から乾燥廃棄物混合物、前記分岐ラ
イン51から600〜700℃の循環流動砂をそれぞれ
熱分解炉1Aに供給し、下部の空気または/及び燃焼排
ガス入口ライン6−2から燃焼排ガスに必要に応じて僅
かな温度調整用空気を供給して流動砂を流動させた流動
床内で下降流と上昇流とにより循環流動させながら、温
度350〜500℃で処理することにより、下向きに傾
斜させたチャー混合物取り出しライン9からは実質的に
塩素を含有しない未分解残渣が得られる。すなわち、廃
棄物中に含まれていた塩素は、実質的に全て熱分解ガス
に含まれて、熱分解ガス出口ライン71に排出されるこ
とになる。なお、熱分解炉1A内の熱分解反応で分離さ
れた大型の不燃物は、不燃物排出ライン8からふるい8
0を介して装置外に排出される。また前記熱分解炉1A
により得られた熱分解ガスは灰溶融炉31にライン71
を介して供給する。
The waste such as municipal solid waste contains a chlorine-containing organic compound such as PVC plastic, and contains about 0.2 to 0.5% as chlorine in combustibles.
Then, the dried waste mixture is supplied from the line 9-2, and the circulating fluidized sand at 600 to 700 ° C. is supplied from the branch line 51 to the pyrolysis furnace 1A, and the combustion exhaust gas is supplied from the lower air or / and the combustion exhaust gas inlet line 6-2. In the fluidized bed in which the fluidized sand is fluidized by supplying a small amount of air for temperature adjustment as necessary, while being circulated and flown by the descending flow and the ascending flow, the treatment is performed at a temperature of 350 to 500 ° C. An undecomposed residue substantially free of chlorine is obtained from the inclined char mixture removal line 9. That is, substantially all of the chlorine contained in the waste is contained in the pyrolysis gas and discharged to the pyrolysis gas outlet line 71. The large incombustibles separated by the thermal decomposition reaction in the thermal decomposition furnace 1A are sieved through a noncombustible discharge line 8
0 and is discharged out of the apparatus. The thermal decomposition furnace 1A
The pyrolysis gas obtained by ash melting furnace 31
Feed through.

【0030】これによりライン71の熱分解ガスは湿気
ガスで希釈されないので高カロリガスとなり、灰溶融炉
31ではサイクロンを介してチャー燃焼炉の流動砂から
分離された500〜600℃の高温空気により燃焼され
て灰溶融炉31の温度を容易に1300〜1500℃に
することが出来る。
As a result, the pyrolysis gas in the line 71 is not diluted with the humid gas and becomes a high calorie gas. In the ash melting furnace 31, the pyrolysis gas is burned by the high temperature air at 500 to 600 ° C. separated from the fluidized sand of the char combustion furnace through the cyclone. As a result, the temperature of the ash melting furnace 31 can be easily set to 1300 to 1500 ° C.

【0031】一方熱分解炉1Aでチャー混合物取り出し
ライン9から取り出された流動砂と未分解残渣から成
り、実質的に塩素を含有しないチャー混合物は、チャー
燃焼炉10の下部に供給され、空気供給ライン12から
分岐ライン12−1、12−2、及び分散板11を介し
て供給される空気によって燃焼させることにより600
〜750℃に上昇させて流動砂を流動させながら未分解
残渣を燃焼させる。更に完全燃焼の為に空気供給ライン
63から更に空気を供給することによりチャー燃焼炉1
0の温度は燃焼発熱反応によって上昇する。この温度値
は、チャー混合物取り出しライン9から供給される未分
解残渣の発熱量と空気供給ライン12、63の空気およ
び砂循環ライン19の流動砂の量と温度によって決まる
が、1000〜1300℃前後の高温になる場合があ
る。そこでチャー燃焼炉10ではボイラ36ー2を配設
し、該ボイラ36ー2との熱交換により850℃前後に
制御した後、実質的に塩素を含有しない燃焼ガスをライ
ン40を介して第2スーパヒータ29−1と熱交換した
後、ライン15を介して熱交換塔20に導入される。
On the other hand, the char mixture which is composed of the fluidized sand taken out from the char mixture take-out line 9 and the undecomposed residue in the pyrolysis furnace 1A and contains substantially no chlorine is supplied to the lower portion of the char combustion furnace 10 and supplied to the air. By burning with the air supplied from the line 12 through the branch lines 12-1 and 12-2 and the distribution plate 11, 600
Unburned residue is burned while fluidized sand is fluidized by raising the temperature to 750 ° C. The char combustion furnace 1 is further supplied with air from the air supply line 63 for complete combustion.
The temperature of 0 rises due to the exothermic combustion reaction. This temperature value is determined by the calorific value of the undecomposed residue supplied from the char mixture take-out line 9, the amount of air in the air supply lines 12 and 63, and the amount of fluidized sand in the sand circulation line 19 and the temperature. May become hot. Therefore, in the char combustion furnace 10, a boiler 36-2 is provided, and the temperature is controlled to about 850 ° C. by heat exchange with the boiler 36-2. After heat exchange with the superheater 29-1, it is introduced into the heat exchange tower 20 via the line 15.

【0032】一方本実施例は、図1、図2に示すように
前記チャー燃焼炉10に第3スーパヒータ29−2を設
けた副チャー燃焼部10Bを付設させており、チャー燃
焼炉10での流動媒体を第3スーパヒータ29−2によ
る奪熱により700〜750℃に落とし、該700〜7
50℃に落とした流動媒体をライン160、気流搬送機
構16、サイクロン18及び分岐ライン51/52を介
して650℃の流動砂を熱分解炉1A及び乾燥炉1Bに
戻入する事が出来、この結果前記熱分解炉1A内の熱分
解温度を350℃から500℃、乾燥炉1B温度を10
0〜300℃前後に安定して制御が可能である。尚、前
記副チャー燃焼部10Bには第3スーパヒータ29−2
が内装されており、これによりチャー燃焼温度の安定化
に役立つ。
On the other hand, in this embodiment, as shown in FIGS. 1 and 2, the char combustion furnace 10 is provided with a sub-char combustion section 10B provided with a third superheater 29-2. The flowing medium is dropped to 700 to 750 ° C. by heat removal by the third super heater 29-2,
The fluidized medium dropped to 50 ° C. can be returned to the pyrolysis furnace 1A and the drying furnace 1B through the line 160, the air flow conveying mechanism 16, the cyclone 18 and the branch line 51/52, and the fluidized sand at 650 ° C. can be returned. The pyrolysis temperature in the pyrolysis furnace 1A is 350 ° C. to 500 ° C., and the temperature of the drying furnace 1B is 10
Stable control is possible at about 0 to 300 ° C. The sub-char combustion section 10B has a third superheater 29-2.
Which helps stabilize the char combustion temperature.

【0033】前記灰溶融炉31では、前記したように前
記熱分解ガス/高温空気とともに、徐塵バグフィルタ等
より分離された灰が導入され、前記熱分解ガスの燃焼エ
ネルギーにより灰分を溶融して、該溶融した灰分を不図
示の水貯溜部に落下させ、数mm程度の水冷スラッグを
生成し、あるいは空冷により徐々に冷却してスラッグを
生成し、該スラッグを建築用骨材として利用する。又、
前記灰溶融炉31上方域には熱分解ガス燃焼炉30Bが
配設され、ライン62より前記未燃焼熱分解ガスに十分
な空気を供給して該熱分解ガス及び乾燥炉1Bからの湿
気ガスの更なる完全燃焼を行う。この結果熱分解ガス燃
焼炉30B内の温度を850℃前後に維持できる為に、
ボイラ36に導入されたボイラ水を沸点200〜309
℃近くまで温度上昇させた蒸気/ボイラ水を多量に製造
できる。
In the ash melting furnace 31, as described above, the ash separated from the dust bag filter and the like is introduced together with the pyrolysis gas / high-temperature air, and the ash is melted by the combustion energy of the pyrolysis gas. The molten ash is dropped into a water storage unit (not shown) to generate a water-cooled slag of about several mm, or to gradually cool by air cooling to generate a slag, and use the slag as an aggregate for construction. or,
A pyrolysis gas combustion furnace 30B is disposed above the ash melting furnace 31 and supplies sufficient air to the unburned pyrolysis gas from a line 62 to remove the pyrolysis gas and the moisture gas from the drying furnace 1B. Perform further complete combustion. As a result, the temperature in the pyrolysis gas combustion furnace 30B can be maintained at about 850 ° C.,
The boiler water introduced into the boiler 36 has a boiling point of 200 to 309.
A large amount of steam / boiler water whose temperature has been raised to nearly ℃ can be produced.

【0034】一方熱分解ガス燃焼炉30Bから取り出さ
れた850℃前後の高温排ガスは、チャー燃焼炉10よ
りの実質的に塩素を含有していない燃焼ガスにより大幅
に希釈され、該希釈された燃焼ガスは熱交換塔20に導
入され、第1ボイラ27及び水冷壁ボイラ36、36−
2で製造された200〜320℃前後の蒸気/ボイラ水
を第1スーパヒータ28で加熱して過熱蒸気とする為に
用いられる。灰溶融炉31を経て来た排ガスは燃焼によ
り又チャー燃焼炉10よりの燃焼ガスとの混合により大
幅に希釈されているので、第1スーパヒータ28のボイ
ラチューブ表面温度を350℃以上としても高温腐食は
大幅に軽減される。したがってチューブ内流体の温度を
約400〜550℃とすることができ、第1スーパヒー
タボイラ蒸気出口28−1からは安定して高温の過熱蒸
気が得られる。
On the other hand, the high-temperature exhaust gas of about 850 ° C. taken out from the pyrolysis gas combustion furnace 30B is greatly diluted by the substantially chlorine-free combustion gas from the char combustion furnace 10, and the diluted combustion is performed. The gas is introduced into the heat exchange tower 20, where the first boiler 27 and the water-cooled wall boilers 36, 36-
The steam / boiler water at about 200 to 320 ° C. produced in Step 2 is used to heat the first superheater 28 into superheated steam. Since the exhaust gas passing through the ash melting furnace 31 is greatly diluted by combustion and by mixing with the combustion gas from the char combustion furnace 10, even if the surface temperature of the boiler tube of the first superheater 28 is set to 350 ° C. or higher, high-temperature corrosion occurs. Is greatly reduced. Therefore, the temperature of the fluid in the tube can be set to about 400 to 550 ° C., and high-temperature superheated steam can be stably obtained from the first superheater boiler steam outlet 28-1.

【0035】次に、熱交換塔20内では、各ボイラ3
6、36−2、27により沸点200〜309℃近くま
で温度上昇させた蒸気/ボイラ水が第1スーパヒータ2
8に導入され、一方熱交換塔20頂部に導入された85
0℃前後の燃焼ガスが第1スーパヒータ28を加熱し、
約300〜350℃の高温の過熱蒸気を得ることができ
る。尚、前記熱分解ガス燃焼炉30B内に導入されるガ
スにはHC1が約500〜1000ppm含まれているの
で、ボイラ水の流量を調整してボイラ36のチューブ表
面温度は従来並みの約350℃以下として、高温腐食を
抑制する。この為ボイラ36では高温の過熱蒸気は得ら
れないが、約200〜320℃までは加熱できるので、
これを更に第1スーパヒータ28以降のスーパヒータ2
9−1、29−2で加熱すれば、約400〜550℃の
高温の過熱蒸気を得ることができる。
Next, in the heat exchange tower 20, each of the boilers 3
The steam / boiler water whose temperature has been raised to a boiling point of about 200 to 309 ° C. by means of 6, 36-2 and 27 is supplied to the first superheater 2
8, while 85 introduced to the top of the heat exchange tower 20
The combustion gas at about 0 ° C. heats the first superheater 28,
High temperature superheated steam of about 300 to 350 ° C. can be obtained. Since the gas introduced into the pyrolysis gas combustion furnace 30B contains about 500 to 1000 ppm of HC1, the flow rate of the boiler water is adjusted so that the tube surface temperature of the boiler 36 becomes about 350 ° C. High temperature corrosion is suppressed as follows. For this reason, high-temperature superheated steam cannot be obtained in the boiler 36, but it can be heated up to about 200 to 320 ° C.
This is further combined with the superheater 2 after the first superheater 28.
By heating at 9-1 and 29-2, high-temperature superheated steam of about 400 to 550 ° C. can be obtained.

【0036】そして熱交換塔20通過後の燃焼排ガス
は、徐塵用バグフィルタ37でダスト除去後、脱塩素バ
グフィルタ38で脱塩した後、その大部分は大気排出さ
れるが、一部はライン25を前記乾燥炉1Bと熱分解炉
1Aに供給される。又徐塵用バグフィルタ37で除去さ
れたダストは灰溶融炉31に供給される。尚、前記ライ
ン25を流れる排ガスは酸素が3〜4%でその温度は1
50℃前後である。
The flue gas after passing through the heat exchange tower 20 is dust-removed by the dust filter 37 and desalted by the dechlorination bag filter 38. Most of the flue gas is exhausted to the atmosphere. The line 25 is supplied to the drying furnace 1B and the pyrolysis furnace 1A. The dust removed by the dust filter 37 is supplied to the ash melting furnace 31. The exhaust gas flowing through the line 25 contains 3 to 4% of oxygen and the temperature is 1%.
It is around 50 ° C.

【0037】図4は二軸スクリュー型横型攪拌搬送装置
を上下に配設し、上側搬送装置を乾燥炉1B1として、
下側乾燥装置を熱分解炉1A1として構成し、両者間を
垂直ダクト1Cにより連設して構成している。すなわ
ち、前記二軸スクリュー型横型攪拌搬送装置は、底側を
蒲鉾状に形成した横長の流動媒体攪拌槽42内に螺旋状
スクリュー羽根40が環設された一対のスクリュー軸4
0aを平行に配設する。そしてかかる乾燥炉1B1側の
攪拌槽42においては一対のスクリュー軸40aに挟ま
れる中央底部に、長手方向に延設する散気管41を配
し、該散気管41にライン25を介して燃焼排ガスEG
Rを導入して、攪拌槽42底部より攪拌槽内に燃焼排ガ
スを散気可能に構成するとともに、前記攪拌槽42位置
口側上部に廃棄物供給口4を設け、該供給口4より都市
ごみ等の廃棄物が、又その供給口4に隣接する上流側
に、チャー燃焼炉10の流動砂がサイクロン18を介し
て戻入される分岐ライン52の出口端を接続し、該ライ
ン52の出口端より650℃前後の高温の流動砂が投入
可能に構成される。そして前記攪拌槽42の垂直ダクト
1Cと連設する出口端には、中央上面に凹状のオーバフ
ロー部44aを凹設した垂直仕切り板44を立設すると
ともに、前記仕切り板44入口側底面に、プッシャ9−
3を介し垂直ダクト1C側に開口する不燃物移送通路を
設ける。又プッシャ9−3上方には散気管43を配し不
燃物による詰りを阻止する。垂直ダクト1Cは前記オー
バフロー部44aより熱分解炉1A1の入口側に乾燥廃
棄物が重力により投入可能に連設され、そして該垂直ダ
クト1Cの熱分解炉1A1側の開口端1C1は逆流防止
とガスシールを兼ねる為に、流動砂収納部内に開口させ
るよい。
FIG. 4 shows a two-screw type horizontal stirring and conveying device arranged vertically, and the upper conveying device as a drying furnace 1B1.
The lower drying device is constituted as a pyrolysis furnace 1A1, and both are connected by a vertical duct 1C. That is, the twin-screw horizontal stirring / conveying device includes a pair of screw shafts 4 in which spiral screw blades 40 are circulated in a horizontally elongated fluid medium stirring tank 42 having a bottom formed in a semicylindrical shape.
0a are arranged in parallel. In the agitating tank 42 on the drying furnace 1B1 side, a diffuser pipe 41 extending in the longitudinal direction is disposed at a central bottom portion sandwiched between a pair of screw shafts 40a, and the flue gas EG is connected to the diffuser pipe 41 via a line 25.
R is introduced so that the combustion exhaust gas can be diffused into the stirring tank from the bottom of the stirring tank 42, and a waste supply port 4 is provided at an upper portion of the stirring tank 42 on the position side, and municipal solid waste is supplied from the supply port 4. Is connected to the outlet end of a branch line 52 into which the fluidized sand of the char combustion furnace 10 is returned via the cyclone 18 at the upstream side adjacent to the supply port 4 thereof. Higher temperature fluid sand of about 650 ° C. can be charged. At the outlet end of the stirring tank 42 connected to the vertical duct 1C, a vertical partition plate 44 having a concave overflow portion 44a formed in the center upper surface is erected, and a pusher is provided on the bottom surface on the entrance side of the partition plate 44. 9-
A non-combustible transfer passage that opens to the vertical duct 1C through the third duct 3 is provided. An air diffuser 43 is disposed above the pusher 9-3 to prevent clogging by incombustibles. The vertical duct 1C is connected from the overflow portion 44a to the inlet side of the pyrolysis furnace 1A1 so that dry waste can be introduced by gravity. The open end 1C1 of the vertical duct 1C on the side of the pyrolysis furnace 1A1 prevents backflow and gas. In order to double as a seal, an opening may be provided in the fluidized sand storage unit.

【0038】かかる乾燥炉1B1によれば散気管41よ
り供給された燃焼排ガス等により、攪拌槽42内にバブ
リング攪拌した状態で、投入口4よりの都市ごみ等の廃
棄物と、ライン52よりの650℃前後の高温の流動砂
とが攪拌槽42内で一対の螺旋状スクリュー羽根40に
より攪拌しながら出口側に向け搬送を行い温度100〜
300℃、好ましくは100〜250℃の攪拌槽42内
空間で廃棄物の乾燥を行なわせ、図1に示すようにその
蒸発により発生した湿気ガスは出口ライン72より流量
調整弁57を介してボイラ36が収納された熱分解ガス
燃焼炉30Bに導入され、一方乾燥した廃棄物は流動砂
とともにオーバフロー部44aより垂直ダクト1Cを介
して重力により熱分解炉1A1に投入される。
According to the drying furnace 1B1, the waste gas such as municipal waste from the inlet 4 and the waste gas from the line 52 are mixed with the combustion exhaust gas and the like supplied from the air diffuser 41 while being bubbled and stirred in the stirring tank 42. The high-temperature fluidized sand of about 650 ° C. is conveyed toward the outlet side while being stirred by the pair of spiral screw blades 40 in the stirring tank 42, and the temperature is 100 to 100 ° C.
The waste is dried in the space in the stirring tank 42 at 300 ° C., preferably 100 to 250 ° C., and the moisture gas generated by the evaporation is discharged from the outlet line 72 through the flow control valve 57 through the boiler 57 as shown in FIG. 36 is introduced into the pyrolysis gas combustion furnace 30B in which the pyrolysis gas is stored, and the dried waste is put into the pyrolysis furnace 1A1 by gravity through the vertical duct 1C from the overflow section 44a together with the fluidized sand.

【0039】一方前記乾燥廃棄物および流動砂が導入さ
れる熱分解炉1A1側の攪拌槽42においては前記乾燥
炉の下方位置で一対のスクリュー軸40aが延設する攪
拌槽42を長手方向に延設するとともに、その入口側上
部側に、チャー燃焼炉10の流動砂がサイクロン18を
介して戻入される分岐ライン51の出口端を接続し、該
ライン51の出口端より650℃前後の高温の流動砂が
投入可能に構成される。そして前記攪拌槽42の出口端
には、前記と同様な中央上面に凹状のオーバフロー部4
4aを凹設した垂直仕切り板44を立設するとともに、
前記仕切り板44入口側底面に、プッシャ9−3を介し
傾斜出口ライン9側に開口する不燃物排出ライン8を設
け、該ライン8経路途中に配したふるい80に大型不燃
物を除去した後、その残余のチャー混合物はバケットコ
ンベア等からなる戻入ライン5を介して乾燥炉1B又は
チャー燃焼炉10に戻入されるよう構成する。又プッシ
ャ9−3上方には散気管43を配し不燃物による詰りを
阻止する。かかる熱分解炉1A1によれば、垂直ダクト
1Cより投入された乾燥廃棄物混合物が、又ライン51
より650℃の高温の流動砂が夫々投入されると、一対
の螺旋状スクリュー羽根40により攪拌しながら出口側
に向け搬送を行い、乾燥廃棄物の熱分解反応を行なわせ
るとともに、その反応により発生した熱分解ガスは攪拌
槽42上部の熱分解ガス出口ライン71より灰溶融炉3
1に、又未分解残渣および流動砂から成るチャー混合物
はオーバフロー部44aを介してチャー混合物取り出し
ライン9よりチャー燃焼炉10に、又不燃物は不燃物排
出ライン8より、夫々互いに分離して取り出すことが出
来る。
On the other hand, in the stirring tank 42 on the side of the pyrolysis furnace 1A1 into which the dried waste and the fluidized sand are introduced, a stirring tank 42 in which a pair of screw shafts 40a extend below the drying furnace extends in the longitudinal direction. At the same time, the outlet end of a branch line 51 through which the fluidized sand of the char combustion furnace 10 returns through the cyclone 18 is connected to the upper side of the inlet side. It is configured so that liquid sand can be charged. At the outlet end of the stirring tank 42, a concave overflow portion 4 is formed on the central upper surface as described above.
While the vertical partition plate 44 having the recess 4a is erected,
On the bottom surface of the partition plate 44 on the inlet side, a noncombustible material discharge line 8 is provided, which opens toward the inclined outlet line 9 via a pusher 9-3. After removing large noncombustible materials on a sieve 80 arranged in the middle of the line 8, The remaining char mixture is configured to be returned to the drying furnace 1B or the char combustion furnace 10 via a return line 5 composed of a bucket conveyor or the like. An air diffuser 43 is disposed above the pusher 9-3 to prevent clogging by incombustibles. According to the pyrolysis furnace 1A1, the dry waste mixture introduced from the vertical duct 1C is again supplied to the line 51.
When the high-temperature fluidized sand of 650 ° C. is introduced, the mixture is conveyed toward the outlet side while being stirred by the pair of spiral screw blades 40 to cause the thermal decomposition reaction of the dried waste, and is generated by the reaction. The pyrolysis gas thus obtained is supplied to the ash melting furnace 3 through a pyrolysis gas outlet line 71 above the stirring tank 42.
1, the char mixture composed of undecomposed residue and fluidized sand is separated from the char mixture removal line 9 to the char combustion furnace 10 via an overflow section 44a, and the non-combustibles are separated from the non-combustibles discharge line 8, respectively. I can do it.

【0040】[0040]

【発明の効果】以上記載のごとく請求項及び3記載の
発明によれば、未分解残渣と流動砂のチャー混合物の搬
送は重力搬送若しくはプッシャ等の押込み搬送により行
い、前記チャー燃焼手段よりの高温の流動砂の戻し搬送
は気流搬送により夫々行うようにした為に、高熱雰囲気
下でも円滑な搬送が可能となる。又請求項記載の発明
によれば、前記チャー燃焼手段よりの高温の流動砂の戻
し搬送を気流搬送により行った場合、その搬送後の気流
を灰分溶融手段に導入する熱分解ガスの支燃性ガスとし
て利用する事により、熱エネルギーの有効利用のみなら
ず、その分酸素富化ガスの使用削減につながる。更に請
求項3記載の発明によれば前記熱分解工程に投入される
廃棄物をチャー燃焼工程より得られた高温砂を利用して
十分に乾燥させている高カロリの且つ安定した熱分解ガ
スが得られるとともに、熱源としてチャー燃焼工程より
得られる高温砂を利用している為に温度的にも又熱容量
的にも十分なる大きさを有する乾燥が可能である。請求
項4記載の発明においては、機械的撹拌手段で構成され
た前記熱分解手段と乾燥手段を重力差をもたせて配設す
るとともに、乾燥手段より熱分解手段への廃棄物の移送
を重力を利用して行うことが出来、請求項記載の発明
と同様な効果を有す。請求項5記載の発明によれば、乾
燥、及び熱分解の容易化とともに、流動砂等のつまり等
も防止できる
As described above, according to the second and third aspects of the invention, the char mixture of the undecomposed residue and the fluidized sand is conveyed by gravity conveyance or push-in conveyance such as a pusher. Since the return transport of the high-temperature fluidized sand is performed by airflow transport, smooth transport is possible even in a high-temperature atmosphere. According to the first aspect of the present invention, when the high-temperature fluidized sand is conveyed back from the char combustion means by airflow conveyance, the post-conveyance airflow is introduced into the ash melting means to support the pyrolysis gas. Utilization as a neutral gas leads to not only effective use of heat energy but also a reduction in the use of oxygen-enriched gas. Further, according to the third aspect of the present invention, a high-calorie and stable pyrolysis gas is obtained by sufficiently drying the waste introduced into the pyrolysis step by using the high-temperature sand obtained from the char combustion step. In addition, since high-temperature sand obtained from the char burning process is used as a heat source, drying having a sufficient size in terms of temperature and heat capacity is possible. In the invention according to claim 4, the thermal decomposition means and the drying means, which are constituted by mechanical stirring means, are provided with a gravity difference, and the transfer of the waste from the drying means to the thermal decomposition means is reduced by gravity. It can be carried out by utilizing, and has the same effect as the invention of claim 2 . According to the fifth aspect of the present invention, drying and thermal decomposition are facilitated, and at the same time, clogging of liquid sand and the like can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る廃棄物の焼却熱を利用し
た過熱蒸気製造装置を示す系統図である。
FIG. 1 is a system diagram showing an apparatus for producing a superheated steam using incineration heat of waste according to an embodiment of the present invention.

【図2】図1の過熱蒸気製造装置に用いる気流搬送機構
である。
FIG. 2 is an airflow transport mechanism used in the superheated steam production apparatus of FIG.

【図3】本発明の基本構成に係る廃棄物の焼却熱を利用
した過熱蒸気の製造手順を示すグラフ図である。
FIG. 3 is a graph showing a procedure for producing superheated steam using the heat of incineration of waste according to the basic configuration of the present invention.

【図4】乾燥炉と熱分解炉を機械的搬送手段で構成した
図1の過熱蒸気製造装置の要部構成図である。
FIG. 4 is a main part configuration diagram of the superheated steam production apparatus of FIG. 1 in which a drying furnace and a pyrolysis furnace are constituted by mechanical transport means.

【符号の説明】[Explanation of symbols]

1A、1A1 熱分解炉 1B、1B1 乾燥炉 10 チャー燃焼炉 10A 主チャー燃焼部 10B 副チャー燃焼部 16 気流搬送機構 18 サイクロン 20 熱交換塔 27、36、36ー2 ボイラ(第1の蒸気製造手
段) 28、29−1、29ー2 スーパヒータ(第2の蒸気
製造手段) 31 灰溶融炉 37、38 バグフィルタ 40 スクリュー羽根 41 垂直ダクト 42 攪拌槽
DESCRIPTION OF SYMBOLS 1A, 1A1 Pyrolysis furnace 1B, 1B1 Drying furnace 10 Char combustion furnace 10A Main char combustion part 10B Subchar combustion part 16 Air flow transfer mechanism 18 Cyclone 20 Heat exchange tower 27, 36, 36-2 Boiler (first steam production means) ) 28, 29-1, 29-2 Superheater (second steam production means) 31 Ash melting furnace 37, 38 Bag filter 40 Screw blade 41 Vertical duct 42 Stirring tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F23G 5/16 ZAB F23G 5/16 ZABE 5/46 ZAB 5/46 ZABZ F23J 1/00 F23J 1/00 B F23K 3/00 302 F23K 3/00 302 (72)発明者 保田 静生 横浜市中区錦町12番地 三菱重工業株式 会社横浜製作所内 (72)発明者 小林 勝彦 横浜市中区錦町12番地 三菱重工業株式 会社横浜製作所内 (56)参考文献 特開 昭51−117471(JP,A) 特開 平5−346204(JP,A) 特開 昭58−95104(JP,A) 特開 昭50−43766(JP,A) 特開 平7−27311(JP,A) 特開 平6−26632(JP,A) 特開 昭54−83002(JP,A) (58)調査した分野(Int.Cl.7,DB名) F23G 5/30 ZAB F23G 5/02 ZAB F23G 5/027 ZAB F23G 5/04 ZAB F23G 5/16 ZAB F23G 5/46 ZAB F23J 1/00 F23K 3/00 302 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI F23G 5/16 ZAB F23G 5/16 ZABE 5/46 ZAB 5/46 ZABZ F23J 1/00 F23J 1/00 B F23K 3/00 302 F23K 3/00 302 (72) Inventor Shizuo Yasuda 12 Nishikicho, Naka-ku, Yokohama-shi Mitsubishi Heavy Industries, Ltd.Yokohama Works, Ltd. (72) Inventor Katsuhiko Kobayashi 12-nishiki, Naka-ku, Yokohama-shi, Yokohama Heavy Industries Co., Ltd. (56 References JP-A-51-117471 (JP, A) JP-A-5-346204 (JP, A) JP-A-58-95104 (JP, A) JP-A-50-43766 (JP, A) 7-27311 (JP, A) JP-A-6-26632 (JP, A) JP-A-54-83002 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F23G 5/30 ZAB F23G 5/02 ZAB F23G 5/027 ZAB F23G 5 / 04 ZAB F23G 5/16 ZAB F23G 5/46 ZAB F23J 1/00 F23K 3/00 302

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 温度300℃以上の空間内に廃棄物を供
給して熱分解反応を行なわせ、その反応により発生した
熱分解ガスと未分解残渣および流動媒体から成るチャー
混合物と不燃物とを互いに分離する熱分解手段と、 前記熱分解手段より導かれた未分解残渣および流動媒体
から成るチャー混合物を、空気によって流動させながら
前記未分解残渣を燃焼させるチャー燃焼手段と、前記熱分解ガスの燃焼熱エネルギーを利用して約400
℃以下の温水または蒸気を製造する一又は複数の第1の
蒸気製造手段と、 前記チャー燃焼手段により得られた熱エネルギーにより
前記第1の蒸気製造手段で製造された温水または蒸気を
過熱蒸気とする一又は複数の第2の蒸気製造手段と、 前記熱分解手段と第1の蒸気製造手段との間に、前記熱
分解ガスの第1次燃焼熱により、チャー燃焼手段若しく
は熱分解手段より取り出された夫々のガスより分離され
た灰分の溶融分離を行う灰分溶融分離手段とを設け、 前記熱分解ガスを前記灰分溶融分離手段に送給して灰溶
融を行うとともに、 前記チャー燃焼手段より熱分解手段への高温の流動媒体
の戻し搬送に利用した高温気流を前記灰分溶融分離手段
に導入する事を特徴とする廃棄物の焼却熱を利用した過
熱蒸気製造装置。
(1) providing waste in a space having a temperature of 300 ° C. or more;
To cause the thermal decomposition reaction, which is generated by the reaction
Char consisting of pyrolysis gas, uncracked residue and flowing medium
A pyrolysis means for separating the mixture and the non-combustible material from each other; an undecomposed residue and a fluid medium led by the pyrolysis means
A char mixture consisting of
Char burning means for burning the undecomposed residue,Approximately 400 using the combustion heat energy of the pyrolysis gas
One or more of the first to produce hot water or steam
Steam production means; With the thermal energy obtained by the char combustion means
Hot water or steam produced by the first steam producing means
One or more second steam producing means to be superheated steam, Between the thermal decomposition means and the first steam producing means,
Due to the primary combustion heat of the cracked gas, the char combustion means
Is separated from each gas extracted from the pyrolysis means
Ash melt separation means to perform melt separation of the ash, The pyrolysis gas is fed to the ash melting / separating means to melt the ash.
Melting, High temperature fluid medium from the char combustion means to the pyrolysis means
The high-temperature air stream used for the return transport of the ash
Of waste incineration heat
Hot steam production equipment.
【請求項2】 前記熱分解手段よりチャー燃焼手段への
チャー混合物の搬送を重力搬送若しくは押込み搬送によ
り、前記チャー燃焼手段より熱分解手段への高温の流動
媒体の戻し搬送を気流搬送により夫々行うことを特徴と
する請求項1記載の廃棄物の焼却熱を利用した過熱蒸気
製造装置。
2. The method according to claim 1, wherein the pyrolysis means transfers the gas to the char combustion means.
The transfer of the char mixture is performed by gravity transfer or push-in transfer.
High temperature flow from the char combustion means to the pyrolysis means
It is characterized in that each medium is returned and transported by airflow transport
Superheated steam using the incineration heat of waste according to claim 1
manufacturing device.
【請求項3】 前記熱分解手段の前段側に、100〜3
00℃の温度の酸素不足下で廃棄物を乾燥する手段を設
けると共に、前記乾燥手段より熱分解手段への乾燥廃棄
物の搬送を重力搬送若しくは押込み搬送により行うこと
を特徴とする請求項1記載の廃棄物の焼却熱を利用した
過熱蒸気製造装置。
3. The method according to claim 1, further comprising the step of:
Provide a means to dry waste under a lack of oxygen at a temperature of 00 ° C.
2. The superheated steam production utilizing waste incineration heat according to claim 1 , wherein the transport of the dried waste from the drying means to the thermal decomposition means is performed by gravity transport or push-in transport. apparatus.
【請求項4】 機械的撹拌手段で構成された前記熱分解
手段と乾燥手段を重力差をもたせて配設するとともに、
乾燥手段より熱分解手段への廃棄物の移送を重力を利用
して行うことを特徴とする請求項3記載の廃棄物の焼却
熱を利用した過熱蒸気製造装置。
4. The thermal decomposition means and the drying means, which are constituted by mechanical stirring means, are arranged with a difference in gravity.
4. The incineration of waste according to claim 3, wherein the transfer of the waste from the drying means to the pyrolysis means is performed using gravity.
Superheated steam production equipment using heat .
【請求項5】 前記熱分解手段若しくは乾燥手段を、流
動媒体が機械的に撹拌搬送される撹拌空間底部の適宜箇
所に気流散気部を配設し、該散気部より噴出される気流
により、流動媒体とともに廃棄物を流動させる機械的撹
拌手段で構成したことを特徴とする請求項4記載の廃棄
物の焼却熱を利用した過熱蒸気製造装置。
5. An air flow diffuser is provided at an appropriate position on the bottom of the stirring space where the fluid medium is mechanically stirred and conveyed by the thermal decomposition means or the drying means, and the air flow blown out from the diffuser is provided. , discarded according to claim 4, characterized in that is constituted by a mechanical stirring means for flowing the waste with the fluidized medium
Superheated steam production equipment that uses the heat of incineration of materials .
JP26680696A 1996-09-17 1996-09-17 Superheated steam production equipment using waste incineration heat Expired - Fee Related JP3268214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26680696A JP3268214B2 (en) 1996-09-17 1996-09-17 Superheated steam production equipment using waste incineration heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26680696A JP3268214B2 (en) 1996-09-17 1996-09-17 Superheated steam production equipment using waste incineration heat

Publications (2)

Publication Number Publication Date
JPH1089648A JPH1089648A (en) 1998-04-10
JP3268214B2 true JP3268214B2 (en) 2002-03-25

Family

ID=17435943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26680696A Expired - Fee Related JP3268214B2 (en) 1996-09-17 1996-09-17 Superheated steam production equipment using waste incineration heat

Country Status (1)

Country Link
JP (1) JP3268214B2 (en)

Also Published As

Publication number Publication date
JPH1089648A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
EP0823590B1 (en) Method and apparatus for producing superheated steam using heat generated through incineration of wastes
JPH11173520A (en) Method and device for fluidized bed type thermal decomposition
JP3268214B2 (en) Superheated steam production equipment using waste incineration heat
JP3534552B2 (en) Waste incineration apparatus and superheated steam production apparatus using incineration heat of the waste
JP3924285B2 (en) Incinerator
JP3276271B2 (en) Superheated steam production equipment using waste incineration heat
JP3327749B2 (en) Superheated steam production equipment using waste incineration heat
JP3272583B2 (en) Superheated steam production equipment using waste incineration heat
JP3408678B2 (en) Superheated steam production equipment using waste incineration heat
JP3477327B2 (en) Superheated steam production method and apparatus using waste incineration heat
JP2985058B2 (en) Two-stage swirling fluidized bed incinerator
JP3285740B2 (en) Superheated steam production equipment using waste incineration heat
JP3276273B2 (en) Superheated steam production equipment using waste incineration heat
JP3305172B2 (en) Superheated steam production equipment using waste incineration heat
JP3272581B2 (en) Superheated steam production equipment using waste incineration heat
JP2989351B2 (en) Waste incineration method
JP3272582B2 (en) Superheated steam production equipment using waste incineration heat
JP2991638B2 (en) Waste incineration equipment
JP3276272B2 (en) Superheated steam production equipment using waste incineration heat
JP3408686B2 (en) Superheated steam production equipment using waste incineration heat
JP2002115829A (en) Method for waste treatment and gasification and melting apparatus
JP3544953B2 (en) Waste treatment method and gasification and melting equipment
JP2004251618A (en) Processing method and gasifying and fusing apparatus for combustible material
JP2004264017A (en) Municipal waste gasification furnace and method
JP2004264018A (en) Processing method, and gasifying and melting device for waste

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees