JP3266417B2 - Manufacturing method of super-hard composite member - Google Patents

Manufacturing method of super-hard composite member

Info

Publication number
JP3266417B2
JP3266417B2 JP11841694A JP11841694A JP3266417B2 JP 3266417 B2 JP3266417 B2 JP 3266417B2 JP 11841694 A JP11841694 A JP 11841694A JP 11841694 A JP11841694 A JP 11841694A JP 3266417 B2 JP3266417 B2 JP 3266417B2
Authority
JP
Japan
Prior art keywords
super
hard
ultra
composite member
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11841694A
Other languages
Japanese (ja)
Other versions
JPH07316817A (en
Inventor
桂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11841694A priority Critical patent/JP3266417B2/en
Publication of JPH07316817A publication Critical patent/JPH07316817A/en
Application granted granted Critical
Publication of JP3266417B2 publication Critical patent/JP3266417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、バルク状の超硬質複合
部材の製造方法に関するもので、特に、耐摩耗性に優れ
たスローアウェイ工具やろう付けバイト等の切削工具、
研削用砥石、カッターホイール等の砥石類、産業用カッ
タ、のこ刃等の各種耐摩耗工具、掘削用ドリルビット、
岩石用その他のワイヤーソー等の鉱山土木用部材に最適
な超硬質複合部材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a bulk super-hard composite member, and more particularly to a cutting tool such as a throw-away tool or a brazing tool having excellent wear resistance.
Grinding stones such as grinding wheels and cutter wheels, various wear-resistant tools such as industrial cutters and saw blades, drill bits for drilling,
The present invention relates to a method for producing a super-hard composite member most suitable for mining and civil engineering members such as wire saws and other wire saws.

【0002】[0002]

【従来技術】ダイヤモンド、立方晶窒化硼素等の超硬質
材料は、従来大規模な超高圧プレス装置により作成され
ており、このような方法によって製造された焼結ダイヤ
モンドは、耐摩耗性に優れたスローアウェイ工具やろう
付けバイト等の切削工具、研削用砥石、カッターホイー
ル等の砥石類、産業用カッタ、のこ刃等の各種耐摩耗工
具、掘削用ドリルビット、岩石用その他のワイヤーソー
等の鉱山土木用部材に使用される。
2. Description of the Related Art Ultra-hard materials such as diamond and cubic boron nitride have been conventionally produced by a large-scale ultra-high-pressure press, and a sintered diamond produced by such a method has excellent wear resistance. Cutting tools such as indexable tools and brazing tools, grinding wheels such as grinding wheels and cutter wheels, various wear-resistant tools such as industrial cutters and saw blades, drill bits for drilling, and other wire saws for rock Used for mining civil engineering components.

【0003】[0003]

【発明が解決しようとする問題点】しかしながら、従来
の超硬質材料は、5GPaを越える超高圧下、1300
℃を超える高温で合成されるため、直径5cm程度の大
きさのものしか製造できず、また、製造コストも非常に
高いという問題があった。即ち、現状では、上記のよう
にコストが高く、小さな製品しか作れないために、ダイ
ヤモンドやcBNの焼結体は、切削工具など限られた用
途にしか使用されていなかった。
However, the conventional super-hard materials are not suitable for ultra-high pressure exceeding 5 GPa.
Since it is synthesized at a high temperature exceeding ℃, there is a problem that only a product having a diameter of about 5 cm can be produced, and the production cost is very high. That is, at present, as described above, since the cost is high and only small products can be manufactured, sintered bodies of diamond and cBN have been used only for limited applications such as cutting tools.

【0004】さらに、このような従来の焼結ダイヤモン
ドはコバルトを結合材として含有させる必要があるが、
このコバルトは高温で軟化しやすいため、例えば、掘削
用ドリルビットに用いた場合には岩盤との摩擦熱によ
り、あるいは、地下深くで使用したとき地熱のため、掘
削用ドリルビットが摩耗し易く、掘削性能が大きく低下
するという問題があった。
Further, such a conventional sintered diamond needs to contain cobalt as a binder,
Because this cobalt is easily softened at high temperatures, for example, when used for drill bits for drilling, due to frictional heat with rock or for geothermal when used deep underground, drill bits for drilling are easily worn, There was a problem that the excavation performance was greatly reduced.

【0005】そこで、これらの超硬質材料の焼結体の製
造、特に、大型品の製造が可能になれば、例えば、金属
や複合材料の加工用切削工具およびスリッターナイフ等
の産業用刃物あるいは各種の褶動部品やガイドブッシュ
等の耐摩耗部材、および掘削用ドリルビット、岩石用そ
の他のワイヤーソー等の鉱山土木用部材など広い範囲で
超硬質材料が使用されるようになり、大幅な性能改善が
期待できる。
[0005] Therefore, if it becomes possible to manufacture sintered bodies of these super-hard materials, and particularly to manufacture large-sized products, for example, cutting tools for machining metals and composite materials, industrial cutting tools such as slitter knives and various cutting tools. Ultra-hard materials have been used in a wide range of wear-resistant parts such as folding parts and guide bushes, and drilling drill bits, rock and other wire saws, and other mining and civil engineering materials. Can be expected.

【0006】[0006]

【問題点を解決するための手段】本発明者は上記の問題
点に対し検討を重ねた結果、超高圧合成法を用いなくて
もダイヤモンド、立方晶窒化硼素等の超硬質粒子よりな
る成形体の空隙に、タングステンなどを化学的気相合成
法(以下、単にCVD法という)により充填することに
より、超硬質粒子とタングステンなどよりなる大型の緻
密な焼結体を容易に製造できることを見出し、本発明に
至った。
Means for Solving the Problems The present inventor has studied the above problems, and as a result, has found that a compact formed of ultra-hard particles such as diamond and cubic boron nitride can be used without using an ultra-high pressure synthesis method. Found that a large dense sintered body composed of ultra-hard particles and tungsten can be easily produced by filling the voids with tungsten or the like by a chemical vapor synthesis method (hereinafter simply referred to as a CVD method). The present invention has been reached.

【0007】即ち、本発明の超硬質複合部材の製造方法
は、ダイヤモンド及び立方晶窒化硼素のうち少なくとも
一種からなる超硬質粒子の成形体を作製し、前記成形体
の空隙に化学的気相合成法により金属タングステン、金
属モリブデン及びこれらと炭素、硼素との化合物のうち
少なくとも一種を結合相として30〜70体積%の割合
になるように充填するものであり、これによって結合相
の三次元セル構造を形成する。ここで、三次元セル構造
とは、「セル構造体」(L.J.Gibson、M.F.Ashby 大塚正
久訳)に記載されるようにセルの稜および面を構成する
緻密固体の支柱または平板を相互につなぎあわせたネッ
トワークからなる構造のことをいう。図1に理想的な三
次元セル構造の模式図を示す。実際の超硬質複合部材の
結合相では、これが変形したような形状となることが多
いが、実用上問題はない。
That is, according to the method for producing a super-hard composite member of the present invention, a super-hard particle formed of at least one of diamond and cubic boron nitride is prepared, and a chemical vapor phase synthesis is performed in the voids of the formed body. At least one of metal tungsten, metal molybdenum, and a compound of these and carbon and boron is filled as a binder phase so as to have a ratio of 30 to 70% by volume, thereby forming a three-dimensional cell structure of the binder phase. To form Here, a three-dimensional cell structure is a network in which dense solid supports or flat plates that form the edges and surfaces of cells are connected to each other as described in `` cell structure '' (LJ Gibson, MFAshby translated by Masahisa Otsuka). A structure consisting of FIG. 1 shows a schematic diagram of an ideal three-dimensional cell structure. In the actual bonded phase of the super-hard composite member, the shape is often deformed, but there is no practical problem.

【0008】超硬質粒子を30〜70体積%、結合相を
30〜70体積%の割合から構成したのは、超硬質粒子
が30体積%よりも少ない場合(結合相が70体積%よ
りも多い場合)には、耐摩耗性が低下し、超硬質粒子が
70体積%よりも多い場合(結合相が30体積%よりも
少ない場合)には、製造が困難となるからである。ま
た、超硬質粒子を30体積%よりも少ない場合(結合相
が70体積%よりも多い場合)や、超硬質粒子を70体
積%よりも多い場合(結合相が30体積%よりも少ない
場合)には、結合相が三次元セル構造にならないからで
ある。本発明の超硬質複合部材では、超硬質粒子が40
〜65体積%、結合相を35〜60体積%とから構成す
ることが特に望ましい。
The reason why the ultra-hard particles are composed of 30 to 70% by volume and the binder phase is composed of 30 to 70% by volume is that the ultra-hard particles are less than 30% by volume (the binder phase is more than 70% by volume). In this case, the abrasion resistance is reduced, and when the amount of the superhard particles is more than 70% by volume (when the binder phase is less than 30% by volume), the production becomes difficult. Further, when the amount of the superhard particles is less than 30% by volume (when the binder phase is more than 70% by volume) or when the amount of the superhard particles is more than 70% by volume (when the binder phase is less than 30% by volume) Is because the binder phase does not have a three-dimensional cell structure. In the super-hard composite member of the present invention, the super-hard particles
It is particularly desirable to constitute the binder phase from about 65% by volume to about 65% by volume.

【0009】また、超硬質粒子は、天然又は超高圧合
成、気相合成法等により製造されたものを使用すること
ができる。
Further, as the ultra-hard particles, those produced by natural or ultra-high pressure synthesis, gas phase synthesis or the like can be used.

【0010】このような超硬質複合部材は、例えば、ダ
イヤモンド及び立方晶窒化硼素のうち少なくとも一種か
らなる超硬質粒子に、所定温度で飛散するバインダを添
加混合して成形体を作成し、この成形体からバインダを
飛散させるとともに、化学的気相合成法により成形体の
空隙に金属タングステン、金属モリブデン及びこれらと
炭素、硼素との化合物のうち少なくとも一種を充填する
ことにより製造される。
[0010] Such a super-hard composite member is formed, for example, by adding a binder scattered at a predetermined temperature to super-hard particles made of at least one of diamond and cubic boron nitride to form a molded body. It is manufactured by dispersing the binder from the body and filling the voids of the formed body with at least one of metal tungsten, metal molybdenum, and a compound of these and carbon and boron by a chemical vapor synthesis method.

【0011】尚、超硬質粒子と結合相の組成比は、超硬
質粒子の成形時における空隙率により左右されるが、例
えば、上記のように超硬質粒子と所定温度で飛散するバ
インダからなる成形体をプレス成形して作製する場合に
は、プレス圧力を上げることにより成形体の空隙率を小
さくでき、これにより、結合相量を少なくすることがで
きる。
The composition ratio of the superhard particles and the binder phase depends on the porosity at the time of forming the superhard particles. For example, as described above, the molding of the superhard particles and the binder scattered at a predetermined temperature is performed. In the case where the molded body is formed by press molding, the porosity of the molded body can be reduced by increasing the pressing pressure, whereby the amount of the binder phase can be reduced.

【0012】[0012]

【作用】従来、タングステン、モリブデンは融点が高い
ために通常の焼結法に対しては不向きであるが、本発明
の超硬質複合部材では、ダイヤモンド或いはCBNの超
硬質粒子からなる成形体の空隙中に、CVD法によりタ
ングステン、モリブデン等を結合相として30〜70体
積%の割合で充填させて緻密化させるため、従来のダイ
ヤモンド焼結体のように超高圧高温下で作製する必要が
なく、大型の焼結体を容易に作製することができるとと
もに、超硬質粒子とタングステン等の高融点金属との複
合部材となるため、優れた特性を得ることができる。
Conventionally, tungsten and molybdenum are unsuitable for ordinary sintering methods because of their high melting points. However, in the super-hard composite member of the present invention, the voids of a compact made of ultra-hard diamond or CBN particles are used. During the process, tungsten or molybdenum or the like is filled as a binder phase at a rate of 30 to 70% by volume by a CVD method to be densified. A large-sized sintered body can be easily produced, and since it becomes a composite member of ultra-hard particles and a high melting point metal such as tungsten, excellent characteristics can be obtained.

【0013】また、超硬質粒子の空隙に充填されたタン
グステン、モリブデン等は融点が高いため、高温まで硬
度等の特性の劣化がなく、かつ熱伝導性が高いためダイ
ヤモンドやcBNの優れた性質を低下させることがな
い。さらに、ダイヤモンド、 立方晶窒化硼素の超硬質
粒子と、タングステン、モリブデン等の結合相とは熱膨
張率が近似しているので、超硬質複合部材に内部応力が
発生するのを抑制することができ、さらにまた、CVD
法によるタングステン、モリブデン等の生成温度が低い
ために、タングステン等の生成中にダイヤモンド、 立
方晶窒化硼素が分解することがない。
Further, since tungsten, molybdenum, etc. filled in the voids of the ultra-hard particles have a high melting point, there is no deterioration in properties such as hardness up to a high temperature, and because of their high thermal conductivity, the excellent properties of diamond and cBN can be obtained. It does not lower. Furthermore, since the thermal expansion coefficients of the ultra-hard particles of diamond and cubic boron nitride and the binder phase of tungsten, molybdenum, etc. are similar, it is possible to suppress the occurrence of internal stress in the super-hard composite member. And also CVD
Since the temperature at which tungsten, molybdenum or the like is formed by the method is low, diamond and cubic boron nitride do not decompose during the formation of tungsten or the like.

【0014】[0014]

【実施例】本発明の超硬質複合部材を図面に基づいて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A super-hard composite member of the present invention will be described with reference to the drawings.

【0015】図2は、本発明の超硬質複合部材の一断面
を示すもので、符号1は、ダイヤモンド及び立方晶窒化
硼素のうち少なくとも一種からなる超硬質粒子であり、
これらの超硬質粒子1は、金属タングステン、金属モリ
ブデン及びこれらと炭素、硼素との化合物のうち少なく
とも一種からなる結合相2中に分散している。これらの
結合相2は、図1に示したように三次元セル構造となっ
ている。
FIG. 2 shows a cross section of the super-hard composite member of the present invention, wherein reference numeral 1 denotes super-hard particles made of at least one of diamond and cubic boron nitride.
These ultra-hard particles 1 are dispersed in a binder phase 2 made of at least one of metal tungsten, metal molybdenum, and compounds of these with carbon and boron. These bonded phases 2 have a three-dimensional cell structure as shown in FIG.

【0016】このような超硬質複合部材を作製するに
は、先ず、ダイヤモンド、立方晶窒化硼素(cBN)の
超硬質粒子からなる空隙を有する成形体を形成する。成
形体の製造方法は通常のセラミックの成形に用いられる
各種の方法が使用できる。簡便には、有機物のバインダ
ーを硬質粒子に混合して、プレス成形、スリップキャス
ティング等の成形方法により成形すれば良い。超硬質粒
子の大きさや結晶構造(純粋なダイヤモンドやcBNの
割合)についても任意に選択できる。性能と生産性との
兼ね合いから硬質粒子の平均粒子径は0.3〜200μ
mが適当であり、1.0〜50μmが最適である。
In order to manufacture such an ultra-hard composite member, first, a molded body having voids made of ultra-hard particles of diamond and cubic boron nitride (cBN) is formed. As a method for producing a molded body, various methods used for ordinary molding of ceramics can be used. Simply, a hard binder may be mixed with an organic binder and molded by a molding method such as press molding or slip casting. The size and crystal structure (the ratio of pure diamond and cBN) of the ultra-hard particles can also be arbitrarily selected. The average particle size of the hard particles is 0.3 to 200 μm from the balance between performance and productivity.
m is appropriate, and 1.0 to 50 μm is optimal.

【0017】次に、このダイヤモンドもしくはcBNの
成形体の空隙に、金属タングステン、金属モリブデン及
びこれらと炭素、硼素との化合物を充填する。例えば、
Wを充填する例について説明すると、超硬質粒子とバイ
ンダーからなる成形体を化学的気相合成装置内に収容
し、この化学的気相合成装置内を温度450〜1200
℃に保持し、成形体中のバインダーを飛散させて、成形
体に空隙を形成した後、またはそれと同時に、気相合成
装置内に混合したWF6とH2ガスを導入することによ
り、超硬質粒子の成形体の空隙に、Wからなる結合相が
析出される。また、WF6+H2ガスと同時にArガスや
Heガス等の不活性ガスを導入しても良い。さらに、W
とCからなる結合相を形成する場合には、H2、WF6
ガスと同時にメタン、アセチレン等の炭素源となるガス
を反応炉に導入すれば良い。
Next, the voids of the diamond or cBN compact are filled with metal tungsten, metal molybdenum, and a compound of these with carbon and boron. For example,
Explaining an example of filling with W, a molded body composed of ultra-hard particles and a binder is accommodated in a chemical vapor synthesis apparatus, and the inside of the chemical vapor synthesis apparatus is heated to a temperature of 450 to 1200.
C., and the binder in the molded body is scattered to form voids in the molded body, or at the same time, by introducing the mixed WF 6 and H 2 gas into the gas phase synthesizing apparatus, thereby obtaining an ultra-hard material. A binder phase composed of W is precipitated in the voids of the molded particles. Further, an inert gas such as an Ar gas or a He gas may be introduced simultaneously with the WF 6 + H 2 gas. Furthermore, W
In the case of forming a binder phase composed of H 2 and WF 6, a gas serving as a carbon source such as methane and acetylene may be introduced into the reaction furnace at the same time.

【0018】モリブデンの充填はフッ化モリブデンガス
とH2ガス、モリブテンと炭素との化合物の充填はメタ
ン、アセチレン等の炭素源となるガスをフッ化モリブデ
ンガスとH2ガスと同時に導入する。硼化物との化合物
の充填はフッ化タングステンまたはフッ化モリブデンガ
スを、硼素を含有するガスと同時に導入することにより
行われる。タングステン、モリブデンの炭化物、硼化物
はそれぞれダイヤモンドやCBNとの化合した結果生成
するものであっても良い。この場合には、マトリックス
であるタングステン、モリブデンと硬質粒子の結合力が
強くなる。
For filling molybdenum, molybdenum fluoride gas and H 2 gas, and for filling a compound of molybdenum and carbon, a gas serving as a carbon source such as methane and acetylene are introduced simultaneously with the molybdenum fluoride gas and H 2 gas. The compound with a boride is filled by introducing a tungsten fluoride or molybdenum fluoride gas simultaneously with a boron-containing gas. Tungsten and molybdenum carbides and borides may be formed as a result of being combined with diamond or CBN, respectively. In this case, the bonding force between the matrix, tungsten and molybdenum, and the hard particles increases.

【0019】本発明者は、超硬質粒子の種類、平均結晶
粒径、量および結合相の種類と量を、表1に示すように
変化させ、縦1mm横3mm長さ20mmの焼結体を作
製した。得られた各焼結体に対して3点曲げ抗折強度、
ビッカース硬度Hvを測定し、焼結体の一断面における
組織を観察した。この結果を表1に示す。
The inventor of the present invention changed the type of super-hard particles, the average crystal grain size, the amount and the type and amount of the binder phase as shown in Table 1 to obtain a sintered body having a length of 1 mm, a width of 3 mm and a length of 20 mm. Produced. For each of the obtained sintered bodies, a three-point bending strength,
The Vickers hardness Hv was measured, and the structure of one section of the sintered body was observed. Table 1 shows the results.

【0020】[0020]

【表1】 [Table 1]

【0021】これらの表1より、従来の超高圧法で作製
したNo.10、11の試料は硬度が大きいが、試料形
状が小さいものしか作製できなかったため(縦1mm横
3mm長さ20mmのものが作製できなかった)抗折強
度を測定することができなかった。これに対して、本発
明の超硬質複合部材では大型寸法の焼結体を容易に得る
ことができるとともに、ビッカース硬度Hvが1400
kg/mm2以上、抗折強度が40kg/mm2以上であ
り、優れた特性を有することが判る。
From these Tables 1, it is found that No. 1 prepared by the conventional ultra-high pressure method. Samples 10 and 11 had high hardness, but could only be manufactured with a small sample shape (a sample having a length of 1 mm, a width of 3 mm and a length of 20 mm could not be manufactured), and the bending strength could not be measured. On the other hand, in the super-hard composite member of the present invention, a large-sized sintered body can be easily obtained, and the Vickers hardness Hv is 1400.
kg / mm 2 or more, and the transverse rupture strength was 40 kg / mm 2 or more, indicating that it has excellent characteristics.

【0022】[0022]

【発明の効果】以上詳述した通り、ダイヤモンド、立方
晶窒化硼素等の超硬質粒子よりなる空隙を有する成形体
に、タングステンなどを結合相として30〜70体積%
の割合でCVD法により充填させたので、大型の焼結体
を得ることができるとともに、超硬質粒子とタングステ
ン等の高融点金属との複合部材となるため、優れた特性
を得ることができる。
As described above in detail, a compact having voids made of ultra-hard particles such as diamond and cubic boron nitride is mixed with 30 to 70% by volume of tungsten or the like as a binder phase.
, A large-sized sintered body can be obtained, and since it becomes a composite member of ultra-hard particles and a high melting point metal such as tungsten, excellent characteristics can be obtained.

【0023】また、ダイヤモンド、立方晶窒化硼素とタ
ングステン等とは熱膨張率が近似しているので、超硬質
複合部材に内部応力が発生するのを抑制することがで
き、CVD法によるタングステン等の生成温度が低いた
めに、ダイヤモンド、立方晶窒化硼素が分解することが
ない。
Further, since the coefficient of thermal expansion of diamond, cubic boron nitride, tungsten and the like are close to each other, the generation of internal stress in the super-hard composite member can be suppressed, Since the formation temperature is low, diamond and cubic boron nitride do not decompose.

【図面の簡単な説明】[Brief description of the drawings]

【図1】結合相の三次元セル構造の模式図である。FIG. 1 is a schematic view of a three-dimensional cell structure of a binder phase.

【図2】本発明の超硬質複合部材の断面図である。FIG. 2 is a cross-sectional view of the super-hard composite member of the present invention.

【符号の説明】[Explanation of symbols]

1 超硬質粒子 2 結合相 1 super hard particles 2 bonded phase

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 29/02 C22C 29/02 Z C23C 16/34 C23C 16/34 // B23B 27/14 B23B 27/14 B ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI C22C 29/02 C22C 29/02 Z C23C 16/34 C23C 16/34 // B23B 27/14 B23B 27/14 B

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ダイヤモンド及び立方晶窒化硼素のうち少
なくとも一種からなる超硬質粒子の成形体を作製し、前
記成形体の空隙に化学的気相合成法により金属タングス
テン、金属モリブデン及びこれらと炭素、硼素との化合
物のうち少なくとも一種を結合相として30〜70体積
%の割合になるように充填することを特徴とする超硬質
複合部材の製造方法。
1. A molded body of ultra-hard particles made of at least one of diamond and cubic boron nitride is produced, and metal tungsten, metallic molybdenum, and carbon, A method for producing an ultra-hard composite member, characterized in that at least one of compounds with boron is filled as a binder phase so as to have a ratio of 30 to 70% by volume.
JP11841694A 1994-05-31 1994-05-31 Manufacturing method of super-hard composite member Expired - Fee Related JP3266417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11841694A JP3266417B2 (en) 1994-05-31 1994-05-31 Manufacturing method of super-hard composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11841694A JP3266417B2 (en) 1994-05-31 1994-05-31 Manufacturing method of super-hard composite member

Publications (2)

Publication Number Publication Date
JPH07316817A JPH07316817A (en) 1995-12-05
JP3266417B2 true JP3266417B2 (en) 2002-03-18

Family

ID=14736112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11841694A Expired - Fee Related JP3266417B2 (en) 1994-05-31 1994-05-31 Manufacturing method of super-hard composite member

Country Status (1)

Country Link
JP (1) JP3266417B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649962B2 (en) * 2004-11-24 2011-03-16 住友電気工業株式会社 Structure and manufacturing method of structure

Also Published As

Publication number Publication date
JPH07316817A (en) 1995-12-05

Similar Documents

Publication Publication Date Title
US5266236A (en) Thermally stable dense electrically conductive diamond compacts
US4343651A (en) Sintered compact for use in a tool
CA2489187C (en) Thermally-stable polycrystalline diamond materials and compacts
EP0181258B1 (en) Improved cubic boron nitride compact and method of making
US8147574B2 (en) Material containing diamond and an intermetallic compound
JP2004160637A (en) Sintered compact used for machining chemically reactive material
WO2012089565A1 (en) High density polycrystalline superhard material
CN102459667A (en) Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
JPS6124360B2 (en)
JP2008539155A (en) Cubic boron nitride compact
Rabinkin et al. Brazing of diamonds and cubic boron nitride
JPH08109431A (en) Diamond sintered compact containing hard alloy as binding material and its production
JP3266417B2 (en) Manufacturing method of super-hard composite member
GB2091763A (en) Laminated sintered compositions including boron nitride
US10328550B2 (en) Superhard constructions and methods of making same
GB2058840A (en) Production of polycrystalline cubic boron nitride
JPH01116048A (en) High hardness sintered diamond and its manufacture
CN1272455C (en) Tool for machine tools
JPS6137221B2 (en)
JPH1179839A (en) Tungsten carbide-based cemented carbide material and its production
WO2008062370A2 (en) Material containing diamond and nickel aluminide
CA2049672A1 (en) Unsupported sintered cbn/diamond conjoint compacts and their fabrication
JP2020147462A (en) Diamond-based conductive hard sintered material and manufacturing method thereof
CN111112657A (en) PCD cutter composite sheet
UA120657C2 (en) METHOD OF IMPREGNATION OF MICRO- AND ULTRADISPREAD DIAMOND POWDER IN THE MANUFACTURE OF THE TOOL

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees