JP3265974B2 - Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance - Google Patents

Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance

Info

Publication number
JP3265974B2
JP3265974B2 JP06811496A JP6811496A JP3265974B2 JP 3265974 B2 JP3265974 B2 JP 3265974B2 JP 06811496 A JP06811496 A JP 06811496A JP 6811496 A JP6811496 A JP 6811496A JP 3265974 B2 JP3265974 B2 JP 3265974B2
Authority
JP
Japan
Prior art keywords
layer
cemented carbide
cutting tool
reaction
coated cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06811496A
Other languages
Japanese (ja)
Other versions
JPH09249974A (en
Inventor
惠滋 中村
稔晃 植田
尚志 山田
高歳 大鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP06811496A priority Critical patent/JP3265974B2/en
Priority to EP97100089A priority patent/EP0784103B1/en
Priority to DE69720561T priority patent/DE69720561T2/en
Priority to US08/781,236 priority patent/US5770261A/en
Publication of JPH09249974A publication Critical patent/JPH09249974A/en
Application granted granted Critical
Publication of JP3265974B2 publication Critical patent/JP3265974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、硬質被覆層を構
成する酸化アルミニウム(以下、Al23 で示す)を
主成分とするAl2 3 系化合物層が、これを厚膜化し
てもその層厚が均一化し、かつ他の構成層に対してすぐ
れた層間密着性を示し、したがって、例えば鋼や鋳鉄な
どの連続切削は勿論のこと、特に断続切削に用いた場合
にも、チッピング(微小欠け)などの発生なく、すぐれ
た切削性能を長期に亘って発揮する表面被覆超硬合金製
切削工具(以下、被覆超硬工具という)の製造法に関す
るものである。
The present invention relates to an Al 2 O 3 -based compound layer comprising aluminum oxide (hereinafter, referred to as Al 2 O 3 ) as a main component of a hard coating layer. The layer thickness becomes uniform and shows excellent interlayer adhesion to other constituent layers. Therefore, for example, not only in continuous cutting of steel or cast iron, but also in intermittent cutting, chipping ( The present invention relates to a method for producing a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool) that exhibits excellent cutting performance over a long period of time without occurrence of minute chipping or the like.

【0002】[0002]

【従来の技術】従来、炭化タングステン基超硬合金基体
(以下、超硬基体という)の表面に、化学蒸着法および
/または物理蒸着法を用いて、Al2 3 層を含む硬質
被覆層、例えばTiの炭化物(以下、TiCで示す)
層、窒化物(以下、同じくTiNで示す)層、炭窒化物
(以下、TiCNで示す)層、酸化物(以下、TiO2
で示す)層、炭酸化物(以下、TiCOで示す)層、窒
酸化物(以下、TiNOで示す)層、および炭窒酸化物
(以下、TiCNOで示す)層のうちの1種または2種
以上と、Al23 層とからなる硬質被覆層を3〜20
μmの平均層厚で形成してなる被覆超硬工具が知られて
いる。また、特に上記被覆超硬工具の硬質被覆層を構成
するAl23 層の形成が、反応ガスとして、容量%
(以下、%の表示は容量%を示す)で、三塩化アルミニ
ウム(以下、AlCl3 で示す):1〜20%、二酸化
炭素(以下、CO2 で示す):0.5〜30%、[必要
に応じて一酸化炭素(CO)または塩化水素(HC
l):1〜30%]、水素:残り、からなる組成を有す
る水素系反応ガスを用い、 反応温度:950〜1100℃、 雰囲気圧力:20〜200torr、 の条件で行われていることも知られている。
2. Description of the Related Art Conventionally, a hard coating layer including an Al 2 O 3 layer is formed on a surface of a tungsten carbide-based cemented carbide substrate (hereinafter referred to as a cemented carbide substrate) by using a chemical vapor deposition method and / or a physical vapor deposition method. For example, a carbide of Ti (hereinafter, referred to as TiC)
Layer, nitride (hereinafter also indicated as TiN) layer, carbonitride (hereinafter indicated as TiCN) layer, oxide (hereinafter referred to as TiO 2)
) Layer, a carbonate (hereinafter, shown as TiCO) layer, a nitrogen oxide (hereinafter, shown as TiNO) layer, and one or more of a carbon oxynitride (hereinafter, shown as TiCNO) layer When the hard coating layer consisting of the Al 2 O 3 layer 3-20
A coated carbide tool formed with an average layer thickness of μm is known. Further, in particular, the formation of the Al 2 O 3 layer constituting the hard coating layer of the coated cemented carbide tool is considered as a reaction gas,
(Hereinafter,% indicates volume%), aluminum trichloride (hereinafter, shown as AlCl 3 ): 1 to 20%, carbon dioxide (hereinafter, shown as CO 2 ): 0.5 to 30%, [ If necessary, carbon monoxide (CO) or hydrogen chloride (HC
l): 1 to 30%], hydrogen: the remainder is used, and a hydrogen-based reaction gas having a composition of: reaction temperature: 950 to 1100 ° C., atmospheric pressure: 20 to 200 torr. Have been.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の切削加工
のFA化はめざましく、かつ省力化に対する要求も強
く、これに伴い、被覆超硬工具には使用寿命のさらなる
延命化が求められ、これに対応する手段として、これを
構成する硬質被覆層のうち、特に耐酸化性と熱的安定性
にすぐれ、さらに高硬度を有するAl23 層の厚膜化
が広く検討されているが、前記Al23 層は、これを
厚くすると、上記の従来Al23 層形成手段では層厚
が局部的に不均一になり、切刃の逃げ面、すくい面、お
よび前記逃げ面とすくい面の交わるエッジ部の間には層
厚に著しいバラツキが発生するようになるばかりでな
く、他の構成層との密着性(層間密着性)も低下し、こ
れらが原因で、例えば鋼や鋳鉄などの断続切削に用いた
場合に切刃にチッピングが発生し易く、比較的短時間で
使用寿命に至るのが現状である。
On the other hand, in recent years, the use of FA in cutting has been remarkable, and there has been a strong demand for labor saving. Accordingly, coated carbide tools have been required to have a longer service life. As means corresponding to the above, among the hard coating layers constituting the same, particularly, the oxidation resistance and thermal stability are excellent, and further thickening of an Al 2 O 3 layer having high hardness has been widely studied. When the thickness of the Al 2 O 3 layer is increased, the thickness of the Al 2 O 3 layer becomes locally non-uniform in the conventional Al 2 O 3 layer forming means, and the flank of the cutting edge, the rake face, and the rake face Not only does the layer thickness significantly vary between the edges where the surfaces intersect, but also the adhesion to other constituent layers (interlayer adhesion) is reduced, which results in, for example, steel or cast iron. Chipping on cutting edge when used for interrupted cutting such as Easily it occurs, at present, leading to a relatively short time service life.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、被覆超硬工具の製造に際して、
特に硬質被覆層を構成するAl23 層の形成に着目
し、層厚を厚くした場合の層厚の局部的バラツキの減少
と、層間密着性の向上を図るべく研究を行った結果、以
下の(a)および(b)に示す研究結果を得たのであ
る。 (a) 従来の水素系反応ガスを用いて形成されるAl
23 層においては、反応雰囲気中で、反応ガスの構成
成分であるCO2 と水素(H2 )が、 CO2 +H2 →CO+H2 O (1) 上記反応式(1)にしたがって反応し、この結果生成し
たH2 Oと、AlCl3が、 AlCl3 +H2 O→Al23 +HCl (2) 上記反応式(2)にしたがって反応し、AlCl3 が加
水分解されてAl23を生成し、この場合上記(1)
式の反応に比して上記(2)式の反応がきわめて速く、
したがって上記(1)式で生成したH2 Oは、すばやく
反応雰囲気中に存在するAlCl3 と反応することか
ら、ほとんどのAl23 は反応雰囲気中での生成とな
り、これが反応表面に堆積することによりAl23
が形成される反応機構をとるものであるため、反応ガス
の流れや反応表面の形状にも影響されることと相まっ
て、例えば切削工具であるスローアウエイチップを反応
ガス流中にどのような状態で配置しても、切刃の逃げ
面、すくい面、および前記逃げ面とすくい面の交わるエ
ッジ部の相互間に均一な層厚のAl2 3 層を形成する
ことは困難で、大きな層厚のバラツキの発生は避けられ
ないこと。
Means for Solving the Problems Accordingly, the present inventors have
From the above viewpoint, when manufacturing coated carbide tools,
In particular, focusing on the formation of the Al 2 O 3 layer constituting the hard coating layer, a study was conducted to reduce the local variation of the layer thickness when the layer thickness was increased and to improve the interlayer adhesion. (A) and (b) were obtained. (A) Al formed using a conventional hydrogen-based reaction gas
In the 2 O 3 layer, CO 2 and hydrogen (H 2 ), which are constituents of a reaction gas, react in a reaction atmosphere according to the above reaction formula (1), CO 2 + H 2 → CO + H 2 O. The resulting H 2 O and AlCl 3 react with AlCl 3 + H 2 O → Al 2 O 3 + HCl (2) according to the above reaction formula (2), whereby AlCl 3 is hydrolyzed to form Al 2 O 3 And in this case, the above (1)
The reaction of the above formula (2) is much faster than the reaction of the formula,
Therefore, the H 2 O generated by the above formula (1) quickly reacts with AlCl 3 present in the reaction atmosphere, and most of the Al 2 O 3 is generated in the reaction atmosphere, and this is deposited on the reaction surface. In this case, a reaction mechanism in which an Al 2 O 3 layer is formed by the reaction gas flow is influenced by the flow of the reaction gas and the shape of the reaction surface. Regardless of the arrangement in any state, forming an Al 2 O 3 layer having a uniform thickness between the flank of the cutting edge, the rake face, and the edge where the flank intersects the rake face. Is difficult, and large thickness variations cannot be avoided.

【0005】(b) 上記(a)の検討結果から、でき
るだけ反応表面でのAl23 生成による層形成を行え
ば、層厚の均一化が可能になるという結論に達し、これ
を可能ならしめる反応ガスの開発に努めたところ、反応
ガスとして、AlCl3 :0.5〜10%、窒素酸化物
(以下、NOx で示す):1〜30%、四塩化チタン
(以下、TiCl4 で示す):0.01〜1%、[但
し、TiCl4 に対するAlCl3 の割合:10〜10
0)、不活性ガス:残り、からなる組成を有する不活性
ガス系反応ガスを用いると、反応表面上でNOx がTi
Cl4 の触媒作用により、 NOx →N2 +O (a) 上記(a)式にしたがって分解し(この場合、TiCl
4 が存在しないと、NOx →N2 +O2 の反応となり、
この反応はきわめて遅い反応である)、上記(a)式の
反応で生成したOは反応表面に吸着し、したがってこの
OとAlCl 3 の反応が、 AlCl3 +O→Al23 +Cl2 (b) 上記(b)式の反応式にしたがって反応表面で行われる
ようになり、したがって、層形成は、生成Al2 3
反応表面への移動堆積がなく、かつ反応ガスの流れや反
応表面形状に全く影響されることなく行われることにな
ることから、この結果形成された蒸着層は、その層厚が
厚くなっても局部的バラツキがきわめて少なく、その上
反応表面に対する密着性も一段と向上したものになり、
さらに前記蒸着層は、Al23 を主成分とする、すな
わちAlおよび酸素以外の反応ガス構成成分の含有量が
15%以下、望ましくは10%以下のAl2 3 系化合
物層からなるので、Al23 の具備する特性と同等の
耐酸化性、熱的安定性、および高硬度を有すること。
(B) Based on the results of the above (a),
Al on the reaction surfaceTwo OThree Layer formation by generation
If this is the case, it is possible to achieve a uniform layer thickness.
When we worked on the development of a reaction gas that enabled
AlCl as gasThree : 0.5 to 10%, nitrogen oxide
(Hereinafter NOx ): 1 to 30%, titanium tetrachloride
(Hereafter, TiClFour): 0.01 to 1% [provided that
And TiClFour AlCl forThreeRatio: 10 to 10
0), inert gas: an inert gas having a composition consisting of the remainder
When a gas-based reaction gas is used, NO on the reaction surfacex Is Ti
ClFour NO by the catalytic action ofx → NTwo + O (a) Decompose according to the above equation (a) (in this case, TiCl
Four NO if nox → NTwo + OTwo Reaction,
This reaction is a very slow reaction),
O generated in the reaction is adsorbed on the reaction surface,
O and AlCl Three The reaction of AlClThree + O → AlTwo OThree + ClTwo (B) performed on the reaction surface according to the reaction formula of the above formula (b)
And thus the layer formation isTwoOThreeof
There is no migration and deposition on the reaction surface, and
It will be performed without being affected by the surface shape at all.
Therefore, the resulting deposited layer has a layer thickness of
Even when thick, there is very little local variation.
Adhesion to the reaction surface has been further improved,
Further, the deposition layer is made of AlTwo OThree The main component is sand
That is, the content of the reaction gas components other than Al and oxygen is
15% or less, preferably 10% or less AlTwoOThreeSystem combination
Al layerTwo OThree Equivalent to the characteristics of
Having oxidation resistance, thermal stability, and high hardness.

【0006】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、化学蒸着法お
よび/または物理蒸着法を用いて、Al2 3 を主成分
とするAl2 3 系化合物層を含む硬質被覆層、例えば
TiC層、TiN層、TiCN層、TiO2 層、TiC
O層、TiNO層、およびTiCNO層のうちの1種ま
たは2種以上と、前記Al23 系化合物層とからなる
硬質被覆層を3〜20μmの平均層厚で形成することに
より被覆超硬工具を製造する方法にして、前記硬質被覆
層を構成するAl23 系化合物層の形成を、反応ガス
として、AlCl3 :0.5〜10%、NOx :1〜3
0%、TiCl4 :0.01〜1%、[但し、TiCl
4 に対するAlCl3 の割合:10〜100]、不活性
ガス:残り、からなる組成を有する不活性ガス系反応ガ
スを用いて行うことにより、厚膜化層の層厚均一化およ
び層間密着性の向上をはかり、この結果としてすぐれた
耐チッピング性を示すようになる被覆超硬工具を製造す
る方法に特徴を有するものである。
The present invention has been made on the basis of the above-mentioned research results, wherein Al 2 O 3 is used as a main component on the surface of a superhard substrate by using a chemical vapor deposition method and / or a physical vapor deposition method. Hard coating layers including Al 2 O 3 -based compound layers, such as TiC layers, TiN layers, TiCN layers, TiO 2 layers, TiC
The coated super hard layer is formed by forming one or more of the O layer, the TiNO layer, and the TiCNO layer and the Al 2 O 3 -based compound layer with an average layer thickness of 3 to 20 μm. In a method of manufacturing a tool, the formation of the Al 2 O 3 -based compound layer constituting the hard coating layer is performed by using a reaction gas of AlCl 3 : 0.5 to 10%, NO x : 1 to 3
0%, TiCl 4: 0.01~1% , [ however, TiCl
Ratio of AlCl 3 to 4 : 10 to 100], and an inert gas: a residual gas is used to make the thickened layer uniform in layer thickness and interlayer adhesion by using an inert gas-based reaction gas having a composition of: The invention is characterized by a method for producing a coated carbide tool which is improved and, as a result, exhibits excellent chipping resistance.

【0007】つぎに、この発明の方法において、反応ガ
スの組成を上記の通りに限定した理由を説明する。 (a)AlCl3 その割合が0.5%未満では、Al23 のAl源が不
足してAl23 系化合物層の形成が遅くなり、実用的
でなく、一方その割合が10%を越えるとAl源が供給
過剰となり、Al23 系化合物層の結晶性が低下する
ようになることから、その割合を0.5〜10%、望ま
しくは2〜7%と定めた。
Next, the reason why the composition of the reaction gas is limited as described above in the method of the present invention will be described. (A) If the proportion of AlCl 3 is less than 0.5%, the Al source of Al 2 O 3 is insufficient and the formation of the Al 2 O 3 -based compound layer is slowed down, which is not practical. If the ratio exceeds the limit, the supply of the Al source becomes excessive and the crystallinity of the Al 2 O 3 -based compound layer decreases, so the ratio is set to 0.5 to 10%, preferably 2 to 7%.

【0008】(b)NOx その割合が1%未満では、Al23 のO源に対してA
l源が供給過剰となって結晶性が低下し、一方その割合
が30%を越えると逆にAl源に対して分解Oが過剰に
存在し、上記(b)式の反応に局部的不均一性が生じ、
層厚の均一性が低下するようになることから、その割合
を1〜30%、望ましくは5〜20%と定めた。
[0008] (b) NO x in the ratio is less than 1%, A with respect to O source of Al 2 O 3
When the ratio exceeds 30%, on the other hand, decomposition O is excessively present relative to the Al source, and local heterogeneity occurs in the reaction of the above formula (b). Nature arises,
Since the uniformity of the layer thickness decreases, the ratio is set to 1 to 30%, preferably 5 to 20%.

【0009】(c)TiCl4 その割合が0.01%未満では、上記(a)式の反応が
十分に行われず、Al 23 のO源の供給が不十分とな
って実用的速さでのAl23 系化合物層の形成が行え
ないばかりでなく、その層厚均一性も損なわれるように
なり、一方その割合が1%を越えると反応雰囲気中に多
量のTiが存在するようになり、これが形成層の結晶性
低下の原因となることから、その割合を0.01〜1
%、望ましくは0.1〜0.5%と定めた。
(C) TiClFour If the proportion is less than 0.01%, the reaction of the above formula (a)
Not enough, Al Two OThree Supply of O source is insufficient
Al at a practical speedTwo OThree Formation of system compound layer
As well as its thickness uniformity is impaired
On the other hand, if the ratio exceeds 1%,
Amount of Ti is present and this is the crystallinity of the formation layer.
Since it causes a decrease, the ratio is 0.01 to 1
%, Preferably 0.1 to 0.5%.

【0010】(d)TiCl4 に対するAlCl3 の容
量割合(AlCl3 /TiCl4 ) その割合が10未満では、反応雰囲気中におけるAl源
に対するTi源の割合が多くなりすぎ、これが結晶性低
下の原因となって、Al23 系化合物層に所定の特性
を確保することができず、一方その割合が100を越え
ると、逆に反応雰囲気中のTiの割合が少なくなりすぎ
て、Tiによる反応表面上でのNOx の分解作用が著し
く低下し、Al23 のO源の供給が不足し、層形成速
度が低下することから、その割合を10〜100、望ま
しくは10〜50と定めた。
[0010] capacity ratio of AlCl 3 for the (d) TiCl 4 (AlCl 3 / TiCl 4) in the ratio is less than 10, too many proportions of Ti source to the Al source in the reaction atmosphere, which causes the crystalline deterioration As a result, predetermined characteristics cannot be secured in the Al 2 O 3 -based compound layer. On the other hand, if the ratio exceeds 100, the ratio of Ti in the reaction atmosphere becomes too small, and the reaction by Ti Since the decomposition action of NO x on the surface is significantly reduced, the supply of the O source of Al 2 O 3 is insufficient, and the layer formation rate is reduced, the ratio is set to 10 to 100, preferably 10 to 50. Was.

【0011】なお、その他の製造条件である反応温度お
よび雰囲気圧力は、反応温度:850〜1100℃、望
ましくは900〜1050℃、雰囲気圧力:20〜20
0torr、望ましくは40〜100torrとするの
がよい。これは、反応温度が850℃未満ではAl2
3 系化合物層の結晶性が低下し、一方1100℃を越え
るとAl23 系化合物層が粗粒化し、耐摩耗性が低下
するようになるという理由によるものであり、また雰囲
気圧力が20torr未満では反応が遅くなり、所定の
速さでの層形成が行われず、一方200torrを越え
ると層の表面に凹凸が生じるようになって、層厚不均一
化の原因となるという理由によるものである。また、硬
質被覆層の平均層厚を3〜20μmとしたのは、その層
厚が3μm未満では所望のすぐれた耐摩耗性を確保する
ことができず、一方その層厚が20μmを越えると、切
刃に欠けやチッピングが発生し易くなるという理由によ
るものである。
The reaction temperature and atmospheric pressure, which are other production conditions, are as follows: reaction temperature: 850 to 1100 ° C., preferably 900 to 1050 ° C., and atmospheric pressure: 20 to 20.
0 torr, preferably 40 to 100 torr. This is because at reaction temperatures below 850 ° C., Al 2 O
This is because the crystallinity of the tertiary compound layer is reduced, while if it exceeds 1100 ° C., the Al 2 O 3 -based compound layer becomes coarse and the abrasion resistance is reduced, and the atmospheric pressure is reduced to 20 torr. If it is less than 200, the reaction is slow, and the layer is not formed at a predetermined speed. On the other hand, if it exceeds 200 torr, the surface of the layer becomes uneven, which causes the layer thickness to become non-uniform. is there. Further, the reason why the average layer thickness of the hard coating layer is set to 3 to 20 μm is that if the layer thickness is less than 3 μm, it is not possible to secure desired excellent wear resistance, while if the layer thickness exceeds 20 μm, This is because chipping and chipping are likely to occur in the cutting blade.

【0012】[0012]

【発明の実施の形態】つぎに、この発明の方法を実施例
により具体的に説明する。原料粉末として、平均粒径:
2.8μmを有する中粒WC粉末、同4.9μmの粗粒
WC粉末、同1.5μmの(Ti,W)C(重量比で、
以下同じ、TiC/WC=30/70)粉末、同1.2
μmの(Ti,W)CN(TiC/TiN/WC=24
/20/56)粉末、同1.2μmの(Ta,Nb)C
(TaC/NbC=90/10)粉末、および同1.1
μmのCo粉末を用意し、これら原料粉末を表1に示さ
れる配合組成に配合し、ボールミルで72時間湿式混合
し、乾燥した後、ISO・CNMG120408(超硬
基体A〜D用)および同SEEN42AFTN1(超硬
基体E用)に定める形状の圧粉体にプレス成形し、この
圧粉体を同じく表1に示される条件で真空焼結すること
により超硬基体A〜Eをそれぞれ製造した。さらに、上
記超硬基体Bに対して、100torrのCH4 ガス雰
囲気中、温度:1400℃に1時間保持後、徐冷の浸炭
を施し、処理後、超硬基体表面に付着するカーボンとC
oを酸およびバレル研磨で除去することにより、表面か
ら11μmの位置で最大Co含有量:15.9重量%、
深さ:42μmのCo富化帯域を基体表面部に形成し
た。また、上記超硬基体AおよびDには、焼結したまま
で、表面部に表面から17μmの位置で最大Co含有
量:9.1重量%、深さ:23μmのCo富化帯域が形
成されており、残りの超硬基体CおよびEには、前記C
o富化帯域の形成がなく、全体的に均質な組織をもつも
のであった。なお、表1には、上記超硬基体A〜Eの内
部硬さ(ロックウエル硬さAスケール)をそれぞれ示し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the method of the present invention will be specifically described with reference to embodiments. As raw material powder, average particle size:
Medium WC powder having 2.8 μm, coarse WC powder having 4.9 μm, and (Ti, W) C having 1.5 μm (weight ratio:
Hereinafter the same, TiC / WC = 30/70) powder, same as 1.2
μm (Ti, W) CN (TiC / TiN / WC = 24
/ 20/56) Powder, (Ta, Nb) C of 1.2 μm
(TaC / NbC = 90/10) powder, and 1.1
A Co powder of μm was prepared, and the raw material powders were blended in the composition shown in Table 1, wet-mixed in a ball mill for 72 hours, dried, and then subjected to ISO • CNMG120408 (for carbide substrates A to D) and SEEN42AFTN1. Press-formed into a green compact having a shape defined for (for super-hard substrate E), and the green compact was vacuum-sintered under the conditions shown in Table 1 to produce super-hard substrates A to E, respectively. Further, the cemented carbide substrate B is kept in a 100 Torr CH 4 gas atmosphere at a temperature of 1400 ° C. for 1 hour, and then gradually carburized. After the treatment, carbon and carbon adhering to the cemented carbide substrate surface are treated.
By removing o by acid and barrel polishing, the maximum Co content at a position 11 μm from the surface: 15.9% by weight,
A Co-enriched zone having a depth of 42 μm was formed on the surface of the substrate. Further, in the cemented carbide substrates A and D, a Co-enriched zone having a maximum Co content of 9.1% by weight and a depth of 23 μm was formed at a position of 17 μm from the surface while being sintered. And the remaining cemented carbide substrates C and E have the C
o There was no formation of an enriched zone and the tissue had an overall homogeneous structure. Table 1 shows the internal hardness (Rockwell hardness A scale) of each of the carbide substrates A to E.

【0013】ついで、これらの超硬基体A〜Eの表面
に、ホーニングを施した状態で、通常の化学蒸着装置を
用い、表2(表中のl−TiCNは特開平6−8010
号公報に記載される縦長成長結晶組織をもつものであ
り、また同p−TiCNは通常の粒状結晶組織をもつも
のである)および表3[表中のAl2 3 (a)〜
(l)はAl2 3 系化合物層を示し、Al2
3 (m)はAl2 3 層を示す。以下、表4、5も同
じ]に示される条件にて、表4、5に示される組成およ
び目標層厚(切刃の逃げ面)の硬質被覆層を形成するこ
とにより本発明法1〜14および従来法1〜10をそれ
ぞれ実施し、被覆超硬工具(以下、それぞれの方法に対
応する被覆超硬工具を本発明被覆超硬工具1〜14およ
び従来被覆超硬工具1〜10という)を製造した。この
結果得られた各種の被覆超硬工具の硬質被覆層を構成す
るAl23 系化合物層およびAl2 3 層(表6、7
では、これらを総称してAl2 3 層で示す)につい
て、切刃の逃げ面とすくい面の交わるエッジ部の最大層
厚を測定し、さらに前記エッジ部からそれぞれ1mm内側
の箇所の逃げ面とすくい面における層厚を測定した。こ
の測定結果を表6,7に示した。なお、硬質被覆層を構
成するAl2 3 系化合物層およびAl23 層以外の
その他の層の層厚には、いずれも局部的バラツキがほと
んどなく、目標層厚とほぼ同じ値を示すものであった。
Next, with the surfaces of these superhard substrates A to E being honed, a conventional chemical vapor deposition apparatus was used to obtain Table 2 (1-TiCN in the table corresponds to JP-A-6-8010).
And p-TiCN has a normal granular crystal structure described in Japanese Unexamined Patent Application Publication No. H10-260, and Table 3 [Al 2 O 3 (a) to
(L) shows an Al 2 O 3 -based compound layer, and Al 2 O 3
3 (m) indicates an Al 2 O 3 layer. Hereinafter, the same applies to Tables 4 and 5], by forming a hard coating layer having the composition and the target layer thickness (the flank of the cutting edge) shown in Tables 4 and 5 under the conditions shown in Tables 4 and 5. And the conventional methods 1 to 10 are respectively carried out, and coated carbide tools (hereinafter, coated carbide tools corresponding to the respective methods are referred to as coated carbide tools 1 to 14 of the present invention and conventional coated carbide tools 1 to 10). Manufactured. The Al 2 O 3 -based compound layer and the Al 2 O 3 layer constituting the hard coating layers of the various coated carbide tools obtained as a result (Tables 6 and 7)
In the following, these are collectively referred to as an Al 2 O 3 layer), and the maximum layer thickness at the edge where the flank of the cutting edge and the rake face intersect is measured. And the layer thickness at the rake face were measured. The measurement results are shown in Tables 6 and 7. The layer thicknesses of the Al 2 O 3 -based compound layer and the other layers other than the Al 2 O 3 layer constituting the hard coating layer have almost no local variation and show almost the same value as the target layer thickness. Was something.

【0014】さらに、いずれも耐チッピング性を評価す
る目的で、上記本発明被覆超硬工具1〜6および従来被
覆超硬工具1、2については、 被削材:軟鋼の角材、 切削速度:220m/min.、 切込み:1.5mm、 送り:0.18mm/rev.、 切削時間:20分、 の条件で軟鋼の断続切削試験を行い、切刃の逃げ面摩耗
幅を測定した。
Further, in order to evaluate chipping resistance, the coated carbide tools 1 to 6 of the present invention and the conventionally coated carbide tools 1 and 2 were prepared as follows: work material: square bar of mild steel; cutting speed: 220 m / Min. Infeed: 1.5 mm Feed: 0.18 mm / rev. An intermittent cutting test of mild steel was performed under the following conditions: cutting time: 20 minutes, and the flank wear width of the cutting edge was measured.

【0015】また上記本発明被覆超硬工具7、8および
従来被覆超硬工具3、4については、 被削材:JIS・FCD450の角材、 切削速度:150m/min.、 切込み:2mm.、 送り:0.3mm/rev.、 切削時間:15分、 の条件でダクタイル鋳鉄の乾式断続切削試験を行い、同
じく切刃の逃げ面摩耗幅を測定した。
The coated carbide tools 7 and 8 of the present invention and the conventional coated carbide tools 3 and 4 are as follows: work material: square material of JIS FCD450, cutting speed: 150 m / min. , Depth of cut: 2 mm. Feed: 0.3 mm / rev. , Cutting time: 15 minutes, a dry intermittent cutting test of ductile cast iron was performed, and the flank wear width of the cutting edge was also measured.

【0016】また、同じく本発明被覆超硬工具9、10
および従来被覆超硬工具5、6については、 被削材:JIS・SNCM439の角材、 切削速度:150m/min.、 切込み:2mm.、 送り:0.3mm/rev.、 切削時間:15分、 の条件で合金鋼の乾式断続切削試験を行い、切刃の逃げ
面摩耗幅を測定した。
Further, the same applies to the coated carbide tools 9, 10 of the present invention.
And the conventional coated carbide tools 5 and 6, the work material: a square material of JIS SNCM439, the cutting speed: 150 m / min. , Depth of cut: 2 mm. Feed: 0.3 mm / rev. The cutting time: 15 minutes, a dry intermittent cutting test of the alloy steel was performed under the following conditions, and the flank wear width of the cutting edge was measured.

【0017】同じく本発明被覆超硬工具11、12およ
び従来被覆超硬工具7、8については、 被削材:JIS・S45Cの角材、 切削速度:150m/min.、 切込み:2mm.、 送り:0.3mm/rev.、 切削時間:15分、 の条件で炭素鋼の乾式断続切削試験を行い、切刃の逃げ
面摩耗幅を測定した。
Similarly, for the coated carbide tools 11 and 12 of the present invention and the conventional coated carbide tools 7 and 8, a work material: a square bar of JIS S45C, a cutting speed: 150 m / min. , Depth of cut: 2 mm. Feed: 0.3 mm / rev. Under the conditions of cutting time: 15 minutes, a dry intermittent cutting test of carbon steel was performed, and the flank wear width of the cutting edge was measured.

【0018】さらに同じく本発明被覆超硬工具13、1
4および従来被覆超硬工具9、10については、 被削材:幅100mm×長さ500mmの寸法をもった
軟鋼の角材、 使用条件:直径125mmのカッターに単刃取り付け、 回転数:600r.p.m.、 切削速度:280m/min.、 切込み:2mm.、 送り:0.24mm/刃、 切削時間:7パス(1パスの切削時間:3.6分)、 の条件で軟鋼の乾式フライス切削(断続切削)試験を行
い、切刃の逃げ面摩耗幅を測定した。これらの測定結果
を表6、7に示した。
Further, the coated carbide tools 13, 1 of the present invention
4 and the conventional coated carbide tools 9 and 10 were: Work material: square bar of mild steel having a width of 100 mm x length of 500 mm. Usage conditions: A single blade was attached to a cutter having a diameter of 125 mm. p. m. Cutting speed: 280 m / min. , Depth of cut: 2 mm. , Feed: 0.24mm / tooth, Cutting time: 7 passes (cutting time of 1 pass: 3.6 minutes), Dry milling (intermittent cutting) test of mild steel is performed, and flank wear width of cutting edge Was measured. Tables 6 and 7 show the results of these measurements.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【表6】 [Table 6]

【0025】[0025]

【表7】 [Table 7]

【0026】[0026]

【発明の効果】表6,7に示される結果から、いずれも
硬質被覆層を構成するAl2 3 層系化合物層の形成に
不活性ガス系反応ガスを用いる本発明法1〜14で製造
された本発明被覆超硬工具1〜14は、いずれもこれを
構成する硬質被覆層のうちのAl23 系化合物層の層
厚に、これを厚膜化しても局部的バラツキがきわめて少
なく、切刃の逃げ面、すくい面、および逃げ面とすくい
面の交わるエッジ部の相互間の層厚が均一化しているの
に対して、Al2 3 層の形成に水素系反応ガスを用い
る従来法1〜10で製造された従来被覆超硬工具1〜1
0においては、逃げ面、すくい面、およびエッジ部にお
ける層厚の相互間のバラツキが著しく、この結果として
本発明被覆超硬工具1〜14は、鋼および鋳鉄の断続切
削で、前記Al23 系化合物層がすぐれた層間密着性
を有することと相まって、従来被覆超硬工具1〜10に
比してすぐれた耐チッピング性を示すようになることが
明らかである。上述のように、この発明の方法によれ
ば、硬質被覆層を構成するAl2 3 系化合物層の層厚
を厚膜化しても、その層厚に局部的バラツキがきわめて
少なく、かつ層間密着性の良好な被覆超硬工具を製造す
ることができ、したがって、この結果得られた被覆超硬
工具は、前記Al2 3 系化合物層がAl2 3 と同等
の特性を具備することと相まって、例えば鋼や鋳鉄など
の連続切削は勿論のこと、断続切削においてもすぐれた
耐チッピング性を示し、長期に亘ってすぐれた切削性能
を示すので、切削加工のFA化および省力化に寄与する
など工業上有用な効果をもたらすものである。
According to the results shown in Tables 6 and 7, all of them are manufactured by the methods 1 to 14 of the present invention in which an inert gas type reaction gas is used for forming the Al 2 O 3 layer type compound layer constituting the hard coating layer. Each of the coated carbide tools 1 to 14 of the present invention has a very small local variation even when the thickness of the Al 2 O 3 -based compound layer among the hard coating layers constituting the same is increased. The hydrogen-based reaction gas is used to form the Al 2 O 3 layer, while the flank of the cutting edge, the rake face, and the layer thickness between the edges where the flank and the rake face intersect are made uniform. Conventional coated carbide tools 1 to 1 manufactured by conventional methods 1 to 10
0, the thickness of the flank, rake face, and layer thickness at the edge portion was significantly different from each other. As a result, the coated carbide tools 1 to 14 of the present invention were able to perform the above-mentioned Al 2 O combined with the 3 compound layer has excellent interlayer adhesion, it is apparent that exhibits a superior chipping resistance as compared with the conventional coated cemented carbide tools 1 to 10. As described above, according to the method of the present invention, even if the thickness of the Al 2 O 3 -based compound layer constituting the hard coating layer is increased, local variation in the layer thickness is extremely small, and the interlayer adhesion is small. A coated cemented carbide tool having good properties can be manufactured. Therefore, the coated cemented carbide tool obtained as a result has that the Al 2 O 3 -based compound layer has the same properties as Al 2 O 3. Together, for example, it shows excellent chipping resistance even in intermittent cutting as well as continuous cutting of steel and cast iron, etc., and shows excellent cutting performance over a long period, contributing to FA and labor saving in cutting. Such effects bring industrially useful effects.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大鹿 高歳 埼玉県大宮市北袋町1−297 三菱マテ リアル株式会社 総合研究所内 (56)参考文献 特開 昭54−10314(JP,A) 特開 昭59−162270(JP,A) 特公 平6−99197(JP,B2) 特公 平4−68388(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 16/56 B23B 27/14 B23P 15/28 C04B 41/89 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Takashi Oshika 1-297 Kitabukuro-cho, Omiya-shi, Saitama Mitsubishi Materials Corporation General Research Laboratory (56) References JP-A-54-10314 (JP, A) 1984-162270 (JP, A) JP 6-99197 (JP, B2) JP 4-68388 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 14 / 00-16/56 B23B 27/14 B23P 15/28 C04B 41/89

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭化タングステン基超硬合金基体の表面
に、化学蒸着法および/または物理蒸着法を用いて、酸
化アルミニウムを主成分とする酸化アルミニウム系化合
物層を含む硬質被覆層を3〜20μmの平均層厚で形成
することにより表面被覆超硬合金製切削工具を製造する
方法にして、前記酸化アルミニウム系化合物層の形成
に、反応ガスとして、容量%で、 三塩化アルミニウム:0.5〜10%、 窒素酸化物:1〜30%、 四塩化チタン:0.01〜1%、 (但し、四塩化チタンに対する三塩化アルミニウムの割
合:10〜100)、 不活性ガス:残り、からなる組成を有する不活性ガス系
反応ガスを用いることを特徴とする耐チッピング性のす
ぐれた表面被覆超硬合金製切削工具の製造法。
1. A hard coating layer containing an aluminum oxide-based compound layer containing aluminum oxide as a main component is formed on a surface of a tungsten carbide-based cemented carbide substrate by a chemical vapor deposition method and / or a physical vapor deposition method in a thickness of 3 to 20 μm. A method of manufacturing a surface-coated cemented carbide cutting tool by forming an average layer thickness of: aluminum trichloride: 0.5 to 50% by volume as a reaction gas for forming the aluminum oxide-based compound layer. 10%, Nitrogen oxide: 1 to 30%, Titanium tetrachloride: 0.01 to 1%, (however, ratio of aluminum trichloride to titanium tetrachloride: 10 to 100), Inert gas: Remaining composition A method for producing a surface-coated cemented carbide cutting tool having excellent chipping resistance, characterized by using an inert gas-based reaction gas having the following characteristics.
【請求項2】 炭化タングステン基超硬合金基体の表面
に、化学蒸着法および/または物理蒸着法を用いて、T
iの炭化物層、窒化物層、炭窒化物層、酸化物層、炭酸
化物層、窒酸化物層、および炭窒酸化物層のうちの1種
または2種以上と、酸化アルミニウムを主成分とする酸
化アルミニウム系化合物層とからなる硬質被覆層を3〜
20μmの平均層厚で形成することにより表面被覆超硬
合金製切削工具を製造する方法にして、前記酸化アルミ
ニウム系化合物層の形成に、反応ガスとして、容量%
で、 三塩化アルミニウム:0.5〜10%、 窒素酸化物:1〜30%、 四塩化チタン:0.01〜1%、 (但し、四塩化チタンに対する三塩化アルミニウムの割
合:10〜100)、 不活性ガス:残り、からなる組成を有する不活性ガス系
反応ガスを用いることを特徴とする耐チッピング性のす
ぐれた表面被覆超硬合金製切削工具の製造法。
2. The surface of a tungsten carbide-based cemented carbide substrate is subjected to chemical vapor deposition and / or physical vapor deposition to form a T
one or more of a carbide layer, a nitride layer, a carbonitride layer, an oxide layer, a carbonate layer, a nitrogen oxide layer, and a carbonitride layer of i, and aluminum oxide as a main component. Hard coating layer comprising an aluminum oxide-based compound layer
A method of manufacturing a surface-coated cemented carbide cutting tool by forming an average layer thickness of 20 μm.
Aluminum trichloride: 0.5 to 10%, nitrogen oxides: 1 to 30%, titanium tetrachloride: 0.01 to 1%, (however, the ratio of aluminum trichloride to titanium tetrachloride: 10 to 100) Inert gas: A method for producing a surface-coated cemented carbide cutting tool having excellent chipping resistance, characterized by using an inert gas-based reaction gas having a composition consisting of the remaining gas.
JP06811496A 1996-01-10 1996-03-25 Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance Expired - Fee Related JP3265974B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP06811496A JP3265974B2 (en) 1996-01-10 1996-03-25 Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance
EP97100089A EP0784103B1 (en) 1996-01-10 1997-01-04 Method of manufacturing coated cutting tools
DE69720561T DE69720561T2 (en) 1996-01-10 1997-01-04 Process for the production of coated cutting inserts
US08/781,236 US5770261A (en) 1996-01-10 1997-01-10 Method of manufacturing coated cutting tool and coated cutting tool made from

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP229296 1996-01-10
JP8-2292 1996-01-10
JP06811496A JP3265974B2 (en) 1996-01-10 1996-03-25 Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance

Publications (2)

Publication Number Publication Date
JPH09249974A JPH09249974A (en) 1997-09-22
JP3265974B2 true JP3265974B2 (en) 2002-03-18

Family

ID=26335643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06811496A Expired - Fee Related JP3265974B2 (en) 1996-01-10 1996-03-25 Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance

Country Status (1)

Country Link
JP (1) JP3265974B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6622292B2 (en) 2000-09-14 2003-09-16 Hitachi, Ltd. Design method for logic circuit, design support system for logic circuit and readable media
US9158653B2 (en) 2010-03-21 2015-10-13 Hewlett-Packard Development Company, L.P. Determining impact of virtual storage backup jobs

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143361A (en) * 1998-10-19 2000-11-07 Howmet Research Corporation Method of reacting excess CVD gas reactant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6622292B2 (en) 2000-09-14 2003-09-16 Hitachi, Ltd. Design method for logic circuit, design support system for logic circuit and readable media
US9158653B2 (en) 2010-03-21 2015-10-13 Hewlett-Packard Development Company, L.P. Determining impact of virtual storage backup jobs

Also Published As

Publication number Publication date
JPH09249974A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
EP0786536B1 (en) Coated cutting tool
JP2867803B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP2001009604A (en) Cutting tool made of surface coated tungsten carbide base cemented carbide in which hard coated layer has excellent abrasive resistance in high speed cutting
JP3236899B2 (en) Manufacturing method of surface coated tungsten carbide based cemented carbide cutting tool with excellent wear and fracture resistance
JP3265974B2 (en) Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance
JP3353597B2 (en) Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance
JP3240918B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP2927181B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPH1076406A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JP3304780B2 (en) Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance
JPH1068076A (en) Production of cutting tool made of surface-coated cemented carbide excellent in chipping resistance
JP3240914B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP3240915B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP3240916B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JPH1068077A (en) Production of cutting tool made of surface-coated cemented carbide excellent in chipping resistance
JP3304767B2 (en) Manufacturing method of surface coated cemented carbide cutting tool with excellent chipping resistance
JPH09302472A (en) Manufacture of cutting tool made of surface coated cemented carbide, excellent in chipping resistance
JPH1076405A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JP3240919B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP3119414B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPH09302473A (en) Manufacture of cutting tool made of surface coated cemented carbide, excellent in chipping resistance
JPH09279344A (en) Production of cutting tool made of surface coated cemented carbide, excellent in chipping resistance
JPH09279345A (en) Production of cutting tool made of surface coated cemented carbide, excellent in chipping resistance
JPH1096080A (en) Production of cutting tool made of surface-coated cemented carbide excellent in chipping resistance
JPH10147869A (en) Production of cutting tool made of surface-coated cemented carbide excellent in chipping resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees