JP3263027B2 - Equipment for processing low-temperature substances - Google Patents

Equipment for processing low-temperature substances

Info

Publication number
JP3263027B2
JP3263027B2 JP09587598A JP9587598A JP3263027B2 JP 3263027 B2 JP3263027 B2 JP 3263027B2 JP 09587598 A JP09587598 A JP 09587598A JP 9587598 A JP9587598 A JP 9587598A JP 3263027 B2 JP3263027 B2 JP 3263027B2
Authority
JP
Japan
Prior art keywords
pipe
stainless steel
equipment
thermal expansion
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09587598A
Other languages
Japanese (ja)
Other versions
JPH11294649A (en
Inventor
尚重 久保
拓 岩橋
修二 山本
寛治 小森
節二 岸本
宣孔 竹内
正純 鷹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Osaka Gas Co Ltd
Kawasaki Motors Ltd
Original Assignee
Osaka Gas Co Ltd
Sumitomo Metal Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Sumitomo Metal Industries Ltd, Kawasaki Jukogyo KK filed Critical Osaka Gas Co Ltd
Priority to JP09587598A priority Critical patent/JP3263027B2/en
Publication of JPH11294649A publication Critical patent/JPH11294649A/en
Application granted granted Critical
Publication of JP3263027B2 publication Critical patent/JP3263027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Fe−Ni系低熱膨張
率合金製の配管と、ステンレス鋼製の機器とを組み合わ
せて構成される、低温物質、例えば液化天然ガス(LNG)
の輸送用、貯蔵用等の設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature substance, for example, liquefied natural gas (LNG), which is constituted by combining a pipe made of an Fe--Ni-based low thermal expansion alloy with equipment made of stainless steel.
The present invention relates to facilities for transportation, storage, and the like.

【0002】[0002]

【従来の技術】30〜45重量%のNiを含むFe−Ni系の合金
は、熱膨張率が著しく小さい。特に、36%Ni−Fe合金お
よび42%Ni−Fe合金は、インバー合金と呼ばれて温度変
化による熱膨張を嫌う種々の部品材料として実用に供さ
れている。しかし、インバー合金の従来の用途は、バイ
メタルやブラウン管のシャドウマスクというような比較
的小型の精密機器の部品が多い。
2. Description of the Related Art A Fe-Ni alloy containing 30 to 45% by weight of Ni has a remarkably low coefficient of thermal expansion. In particular, 36% Ni-Fe alloys and 42% Ni-Fe alloys have been put to practical use as various component materials which are called invar alloys and which do not like thermal expansion due to temperature change. However, conventional applications of Invar alloys are often used for parts of relatively small precision equipment such as bimetals and CRT shadow masks.

【0003】上記の低熱膨張率合金をLNGのような低温
物質の輸送用配管(低温配管)に応用すれば、きわめて
大きな実益が得られる。低温配管は、通常、SUS 304の
ようなオーステナイト系のステンレス鋼で作られている
が、この材料は、熱膨張率が大きいので、配管の温度変
化に起因する膨張・収縮量が大きい。従って、配管の所
々にはこの膨張・収縮を吸収するためのループ管を挟む
必要がある。
[0003] If the above-mentioned low thermal expansion alloy is applied to a pipe for transporting a low-temperature substance such as LNG (low-temperature pipe), extremely great benefits can be obtained. The low-temperature pipe is usually made of austenitic stainless steel such as SUS 304, but since this material has a large coefficient of thermal expansion, the amount of expansion and contraction caused by a change in the temperature of the pipe is large. Therefore, it is necessary to interpose a loop pipe for absorbing the expansion and contraction in some parts of the pipe.

【0004】図2(a)は、LNG処理設備の輸送ラインの模
式的概略図であり、配管にステンレス鋼製の管を使用し
た従来の例である。(b)は配管にFe−Ni系低熱膨張率合
金製の管を使用した輸送ラインを含む本発明の設備の模
式的概略図である。
FIG. 2A is a schematic diagram of a transport line of an LNG processing facility, and is a conventional example using a stainless steel pipe as a pipe. (b) is a schematic diagram of the equipment of the present invention including a transport line using a pipe made of an Fe—Ni-based low coefficient of thermal expansion alloy for the pipe.

【0005】図2(a)に示すように、従来のステンレス
鋼配管を用いる輸送ラインには、数十m間隔ごとにルー
プ管4が設置されているが、それに伴い、下記のような
数々の問題が生じる。
[0005] As shown in Fig. 2 (a), in a conventional transport line using stainless steel pipes, loop pipes 4 are installed at intervals of several tens of meters. Problems arise.

【0006】溶接継手の数が増える。また、ループ管
の保冷作業にも手間がかかる。
[0006] The number of welded joints increases. In addition, it takes time to cool the loop tube.

【0007】ループ管のための材料、特に高価なエル
ボ管が必要になる。
[0007] Materials for the loop tube, especially expensive elbow tubes, are required.

【0008】ループ管の張り出しの分だけ大きな敷設
スペースを必要とする。トンネル内配管の場合にはトン
ネルの径を大きくしなければならない。
A large installation space is required for the overhang of the loop pipe. In the case of piping in a tunnel, the diameter of the tunnel must be increased.

【0009】ループ管により流体の流れ方向が変化
し、これに伴い圧力損失が増大する。
The flow direction of the fluid is changed by the loop tube, and the pressure loss increases accordingly.

【0010】前記の低熱膨張率合金の熱膨張率は、オー
ステナイト系ステンレス鋼の約1/10である。このような
合金を低温配管用の材料とすれば、図2の(b)に示すよ
うに配管の途中にループ管を設ける必要がなくなり、前
記の問題は一挙に解決できる。
The coefficient of thermal expansion of the low thermal expansion alloy is about 1/10 that of austenitic stainless steel. If such an alloy is used as a material for low-temperature piping, there is no need to provide a loop pipe in the middle of the piping as shown in FIG. 2B, and the above problem can be solved at once.

【0011】低温物質を取り扱う設備(輸送、貯蔵等の
設備。ここでは、低温物質処理設備と総称する)は、配
管1の途中に弁2、曲管(エルボ)6、分岐管7を有す
るだけでなく、貯槽(タンク)5や図示しない気化器、
ポンプ等様々な機器から構成されている。
Equipment for handling low-temperature substances (equipment for transportation, storage, etc .; here, collectively referred to as low-temperature substance processing equipment) has only a valve 2, a curved pipe (elbow) 6, and a branch pipe 7 in the middle of a pipe 1. Instead of a storage tank (tank) 5 or a vaporizer not shown,
It is composed of various devices such as a pump.

【0012】上記の曲管や分岐管(以下、これらを管継
手と記す)、ならびに弁、ポンプ、タンクおよび気化器
等(以下、これらを機器と記し、上記の管継手とこの機
器とを合わせて「管継手・機器」と総称する)が配管と
同じくNi−Fe系低熱膨張率合金で製造されていれば、相
互の接続を溶接で行っても、大きな問題は生じない。し
かしながら、上記の管継手・機器のすべてをNi−Fe系低
熱膨張率合金製とするのは困難であるから、これらの管
継手・機器としては、一般的なステンレス鋼製の物を使
用するのが現実的である。
The above-mentioned bent pipes and branch pipes (hereinafter, these are referred to as pipe joints), valves, pumps, tanks, vaporizers, etc. (hereinafter, these are referred to as apparatuses, and the above-described pipe joints and this apparatus are combined. If the pipe joints and devices are collectively made of a Ni-Fe-based low coefficient of thermal expansion alloy, as in the case of the piping, even if the interconnections are made by welding, no major problems occur. However, since it is difficult to make all of the above-mentioned pipe joints / equipment from a Ni-Fe-based low coefficient of thermal expansion alloy, a general stainless steel thing is used as these pipe joints / equipment. Is realistic.

【0013】管継手・機器と配管とは、フランジ構造で
も接合することはできるが、液密性を確保するためには
溶接によって接合するのが望ましい。従って、配管材料
に低熱膨張率合金を使用するためには、ステンレス鋼製
の管継手・機器と低熱膨張率合金製の管との溶接、即
ち、異材溶接の問題を解決しなければならない。
The pipe joints / equipment and the pipe can be joined by a flange structure, but are preferably joined by welding in order to ensure liquid tightness. Therefore, in order to use a low-thermal-expansion alloy as a pipe material, it is necessary to solve the problem of welding stainless steel pipe fittings / equipment to a low-thermal-expansion-alloy pipe, that is, welding of dissimilar materials.

【0014】一般に、異なる材質の金属材料を溶接す
る、いわゆる異材溶接は困難なことが多い。特に前記の
ように熱膨張率に大きな相違がある材料では、溶接がで
きても使用中の温度変化によって溶接継手部に大きな熱
応力が発生する。
Generally, it is often difficult to weld different metallic materials, that is, so-called different material welding. In particular, as described above, in a material having a large difference in the coefficient of thermal expansion, even if welding can be performed, a large thermal stress is generated in the welded joint due to a temperature change during use.

【0015】この問題を解決するために、本出願人らの
一人は「Fe−Ni系低熱膨張率合金管とステンレス鋼管と
の間に、両材料の中間の熱膨張率を有する材料製の管を
介在させて溶接接合する構造」を提案した(特開平8-21
5879号公報、参照)。
In order to solve this problem, one of the present applicants has stated that “a pipe made of a material having a thermal expansion coefficient intermediate between the two materials, between an Fe—Ni-based low thermal expansion alloy pipe and a stainless steel pipe. Welding joints with intervening parts "(Japanese Patent Laid-Open No. 8-21
No. 5879).

【0016】同径かつ同肉厚の管同士の接合であって
も、熱膨張率の異なる管が直接溶接された構造では、そ
れに低温流体を通したとき、熱膨張率の大きな管が収縮
するので、低熱膨張率合金には引張り応力が働くことに
なる。この引張り応力を緩和するため、上記提案の構造
では両材料の中間の熱膨張率を有する管を介在させるの
である。しかし、この構造には中間熱膨張率の管(たと
えば、9%Ni鋼製の管)を別途準備する必要がある。ま
た、主配管を構成する直管同士の接合であれば、上記の
効果が期待できるが、直管と複雑な形状を持つ管継手・
機器との接合の場合には、特に後者に発生する応力の解
析が難しく、仮に中間熱膨張率の管を介在させても設
計、施工の基準を定めるのが困難である。
[0016] Even in the case where pipes having the same diameter and the same thickness are joined to each other, in a structure in which pipes having different thermal expansion coefficients are directly welded, when a low-temperature fluid is passed through the pipe, the pipe having a large thermal expansion coefficient contracts. Therefore, a tensile stress acts on the low thermal expansion alloy. In order to alleviate this tensile stress, the proposed structure involves the interposition of a tube having a coefficient of thermal expansion intermediate between the two materials. However, this structure requires that a tube having an intermediate coefficient of thermal expansion (for example, a tube made of 9% Ni steel) be separately prepared. In addition, if the straight pipes constituting the main pipe are joined to each other, the above-mentioned effects can be expected.
In the case of joining with equipment, it is particularly difficult to analyze the stress generated in the latter, and even if a pipe having an intermediate coefficient of thermal expansion is interposed, it is difficult to determine the design and construction standards.

【0017】本発明者らは、さらに研究を進めて、主配
管、即ち、同じサイズの直管同士の溶接であれば、管の
材質がステンレス鋼とFe−Ni系低熱膨張率合金であって
も、直接溶接して支障のない技術を開発した。しかしな
がら、管と前述の様々な機器との接合では、機器の形状
が単純ではないために、異材溶接には依然として問題が
ある。
The present inventors have further studied and found that if the main pipe, that is, straight pipes of the same size were to be welded, the pipe material would be stainless steel and an Fe-Ni-based low thermal expansion alloy. Has also developed a technology that does not hinder direct welding. However, there is still a problem in welding dissimilar materials in joining a pipe to the various devices described above because the shape of the device is not simple.

【0018】[0018]

【発明が解決しようとする課題】本発明の目的は、配管
にFe−Ni系低熱膨張率合金製の管を用いる低温物質輸送
用設備において、ステンレス鋼製の管継手・機器と配管
との接合を合理的に行って、設備の設計を容易にし、そ
の製作のコストを下げることを課題としてなされたもの
である。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a joint between a stainless steel pipe joint / equipment and a pipe in a facility for transporting low-temperature substances using a pipe made of an Fe-Ni-based low thermal expansion alloy for the pipe. The purpose of the present invention is to make the design of equipment easier and to reduce the cost of its production.

【0019】[0019]

【課題を解決するための手段】本発明の要旨は「Fe−Ni
系低熱膨張率合金製の管と、ステンレス鋼製の管ならび
に同じくステンレス鋼製の管継手および機器(管継手・
機器)とで構成される設備であって、上記Fe−Ni系低熱
膨張率合金製の管に溶接されるものがステンレス鋼製の
直管であり、その長さLが、下記の式を満たすことを
特徴とする低温物質処理設備」にある。なお、上記のス
テンレス鋼製の直管は、機器の配管との接続部に延長直
管部として設けるのが望ましい。
The gist of the present invention is that "Fe-Ni
Series low thermal expansion alloy pipes, stainless steel pipes and stainless steel pipe fittings and equipment (pipe fittings,
Equipment), which is welded to the above-mentioned Fe-Ni-based low thermal expansion alloy pipe is a stainless steel straight pipe, and its length L satisfies the following equation. Low-temperature substance processing equipment ". It is desirable that the stainless steel straight pipe be provided as an extended straight pipe at a connection with the piping of the device.

【0020】 L(mm)≧ 0.6(R×t)1/2・・・・・・ ここで、Rはステンレス鋼製の直管の外半径(mm)、t
は同じく肉厚(mm)である。
L (mm) ≧ 0.6 (R × t) 1/2 where R is an outer radius (mm) of a stainless steel straight pipe, t
Is also the wall thickness (mm).

【0021】上記の「ステンレス鋼製の管継手・機器」
とは、前述の曲管(エルボ)、分岐管、弁、気化器、貯
蔵槽(タンク)等を意味する。低温物質を取り扱う設備
用のこれらの機器は、一般にオーステナイト系のステン
レス鋼で作製されているが、フェライト系や二相系のス
テンレス鋼製であってもよい。ただし、直管部3の材質
は機器の材質と同じであることが望ましい。
The above "stainless steel pipe fittings / equipment"
Means the aforementioned bent pipe (elbow), branch pipe, valve, vaporizer, storage tank (tank) and the like. These devices for equipment handling low-temperature substances are generally made of austenitic stainless steel, but may be made of ferritic or duplex stainless steel. However, it is desirable that the material of the straight pipe portion 3 is the same as the material of the device.

【0022】図1は、図2(b)のA、BおよびC部の拡
大図で、本発明設備の機器と配管の接続部の態様を示す
図である。ステンレス鋼製の管継手・機器として、図1
の(a)では弁2、同(b)では曲管6、(c)では分岐管7を
それぞれ例示している。図示のように、弁2、曲管6ま
たは分岐管7には上記式を満たす長さLのステンレス
鋼製の延長直管部3を設け、その直管部とFe−Ni系低熱
膨張率合金製の管1とを溶接して、低温物質処理設備を
構成する。
FIG. 1 is an enlarged view of a portion A, B and C in FIG. 2 (b), and is a diagram showing an aspect of a connection portion between equipment and piping of the equipment of the present invention. Fig. 1
(A) illustrates the valve 2, FIG. (B) illustrates the curved pipe 6, and (c) illustrates the branch pipe 7, respectively. As shown in the drawing, the valve 2, the bent pipe 6 or the branch pipe 7 is provided with an extended straight pipe portion 3 made of stainless steel having a length L satisfying the above equation, and the straight pipe portion and an Fe-Ni-based low thermal expansion alloy The low temperature substance processing equipment is constituted by welding the pipe 1 made of steel.

【0023】[0023]

【発明の実施の形態】図1(a)は、本発明設備の一部を
なす配管1と機器(この例では弁)2との接合状態を示す
図である。配管1はFe−Ni系低熱膨張率合金(いわゆる
インバー合金)製であり、弁2は通常のステンレス鋼(S
US304)製のものである。弁2には同材質の延長直管部
3が設けられており、この直管部3がFe−Ni系低熱膨張
率合金製の配管1に溶接される。即ち、配管1は、標準
的な形状の通常の弁に直接溶接されるのではなく、弁2
と同材質、即ち、ステンレス鋼製の直管部3を介して弁
2に接続される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 (a) is a view showing a joined state of a pipe 1 and a device (in this example, a valve) 2 which constitute a part of the facility of the present invention. The pipe 1 is made of a Fe—Ni-based low thermal expansion alloy (so-called invar alloy), and the valve 2 is made of ordinary stainless steel (S
US304). The valve 2 is provided with an extended straight pipe portion 3 of the same material, and the straight pipe portion 3 is welded to the pipe 1 made of an Fe—Ni-based low thermal expansion alloy. That is, the pipe 1 is not directly welded to a normal valve of standard shape,
Is connected to the valve 2 through a straight pipe section 3 made of the same material as that of stainless steel.

【0024】弁2に直管部3を設ける方法には、特に制
約はない。例えば、弁の製造の際に、直管部3を一体的
に製造しておいてもよい。要するに、主配管に接続する
部分に、前記の所定長さ以上の直管部が存在すればよい
のである。しかしながら、直管部3は、汎用の標準的な
弁に所定長さの短管を溶接して構成するのが実際的であ
る。この場合の溶接は、通常のステンレス鋼部材同士の
溶接法、例えばティグ溶接などで行えばよい。短管を予
め機器に溶接しておけば、図1のS1の溶接を作業環境の
良い場所で十分な管理の下に行うことができるだけでな
く、設備の現地組立の作業が楽になる。
The method of providing the straight pipe portion 3 in the valve 2 is not particularly limited. For example, when manufacturing the valve, the straight pipe portion 3 may be manufactured integrally. In short, it suffices that a straight pipe portion having a length equal to or more than the predetermined length exists in a portion connected to the main pipe. However, it is practical that the straight pipe section 3 is formed by welding a short pipe of a predetermined length to a general-purpose standard valve. The welding in this case may be performed by a usual welding method between stainless steel members, for example, TIG welding or the like. If the short pipe is welded to the device in advance, the welding of S1 in FIG. 1 can be performed in a place with a good working environment under sufficient control, and the work of assembling the equipment on site becomes easy.

【0025】図1に示す構造では、異材溶接はS2の部分
だけである。そして、この部分は、ほぼ同じ外径と肉厚
の管同士の溶接であるから、内部を流れるLNGのような
極低温の液体で冷却されても、両方の管に生じる熱応力
は、後述する図3に示すように応力の向きは異なるもの
の大きさはほぼ同等であり、どちらかの管に極端に負担
が生じることはない。さらに、接合部の形状が単純であ
ることから特定の部分に大きな応力集中が生じるような
ことはなく、かつ発生応力の分布を解析により正確に把
握することができる。
In the structure shown in FIG. 1, dissimilar material welding is performed only at the portion S2. And since this part is welding of pipes of almost the same outer diameter and thickness, even if it is cooled by a cryogenic liquid such as LNG flowing inside, the thermal stress generated in both pipes will be described later. As shown in FIG. 3, the directions of the stresses are different but the magnitudes are almost the same, and no extreme load is applied to either tube. Further, since the shape of the joint is simple, a large stress concentration does not occur at a specific portion, and the distribution of the generated stress can be accurately grasped by analysis.

【0026】前記のように、直管部3と機器(弁)2と
の接合部S1は、溶接でもよい。この場合、同じ材質のス
テンレス鋼同士の溶接であるから、従来の差込式継手の
溶接でもまったく問題はない。仮に、弁2に配管1を直接
溶接すれば、通常、弁2の剛性は配管1の剛性よりも遙か
に大きいことから、低温物質によって冷却された場合、
配管1側は弁2の冷却による変形に追随せざるを得ないこ
とになり、配管1側に偏って大きな熱応力が生じる。弁
と配管の溶接接合部には差込み式継ぎ手が多用される
が、突き合わせ継ぎ手に比べて形状が複雑であり、この
部分が異材継ぎ手になると、熱応力の集中が生じ、配管
使用中の破損の原因となるおそれがある。また、解析に
より応力分布を正確に求めることも困難である。
As described above, the joint S1 between the straight pipe section 3 and the device (valve) 2 may be welded. In this case, since stainless steel of the same material is welded to each other, there is no problem in welding a conventional plug-in joint. If the pipe 1 is directly welded to the valve 2, the rigidity of the valve 2 is usually much larger than the rigidity of the pipe 1.
The pipe 1 side must follow the deformation due to the cooling of the valve 2, and a large thermal stress is generated in the pipe 1 side. Plug-in joints are often used for welded joints between valves and pipes, but the shape is more complicated than butt joints.If this part becomes a dissimilar joint, thermal stress will be concentrated, causing damage during pipe use. May cause. It is also difficult to accurately determine the stress distribution by analysis.

【0027】配管1と直管部(短管)3との溶接は、溶接
材料として、たとえば30%Fe-70%Ni系材料を使用し、テ
ィグ溶接などにより突き合わせ溶接継ぎ手として施工で
きる。また、配管の直線部は、図2に示すように多数の
低熱膨張率合金製の管の突き合わせ溶接S3によって製作
されるのであるが、その溶接は、共金系の溶接材料を使
用するTIG溶接法等によって行うことができる。
The welding between the pipe 1 and the straight pipe portion (short pipe) 3 can be performed as a butt welding joint by using, for example, 30% Fe-70% Ni-based material as a welding material by TIG welding or the like. The straight section of the pipe is manufactured by butt welding S3 of pipes made of a number of low thermal expansion alloys as shown in FIG. 2. The welding is performed by TIG welding using a common metal welding material. It can be performed by a method or the like.

【0028】延長直管部(短管)3の長さは、機器(例
えば弁2)の形状に応じて、下記のように決定すればよ
い。
The length of the extended straight pipe (short pipe) 3 may be determined as follows according to the shape of the device (for example, the valve 2).

【0029】図3は、同径、同肉厚の低熱膨張率合金製
の管とステンレス鋼(SUS304)製の管の溶接継手部を室
温(20℃)から−164℃に冷却したときに溶接継手部の近
傍に生じる熱応力分布を示す図である。円周方向応力は
境界部で最大となり、軸方向応力は境界からほぼ0.6
(R×t)1/2離れた位置で最大となる。このように、
直管同士の接合であれば、異材質管の接合であっても接
合部近傍の応力分布は、ほぼ正確に計算できるから、配
管の設計に支障はない。しかし、一方が直管で、他方が
図1の弁2のような特殊な形状の機器であって、しかも
それらが異材質であれば、図3に示すような応力分布の
解析は困難である。従って、設計次第では、配管または
機器に局部的な応力集中が起きて破損事故につながるお
それがある。
FIG. 3 shows a welded joint between a low-thermal-expansion-alloy tube and a stainless-steel (SUS304) tube having the same diameter and the same thickness when cooled from room temperature (20 ° C.) to −164 ° C. It is a figure which shows the thermal stress distribution which arises near a joint part. Circumferential stress is greatest at the boundary and axial stress is approximately 0.6
(R × t) It becomes maximum at a position 1/2 away. in this way,
If straight pipes are joined, the stress distribution in the vicinity of the joint can be calculated almost accurately even when joining dissimilar pipes, so that there is no problem in piping design. However, if one is a straight pipe and the other is a device having a special shape such as the valve 2 in FIG. 1 and they are made of different materials, it is difficult to analyze the stress distribution as shown in FIG. . Therefore, depending on the design, local stress concentration may occur in piping or equipment, which may lead to a breakage accident.

【0030】本発明によれば、配管と機器との間には前
記の直管部(短管)3が存在する。そうすると異材質溶
接部近傍の応力分布は、図3に示したように、ほぼ正確
に予測することができる。短管3の長さLを0.6(R×
t)1/2以上とするのは、軸方向応力が最大になる位置
を常に短管内にするためである。望ましいのは、Lを3.
5(R×t)1/2以上とすることである。そうすれば、図
3から明らかなように、機器2には接合部に起因する応
力の影響がほとんど及ばなくなる。
According to the present invention, the straight pipe section (short pipe) 3 exists between the pipe and the equipment. Then, the stress distribution near the dissimilar material weld can be predicted almost exactly as shown in FIG. The length L of the short pipe 3 is 0.6 (R ×
t) 1/2 or more in order that the position where the axial stress becomes maximum is always within the short pipe. Desirably, L should be 3.
5 (R × t) 1/2 or more. Then, as is clear from FIG. 3, the device 2 is hardly affected by the stress caused by the joint.

【0031】なお、図3に示すように、周方向応力のピ
ークは常に接続部にあるが、この周方向応力と内圧によ
る周方向応力が重畳しても管の破壊が生じるようなこと
はない。なぜなら、図3の周方向応力は必ず引張り側と
圧縮側が釣り合うように発生しており、内圧による周方
向の引張り応力が加わり、引張り側が一般部より先に降
伏点に達しても、圧縮側はその分だけ一般部より余裕が
あるからである。このことは、一般的な強度検討におい
て溶接部の残留応力を考慮しなくてもよいのと同じ原理
である。
As shown in FIG. 3, the peak of the circumferential stress is always at the connecting portion, but even if the circumferential stress and the circumferential stress due to the internal pressure are superimposed, the pipe is not broken. . This is because the circumferential stress in FIG. 3 always occurs such that the tensile side and the compressive side are balanced, and even if the tensile stress in the circumferential direction due to the internal pressure is applied and the tensile side reaches the yield point before the general part, the compressive side is This is because there is more room than the general part. This is the same principle that it is not necessary to consider the residual stress of the weld in general strength studies.

【0032】以上、機器として主に弁を例にとって説明
したが、上記のような溶接構造は、配管中に弁を設ける
場合だけでなく、様々な管継手・機器と配管との接続部
分に適用できる。
Although the valve has been mainly described as an example of the equipment, the above-described welding structure is applicable not only to the case where the valve is provided in the pipe, but also to the connection parts between various pipe joints / equipment and the pipe. it can.

【0033】例えば、図1(b)または(c)に示すような、
通常のステンレス鋼製曲管(エルボ)6、または分岐管
7と配管1との接合の場合には、曲管6または分岐管7
に同じ材質の延長直管部3(前記の所定長さを有するも
の)を設け、この直管部3にFe-Ni系低熱膨張率合金製
の配管1を溶接すればよい。ステンレス鋼製の曲管6ま
たは分岐管7自体に低熱膨張率合金製の管を直接溶接す
るのを避けることによって、曲管6または分岐管7に複
雑な熱応力が発生するのを防止できるとともに、異材質
溶接部(S2)の応力分布がほぼ正確に予測できるので配
管設計が容易になる。
For example, as shown in FIG. 1 (b) or (c),
In the case of joining the ordinary stainless steel curved pipe (elbow) 6 or the branch pipe 7 to the pipe 1, the curved pipe 6 or the branch pipe 7 is used.
Is provided with an extended straight pipe portion 3 (having the above-mentioned predetermined length) of the same material, and the pipe 1 made of an Fe-Ni-based low thermal expansion coefficient alloy may be welded to the straight pipe portion 3. By avoiding directly welding a pipe made of a low-thermal-expansion alloy to the bent pipe 6 or the branch pipe 7 made of stainless steel, it is possible to prevent complicated thermal stress from being generated in the bent pipe 6 or the branch pipe 7. In addition, since the stress distribution of the dissimilar material weld (S2) can be predicted almost accurately, piping design becomes easy.

【0034】[0034]

【発明の効果】前述のとおり、低温物質処理設備には
弁、曲管、分岐管の外にも様々な機器が含まれるが、そ
のような機器と配管との接合にも本発明が適用できる。
そして、これらの機器としては市販のステンレス鋼製の
ものが使用できるから、設備全体の製作コストを下げる
ことができるだけでなく、種々の形状を持つ機器内の複
雑な熱応力の発生を懸念せずに設備設計を行うことが可
能になる。
As described above, the low-temperature substance processing equipment includes various devices in addition to valves, bent pipes, and branch pipes. The present invention can be applied to the connection between such equipment and piping. .
Since these devices can be made of commercially available stainless steel, not only can the manufacturing cost of the entire equipment be reduced, but also there is no concern about the occurrence of complicated thermal stress in devices having various shapes. It becomes possible to design equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明設備の要部を例示する図である。(a)、
(b)、(c)は、それぞれ図2(b)のA、B、C部の拡大図で、
配管と弁、曲管、および分岐管との接合状態を示す図で
ある。
FIG. 1 is a diagram illustrating a main part of the facility of the present invention. (a),
(b) and (c) are enlarged views of parts A, B and C in FIG. 2 (b), respectively.
It is a figure showing the joint state of piping and a valve, a bent pipe, and a branch pipe.

【図2】LNG処理設備の一部概略図であり、(a)は配管に
ステンレス鋼製の管を使用した従来の例、(b)は配管にF
e−Ni系低熱膨張率合金製の管を使用した本発明の例で
ある。
FIG. 2 is a partial schematic view of an LNG processing facility, (a) is a conventional example using a stainless steel pipe for the pipe, and (b) is a F pipe for the pipe.
It is an example of the present invention using a tube made of an e-Ni-based low coefficient of thermal expansion alloy.

【図3】同径、同肉厚の低熱膨張率合金製の管とステン
レス鋼製の管の継ぎ手部近傍に生じる熱応力分布を示す
図である。
FIG. 3 is a diagram showing a thermal stress distribution generated in the vicinity of a joint between a pipe made of a low-thermal-expansion alloy and a pipe made of stainless steel having the same diameter and the same thickness.

【符号の説明】[Explanation of symbols]

1.配管、 2.弁(機器)、 3.延長直管部、
4.ループ管、 5.貯槽、6.曲管(エルボ)、
7.分岐管、 S1,S2,S3.接合部(継ぎ手)
1. Plumbing, 2. 2. Valve (equipment), Extension straight pipe section,
4. Loop tube, 5. Storage tank, 6. Curved pipe (elbow),
7. Branch pipe, S1, S2, S3. Joint (joint)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保 尚重 大阪府大阪市中央区平野町4丁目1番2 号大阪瓦斯株式会社内 (72)発明者 岩橋 拓 大阪府大阪市中央区平野町4丁目1番2 号大阪瓦斯株式会社内 (72)発明者 山本 修二 大阪府大阪市中央区平野町4丁目1番2 号大阪瓦斯株式会社内 (72)発明者 小森 寛治 兵庫県加古郡播磨町新島8番地川崎重工 業株式会社播磨工場内 (72)発明者 岸本 節二 兵庫県加古郡播磨町新島8番地川崎重工 業株式会社播磨工場内 (72)発明者 竹内 宣孔 兵庫県加古郡播磨町新島8番地川崎重工 業株式会社播磨工場内 (72)発明者 鷹尾 正純 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (56)参考文献 特開 平8−215879(JP,A) 特開 平9−29429(JP,A) 実開 昭62−188673(JP,U) (58)調査した分野(Int.Cl.7,DB名) B23K 9/23 F16L 13/02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naoshige Kubo 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Inside Osaka Gas Co., Ltd. (72) Inventor Taku Iwahashi 4 Hirano-cho, Chuo-ku, Osaka-shi, Osaka Within Osaka Gas Co., Ltd. 1-2 (72) Inventor Shuji Yamamoto Inside Osaka Gas Co., Ltd. 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka (72) Kanji Komori Niijima, Harima-cho, Kako-gun, Hyogo Prefecture No. 8 in the Harima Plant of Kawasaki Heavy Industries, Ltd. (72) Inventor Soji Kishimoto Harima, Harima-cho, Hyogo Prefecture No. 8 in the Harima Plant of Kawasaki Heavy Industries, Ltd. No. 8 Inside the Harima Plant of Kawasaki Heavy Industries, Ltd. (72) Inventor Masazumi Takao 4-5-33 Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal Industries, Ltd. (56) Reference Document JP-flat 8-215879 (JP, A) JP flat 9-29429 (JP, A) JitsuHiraku Akira 62-188673 (JP, U) (58 ) investigated the field (Int.Cl. 7, DB name) B23K 9/23 F16L 13/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Fe−Ni系低熱膨張率合金製の管と、ステン
レス鋼製の管ならびに同じくステンレス鋼製の管継手お
よび機器とで構成される設備であって、上記Fe−Ni系低
熱膨張率合金製の管に溶接されるものがステンレス鋼製
の直管であり、その長さLが、下記の式を満たすこと
を特徴とする低温物質処理設備。 L(mm)≧ 0.6(R×t)1/2・・・・・・ ここで、Rはステンレス鋼製の直管の外半径(mm)、t
は同じく肉厚(mm)である。
A facility comprising a pipe made of an Fe-Ni-based low thermal expansion alloy, a stainless steel pipe, and a pipe joint and equipment also made of a stainless steel, wherein the Fe-Ni-based low thermal expansion is used. What is welded to a pipe made of a rate alloy is a straight pipe made of stainless steel, and its length L satisfies the following equation. L (mm) ≧ 0.6 (R × t) 1/2 where R is the outer radius (mm) of the stainless steel straight pipe, t
Is also the wall thickness (mm).
【請求項2】ステンレス鋼製の管継手または機器に上記
式を満たす長さLのステンレス鋼製の延長直管部が設
けられており、その延長直管部とFe−Ni系低熱膨張率合
金製の管とが溶接されていることを特徴とする請求項1
の低温物質処理設備。
2. A stainless steel pipe joint or device is provided with a stainless steel extended straight pipe portion having a length L satisfying the above formula, and the extended straight pipe portion and an Fe—Ni-based low thermal expansion coefficient alloy are provided. 2. A pipe made of stainless steel is welded.
Low temperature substance processing equipment.
JP09587598A 1998-04-08 1998-04-08 Equipment for processing low-temperature substances Expired - Lifetime JP3263027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09587598A JP3263027B2 (en) 1998-04-08 1998-04-08 Equipment for processing low-temperature substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09587598A JP3263027B2 (en) 1998-04-08 1998-04-08 Equipment for processing low-temperature substances

Publications (2)

Publication Number Publication Date
JPH11294649A JPH11294649A (en) 1999-10-29
JP3263027B2 true JP3263027B2 (en) 2002-03-04

Family

ID=14149526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09587598A Expired - Lifetime JP3263027B2 (en) 1998-04-08 1998-04-08 Equipment for processing low-temperature substances

Country Status (1)

Country Link
JP (1) JP3263027B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578084B2 (en) * 2003-10-02 2010-11-10 東京瓦斯株式会社 Low temperature liquefied gas piping structure
US8168306B2 (en) * 2007-09-18 2012-05-01 Exxonmobil Research And Engineering Company Weld metal compositions for joining steel structures in the oil and gas industry
JP2012176670A (en) * 2011-02-25 2012-09-13 Mitsubishi Heavy Ind Ltd On-the-ocean high-pressure gas pipework structure
CN104308382B (en) * 2014-09-19 2017-03-01 合肥通用机械研究院 Connection method and connection structure of austenitic stainless steel pressure pipeline

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043174Y2 (en) * 1986-05-21 1992-01-31
JP2868430B2 (en) * 1995-02-20 1999-03-10 川崎重工業株式会社 Pipe material flange connection structure
JPH0929429A (en) * 1995-07-21 1997-02-04 Toshiba Corp Welding procedure

Also Published As

Publication number Publication date
JPH11294649A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
US4556240A (en) Corrosion-resistant, double-wall pipe structures
US8864417B2 (en) Methods of reel-laying a mechanically lined pipe
US5365794A (en) Mass flow meter
US8365776B2 (en) Liquefied natural gas pipeline with near zero coefficient of thermal expansion
US3765705A (en) Vacuum-insulated pipeline
JP3263027B2 (en) Equipment for processing low-temperature substances
JP4363565B2 (en) Flange joint for valve pit
CN106382423A (en) High-pressure flexible hose
US5564753A (en) Cryogenic fluid manifold
JPH08215879A (en) Welded structure of tube and flange connected structure of tube
Moore et al. Background for changes in the 1981 edition of the ASME nuclear power plant components code for controlling primary loads in piping systems
Vinoth et al. A Review on Application of Bellows Expansion Joints and Effect of Design Parameters on System Characteristics
Witz et al. Offshore LNG transfer-a new flexible cryogenic hose for dynamic service
CN205781650U (en) A kind of thermal expansion of pipeline compensation device
JPS62209293A (en) Expansion joint for piping
Focke et al. The influence of the reeling installation method on the integrity of circumferential welds in tight fit pipe
CN209876263U (en) Corrugated pipe connecting structure
WO2023058614A1 (en) Accumulator for high-pressure hydrogen gas
JP2000055285A (en) Low-temperature fluid carrier equipment
EP4310381A1 (en) Hermetic pipe penetration
Xu et al. Technical Basis of ASME B31 Code Case 216: Use of Enhanced Pressure Ratings for Brazed Copper Tubes and Fittings by Cold Stretch Process
Swanson et al. Stresses in thick-walled plane pipe bends
McIntosh et al. Bayonet for superfluid helium transfer in space
JP4578084B2 (en) Low temperature liquefied gas piping structure
JPS58122198A (en) Construction of welded joint of corrosion resistant pipe

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term