JP3259281B2 - Ceramic cutting tools - Google Patents

Ceramic cutting tools

Info

Publication number
JP3259281B2
JP3259281B2 JP05412391A JP5412391A JP3259281B2 JP 3259281 B2 JP3259281 B2 JP 3259281B2 JP 05412391 A JP05412391 A JP 05412391A JP 5412391 A JP5412391 A JP 5412391A JP 3259281 B2 JP3259281 B2 JP 3259281B2
Authority
JP
Japan
Prior art keywords
cutting
boron compound
hardness
sintered body
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05412391A
Other languages
Japanese (ja)
Other versions
JPH04304903A (en
Inventor
秀樹 森口
俊雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP05412391A priority Critical patent/JP3259281B2/en
Publication of JPH04304903A publication Critical patent/JPH04304903A/en
Application granted granted Critical
Publication of JP3259281B2 publication Critical patent/JP3259281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高硬度材料を高能率で
切削できるアルミナ(Al2O3)系セラミックス切削工具
に関する。
The present invention relates to a high-hardness material can cut with high efficiency alumina (Al 2 O 3) based ceramic cutting tool.

【0002】[0002]

【従来の技術】合金工具鋼等の高硬度材料、特にロック
ェルC硬度(HRC)で50以上又はビッカース硬度
(HV)で500kgf/mm2以上の高硬度材料は、機械加工が
極めて難しく、特に通常の超硬合金等の切削工具では殆
ど切削できないほど切削加工が困難である。従来、かか
る高硬度材料は、立方晶窒化ホウ素(CBN)焼結体か
らなる切削工具、又は黒セラと称されるAl2O3−TiC系セ
ラミックス焼結体からなる切削工具でしか切削出来なか
った。
High hardness material such BACKGROUND ART alloy tool steel, 500 kgf / mm 2 or more high-hardness material, especially 50 or more Rokkueru C hardness (H R C) or the Vickers hardness (H V), the machining is extremely difficult In particular, cutting is so difficult that it can hardly be cut with a cutting tool such as ordinary cemented carbide. Conventionally, such a high-hardness material can be cut only with a cutting tool made of a cubic boron nitride (CBN) sintered body or a cutting tool made of an Al 2 O 3 —TiC-based ceramics sintered body called black ceramic. Was.

【0003】しかし、CBN焼結体切削工具は、その製
造プロセスに超高圧超高温を必要とすることから、超硬
合金切削工具に比べて価格が極めて高価であり、又製造
できる工具の形状にも大幅な制限が加わる等の欠点があ
つた。一方、黒セラ切削工具は安価であり工具形状にも
かなりの自由度があるものの、実際に高硬度材料を切削
すると靭性の不足が目立ち安定した切削を行うことが難
しいので、ごく単純な外径や内径の旋削加工以外には実
用し難いという欠点があつた。
[0003] However, since the cutting process of a CBN sintered body requires an ultra-high pressure and an ultra-high temperature in the manufacturing process, the cost is extremely high as compared with a cemented carbide cutting tool, and the shape of the tool that can be manufactured is reduced. Also had drawbacks such as significant restrictions. On the other hand, black ceramic cutting tools are inexpensive and have a considerable degree of freedom in tool shape.However, when cutting hard materials, lack of toughness is noticeable and it is difficult to perform stable cutting. There is a drawback that it is difficult to use for practical purposes other than turning of inner diameter and inner diameter.

【0004】また、切削工具に必要な特性の一つは被削
材よりも硬いことであり、HVで表示して好ましくは被
削材の5倍以上、少なくとも4倍以上の硬度が必要であ
る。従って、HVが500kgf/mm2以上の高硬度材料を切削
するには、HVで2000kgf/mm2以上の硬度を有する切削
工具材料が必要であり、この点からHV約5000kgf/mm2
以上のCBN焼結体及びHV約2000kgf/mm2の黒セラが
用いられてきた。しかし黒セラについては、HVが500kg
f/mm2以上の高硬度材料を切削するにやや硬度が不足ぎ
みであるため、前記のとおり安定した切削が困難であっ
た。
[0004] One of the properties required for a cutting tool is that harder than the workpiece, preferably displayed in H V is 5 times or more of the workpiece, it requires at least four times or more the hardness is there. Therefore, the H V to cut the 500 kgf / mm 2 or more high hardness materials, cutting tool materials with a 2,000 kgf / mm 2 or more hardness H V is required, H V about 5000 kgf / mm 2 in this respect
More black ceramic of CBN sintered body and H V about 2,000 kgf / mm 2 have been used. But for the black ceramic, H V is 500kg
As described above, stable cutting was difficult because the hardness was slightly insufficient when cutting a high-hardness material of f / mm 2 or more.

【0005】そこで、安価で工具形状にも自由度の大き
いアルミナ系セラミックス切削工具で高硬度材料を安定
して切削する為には、靭性を向上させて耐欠損性を改善
することと、硬度をHVで2000kgf/mm2以上に十分高め
ることが必要と考えられる。靭性の向上に関しては、例
えば、ZrO2を添加する方法(***公開公報第2549652
号、同第2744700号)、TiC或はSiCウイスカーを添加す
る方法(特公昭62−19391号公報)等があり、それなり
の効果を上げている。しかし、高硬度材料の切削工具と
して用いるには、まだ靭性が不十分であり、一部TiCを
添加した黒セラが前記のごとく単純な旋削に使用されて
いるに過ぎない。
Therefore, in order to stably cut a high-hardness material with an alumina-based ceramic cutting tool that is inexpensive and has a large degree of freedom in tool shape, it is necessary to improve fracture toughness by improving toughness and to improve hardness. It is enhanced sufficiently by H V to 2,000 kgf / mm 2 or more is considered necessary. Regarding the improvement of toughness, for example, a method of adding ZrO 2 (West German Patent Publication No. 2546952)
No. 2,744,700), a method of adding TiC or SiC whiskers (Japanese Patent Publication No. 62-19391), and the like, with a certain effect. However, the toughness is still insufficient for use as a cutting tool of a high-hardness material, and black ceramics partially added with TiC are used only for simple turning as described above.

【0006】一方、硬度を高める方法としては、高硬度
物質であるホウ化物をマトリックスとする提案(特公平
1−22233号公報)があるが、その靭性が相当低く、更に
致命的な問題として鉄に対する化学的安定性が低いため
摩耗が進展しやすい欠点があった。又、Al2O3マトリッ
クス中にホウ化物を分散させた焼結体(特開昭55−1265
89号公報、特開昭55−126573号公報、特開昭58−217463
号公報、特開昭63−282158号公報)も提案されている。
しかし、これらの焼結体は靭性が十分でないうえ、やは
りホウ化物が鉄と反応しやすいため耐摩耗性に劣る欠点
があった。
On the other hand, as a method for increasing the hardness, a proposal has been made to use a boride, which is a high hardness material, as a matrix (Japanese Patent Publication No.
No. 1-22233), but its toughness is considerably low, and as a fatal problem, its chemical stability with respect to iron is low, so that there is a drawback that abrasion easily progresses. Also, a sintered body in which a boride is dispersed in an Al 2 O 3 matrix (Japanese Patent Application Laid-Open No. 55-1265)
No. 89, JP-A-55-126573, JP-A-58-217463
JP-A-63-282158) has also been proposed.
However, these sintered bodies have insufficient toughness, and also have a drawback that the boride is liable to react with iron and thus has poor wear resistance.

【0007】[0007]

【発明が解決しようとする課題】本発明はかかる従来の
事情に鑑み、低価格のアルミナ系セラミックス焼結体か
らなり、十分な靭性と硬度を備え、HRCで50以上又は
Vで500kgf/mm2以上の高硬度材料を高能率で且つ長寿
命で切削することの出来るセラミックス切削工具を提供
することを目的とする。
[0008] The present invention has been made in view of the conventional circumstances such, made of an alumina ceramic sintered body inexpensive, with sufficient toughness and hardness, 500 kgf in H R C 50 or more, or H V An object of the present invention is to provide a ceramic cutting tool capable of cutting a high-hardness material having a thickness of / mm 2 or more with high efficiency and a long life.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明のセラミックス切削工具では、AlOのマ
トリックス中に3〜25重量%のTiB、ZrB、HfB、B
C、AlB、VB、NbB及びTaBから選ばれた少なく
とも1種のホウ素化合物を含み、上記ホウ素化合物がAl
O結晶粒内に分散していて、ビッカース硬度が2000k
gf/mm 以上であることを特徴とする。
To achieve the above object, according to an aspect of, the ceramic cutting tool of the present invention, TiB 2 in the matrix of 3 to 25 wt% Al 2 O 3, ZrB 2 , HfB 2, B
4 C, comprises AlB 2, VB 2, NbB 2 and at least one boron compound selected from TaB 2, the boron compound is Al
Dispersed in 2 O 3 crystal grains , Vickers hardness 2000k
gf / mm 2 or more .

【0009】[0009]

【作用】本発明では、高硬度物質として知られるTiB2
ZrB2、HfB2、B4C、AlB2、VB2、NbB2又はTaB2のホウ素化
合物を添加してAl2O3焼結体の硬度を高めると同時に、
これらホウ素化合物の大部分をAl2O3結晶粒内に取り込
むことによって、従来問題となっていたホウ素化合物と
鉄の化学反応を抑制して耐摩耗性を改善することがで
き、又靭性を向上させることが出来た。その結果、本発
明のセラミックス切削工具は高硬度材料切削用としてビ
ッカース硬度2000kgf/mm2以上となり、靭性及び耐摩耗
性に優れ、従来のAl2O3−TiC系焼結体等からなるセラミ
ックス切削工具に比べ数倍の寿命で、能率的に安定した
切削を行うことが出来る。
According to the present invention, TiB 2 , which is known as a hard material,
At the same time ZrB 2, HfB 2, B 4 C, AlB 2, VB 2, with the addition of NbB 2 or boron compound TaB 2 increasing the hardness of the Al 2 O 3 sintered body,
By incorporating most of these boron compounds into Al 2 O 3 crystal grains, it is possible to suppress the chemical reaction between the boron compound and iron, which has been a problem in the past, to improve wear resistance and improve toughness I was able to do it. As a result, the ceramic cutting tool of the present invention has a Vickers hardness of 2000 kgf / mm 2 or more for cutting high-hardness materials, has excellent toughness and abrasion resistance, and has a ceramic cutting performance of a conventional Al 2 O 3 —TiC-based sintered body or the like. Efficient and stable cutting can be performed with a service life several times longer than that of tools.

【0010】本発明における靭性の向上はナノ強化の機
構による、即ち上記ホウ素化合物をAl2O3結晶粒内に分
散含有させることによって、Al2O3とホウ素化合物の熱
膨張係数の差による残留応力を発生させ、且つ隣接する
粒子との粒界に応力場を生じさせ、これらにより進行し
ようとするクラック先端をトラップしたりデフレクショ
ンさせ、クラックの進行を阻止して靭性を向上させると
の考え方による。かかるナノ強化の機構については、新
原らが「粉末および粉末冶金」36巻(1989)116頁でAl2
O3−SiC−ZrO2系焼結体について詳しく述べているの
で、ここに改めて記述することは省略する。
In the present invention, the toughness is improved by a mechanism of nano-strengthening, that is, by dispersing and containing the boron compound in Al 2 O 3 crystal grains, the residual is caused by a difference in thermal expansion coefficient between Al 2 O 3 and the boron compound. The idea of generating stress and generating a stress field at the grain boundary between adjacent particles, trapping or deflecting the crack tip that is going to progress, thereby preventing the progress of the crack and improving the toughness by. The mechanism of such nano-reinforced, Niihara et al., "Powder and Powder Metallurgy" 36 vol (1989) 116 pp of Al 2
Since O 3 are details the -SiC-ZrO 2 sintered body, it will be omitted to re described herein.

【0011】上記AlO焼結体に含まれるホウ素化合
物を3〜25重量%の範囲とする理由は、3重量%未満では
ホウ素化合物を添加した効果がなく、又25重量%を越え
るとAlO結晶の粒界に析出する量が増え、焼結体の
耐摩耗性を低下させるからである。又、焼結体内のホウ
素化合物の平均粒径が0.5μmを越えるとAlO結晶内
に取り込まれにくくなり、粒界に分散する量が多くなっ
て耐摩耗性の低下を招くので、0.5μm以下の平均粒径が
好ましい。一方、AlO結晶の平均粒径は焼結体強度
の観点から0.5〜5μmの範囲が好ましい。
[0011] reason for the boron compound contained in the Al 2 O 3 sintered body in the range of 3 to 25% by weight, no effect of adding the boron compound is less than 3 wt%, and if it exceeds 25 wt% This is because the amount of Al 2 O 3 crystals precipitated at the grain boundaries increases, and the wear resistance of the sintered body is reduced. On the other hand, if the average particle diameter of the boron compound in the sintered body exceeds 0.5 μm, it becomes difficult to be taken into the Al 2 O 3 crystal, and the amount dispersed at the grain boundaries increases, leading to a decrease in wear resistance. An average particle size of less than μm is preferred. On the other hand, the average particle size of the Al 2 O 3 crystal is preferably in the range of 0.5 to 5 μm from the viewpoint of the strength of the sintered body.

【0012】この様に、ホウ素化合物をAl2O3結晶内に
取り込むためには、焼結体中の両者の粒子径が上記所望
の範囲内となるように製造工程を管理する必要がある
が、特に原料となるAl2O3粉末及びホウ素化合物粉末の
粒径を小さな範囲に管理することが必要である。例え
ば、粒径が0.2〜0.5μm程度のAl2O3粉末を用いると、通
常の焼結条件下ではAl2O3結晶が0.5〜5μmの粒子径に粒
成長する。従って、Al2O3粉末及びホウ素化合物粉末と
して共に0.5μm以下の超微粉を用いることにより、Al2O
3の粒成長の過程でAl2O3結晶内部にホウ素化合物を容易
に取り込むことが出来る。尚、本発明にかかわるAl2O3
焼結体の製造方法としては、上記のごとく粒径を管理し
た原料粉末を所定割合に混合し、この粉末組成物を真空
中又は不活性ガスか水素ガスの雰囲気中において1400〜
1900℃の温度で焼結すればよい。焼結法としてはホット
プレス法が好ましいが、普通焼結法やHIP法を採用す
ることも出来る。又、焼結に際しては、添加物としてNi
O、Y2O3、MgO等の公知の焼結助剤を用いて良いことは当
然である。
As described above, in order to incorporate the boron compound into the Al 2 O 3 crystal, it is necessary to control the production process so that the particle diameters of the two in the sintered body are within the above-mentioned desired range. In particular, it is necessary to control the particle diameters of the Al 2 O 3 powder and the boron compound powder as the raw materials within a small range. For example, when Al 2 O 3 powder having a particle diameter of about 0.2 to 0.5 μm is used, Al 2 O 3 crystals grow to a particle diameter of 0.5 to 5 μm under ordinary sintering conditions. Therefore, by using both 0.5μm following ultrafine as Al 2 O 3 powder and a boron compound powder, Al 2 O
The boron compound can be easily incorporated into the Al 2 O 3 crystal during the grain growth process of No. 3 . Incidentally, the Al 2 O 3 according to the present invention
As a method for producing a sintered body, the raw material powders whose particle diameters are controlled as described above are mixed in a predetermined ratio, and the powder composition is mixed in a vacuum or in an atmosphere of an inert gas or a hydrogen gas for 1400 to
Sintering may be performed at a temperature of 1900 ° C. As a sintering method, a hot press method is preferable, but a normal sintering method or a HIP method can also be adopted. During sintering, Ni is added as an additive.
Naturally, known sintering aids such as O, Y 2 O 3 , and MgO may be used.

【0013】更に、本発明にかかわるAl2O3焼結体は、
ホウ素化合物の外に、分散強化材としてTiC、TiCO、TiO
2、ZrO2又はSiCウイスカーを3〜50重量%添加含有する
ことが出来る。これらの分散強化材の添加によって、Al
2O3結晶粒成長の抑制、応力誘起変態やウイスカー強化
等のメカニズムによるマトリックスの強靭化が期待出来
る。又、これら分散強化材の添加量を3〜50重量%とす
るのは、3重量%未満では強靭化の効果が得られず、50
重量%を越えるとAl2O3マトリックスの耐摩耗性が低下
するからである。尚、上記分散強化材がSiCウイスカー
の場合、短軸径が2μm以下及び長軸径が3〜200μmのも
のが好ましく、又ウイスカー以外の粉末の場合には粒径
が3μm以下のものが好ましい。
Furthermore, the Al 2 O 3 sintered body according to the present invention is
In addition to boron compounds, TiC, TiCO, TiO as dispersion strengtheners
2 , ZrO 2 or SiC whiskers can be added and contained in an amount of 3 to 50% by weight. With the addition of these dispersion strengtheners, Al
The matrix can be expected to be tougher through mechanisms such as suppression of 2 O 3 crystal grain growth, stress-induced transformation and whisker strengthening. Further, the reason why the addition amount of these dispersion strengthening materials is 3 to 50% by weight is that if the amount is less than 3% by weight, the effect of toughening cannot be obtained.
If the content is more than the weight percentage, the abrasion resistance of the Al 2 O 3 matrix decreases. When the dispersion reinforcing material is a SiC whisker, it is preferable that the minor axis diameter is 2 μm or less and the major axis diameter is 3 to 200 μm.

【0014】[0014]

【実施例】下記表1に示す原料粉末の混合組成となるよ
うに、平均粒径0.3μmのAl2O3粉末と平均粒径0.1μmの
ホウ素化合物粉末、更に分散強化材粉末を添加混合し
た。この混合粉末を黒鉛ダイスに充填した後、Arガス中
において30MPaの圧力下に1600℃で1時間ホットプレス焼
結して、それぞれAl2O3焼結体からなる型番SNGN120408
の切削チップA〜Gを作製した。又、比較例として、ホ
ウ素化合物や分散強化材の添加量を変え、本発明の範囲
外の切削チップH〜Kも作製した。
EXAMPLE An Al 2 O 3 powder having an average particle diameter of 0.3 μm, a boron compound powder having an average particle diameter of 0.1 μm, and further a dispersion reinforcing material powder were added and mixed so that the raw material powder had a mixed composition shown in Table 1 below. . After filling this mixed powder in a graphite die, it was hot-pressed and sintered at 1600 ° C. for 1 hour under a pressure of 30 MPa in Ar gas, and each was made of Al 2 O 3 sintered body.
Cutting tips A to G were produced. Further, as comparative examples, cutting tips H to K out of the range of the present invention were produced by changing the amounts of the boron compound and the dispersion reinforcing material added.

【0015】[0015]

【表1】 切削チップ:原料粉末混合組成(重量%) A : 80Al2O3−20B4C B : 45Al2O3−15HfB2−30TiC−10SiCウイスカー C : 70Al2O3−10TiB2−20TiC D : 65Al2O3−25ZrB2−10TiC E : 60Al2O3−5B4C−5ZrO2−30SiCウイスカー F : 20Al2O3−20TiB2−10B4C−50TiC G : 67Al2O3−3AlB2−25TiC−5TiCO H : 30Al2O3−10TiB2−30TiC−10ZrO2−20SiCウイスカー I : 60Al2O3−40B4C J : 99.5Al2O3−0.5TiB2 K : 70Al2O3−30TiC (註)切削チップのH〜Kは比較例である。[Table 1]Cutting tip: Raw material powder mixture composition (% by weight)  A: 80AlTwoOThree−20BFourC B: 45AlTwoOThree−15HfBTwo-30TiC-10SiC whisker C: 70AlTwoOThree−10 TiBTwo-20TiC D: 65AlTwoOThree−25ZrBTwo-10TiC E: 60AlTwoOThree−5BFourC-5ZrOTwo-30SiC whisker F: 20AlTwoOThree−20 TiBTwo−10BFourC-50TiC G: 67AlTwoOThree−3AlBTwo-25TiC-5TiCO H: 30AlTwoOThree−10 TiBTwo-30TiC-10ZrOTwo-20SiC Whisker I: 60AlTwoOThree−40BFourCJ: 99.5AlTwoOThree−0.5TiBTwo  K: 70AlTwoOThree-30TiC (Note) H to K of the cutting tip are comparative examples.

【0016】次に、得られた各切削チップA〜Kを用い
て下記条件での切削試験を行い、試験後の各切削チップ
についてフランク摩耗幅を測定するか又は欠損までの切
削時間を測定し、表2に切削試験結果として各切削チッ
プの硬度(HV)と併せて記載した。 切削条件:被 削 材…SKD11(HRC 60) 切削速度…100m/min. 送 り…0.1mm/rev. 切り込み…1.0mm ホルダー…FN11R44A 切 削 油…乾式 切削時間…10min.
Next, a cutting test is performed using the obtained cutting tips A to K under the following conditions, and the flank wear width is measured for each of the cutting tips after the test, or the cutting time until breakage is measured. It was described in conjunction with the cutting tip hardness as a cutting test results in Table 2 (H V). Cutting conditions:.. Workpiece ... SKD11 (H R C 60) Cutting speed ... 100 m / min feed Ri ... 0.1 mm / rev cuts ... 1.0 mm Holder ... FN11R44A switching cutting oil ... dry cutting time ... 10min.

【0017】[0017]

【表2】切削チップ V(kgf/mm2 切 削 試 験 結 果 A 2150 フランク摩耗幅0.15m
m B 2400 同 0.08mm C 2200 同 0.13mm D 2300 同 0.10mm E 2150 同 0.19mm F 2500 同0.06mm G 2100 同0.19mm H 1700 1分で欠損 I 2300 35秒で欠損 J 2000 20秒で欠損 K 2000 5分で欠損 (註)切削チップのH〜Kは比較例である。 上記表2の結果から、本発明の切削チップは高硬度材料
に対して非常に優れた切削性能を示すことが判る。
[Table 2]Cutting tip H V (kgf / mm 2 ) Cutting test results  A2150 Frank wear width 0.15m
m B 2400 Same 0.08mm C 2200 Same 0.13mm D 2300 Same 0.10mm E 2150 Same 0.19mm F 2500 Same 0.06mm G 2100 Same 0.19mm H 1700 Missing in 1 minute I 2300 Missing in 35 seconds J 2000 Missing in 20 seconds K 2000 5 minutes loss (Note) H to K of the cutting insert are comparative examples. From the results shown in Table 2 above, the cutting insert of the present invention is a material of high hardness.
It can be seen that the steel shows extremely excellent cutting performance.

【0018】[0018]

【発明の効果】本発明によれば、高硬度且つ高靭性で耐
摩耗性に優れた低価格のAl2O3系セラミックス切削工具
を提供でき、これにより従来は高価なCBN焼結体性能
工具でしか安定した切削が出来なかったHRCで50以上
又はHVで500kgf/mm2以上の高硬度材料を、安定して高
能率且つ長寿命にて切削できる。
According to the present invention, an inexpensive Al 2 O 3 ceramic cutting tool having high hardness, high toughness and excellent wear resistance can be provided. stable H R C 50 or more, or H V at 500 kgf / mm 2 or more high hardness materials cutting could not be the only, can cut at stable and high-efficiency and long life.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B23B 27/14 C04B 35/10 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) B23B 27/14 C04B 35/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 AlOのマトリックス中に3〜25重量%
のTiB、ZrB、HfB、BC、AlB、VB、NbB
びTaBから選ばれた少なくとも1種のホウ素化合物を
含み、上記ホウ素化合物がAlO結晶粒内に分散して
いて、ビッカース硬度が2000kgf/mm 以上であること
を特徴とするセラミックス切削工具。
1 to 3 % by weight in a matrix of Al 2 O 3
Contains at least one boron compound selected from TiB 2 , ZrB 2 , HfB 2 , B 4 C, AlB 2 , VB 2 , NbB 2 and TaB 2 , wherein the boron compound is contained in the Al 2 O 3 crystal grains. Disperse
And a Vickers hardness of 2000 kgf / mm 2 or more .
【請求項2】 AlOの平均粒径が0.5〜5μm及びホウ
素化合物の平均粒径が0.5μm以下であることを特徴とす
る、請求項1記載のセラミックス切削工具。
2. The ceramic cutting tool according to claim 1, wherein the average particle size of Al 2 O 3 is 0.5 to 5 μm and the average particle size of the boron compound is 0.5 μm or less.
【請求項3】 3〜50重量%のTiC、TiCO、TiO、ZrO
及びSiCウイスカーから選ばれた少なくとも1種の分散
強化材を含むことを特徴とする、請求項1記載のセラミ
ックス切削工具。
3. 3-50% by weight of TiC, TiCO, TiO 2 , ZrO 2
The ceramic cutting tool according to claim 1, further comprising at least one kind of dispersion strengthening material selected from the group consisting of SiC whiskers and SiC whiskers.
JP05412391A 1991-02-26 1991-02-26 Ceramic cutting tools Expired - Fee Related JP3259281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05412391A JP3259281B2 (en) 1991-02-26 1991-02-26 Ceramic cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05412391A JP3259281B2 (en) 1991-02-26 1991-02-26 Ceramic cutting tools

Publications (2)

Publication Number Publication Date
JPH04304903A JPH04304903A (en) 1992-10-28
JP3259281B2 true JP3259281B2 (en) 2002-02-25

Family

ID=12961826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05412391A Expired - Fee Related JP3259281B2 (en) 1991-02-26 1991-02-26 Ceramic cutting tools

Country Status (1)

Country Link
JP (1) JP3259281B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427987A (en) * 1993-05-10 1995-06-27 Kennametal Inc. Group IVB boride based cutting tools for machining group IVB based materials
US20060189474A1 (en) * 2005-02-23 2006-08-24 Yeckley Russell L Alumina-boron carbide ceramics and methods of making and using the same

Also Published As

Publication number Publication date
JPH04304903A (en) 1992-10-28

Similar Documents

Publication Publication Date Title
US7485278B2 (en) Method for making silicon carbide whiskers
US4804645A (en) Ceramic material based on alumina and refractory hard constituents
KR100284058B1 (en) Whisker reinforced ceramic cutting tool and composition thereof
US6634837B1 (en) Ceramic cutting insert of polycrystalline tungsten carbide
JP2000247746A (en) Cutting tool of cubic boron nitride-based sintered compact
US4745022A (en) Composite sintered silicon nitride material and cutting tool made therefrom
JP3259281B2 (en) Ceramic cutting tools
US5106788A (en) Process for producing highly tough ceramics
JP4177493B2 (en) Ceramic sintered body
JPH0520381B2 (en)
JPH0881270A (en) Ceramic sintered compact containing cubic boron nitride and cutting tool
JP2000218411A (en) Cubic boron nitride sintered body cutting tool
JPH0569205A (en) Ceramic cutting tool
US5036028A (en) High density metal boride-based ceramic sintered body
JPS62187173A (en) Bite chip for machining iron material
JP2925899B2 (en) Ceramic cutting tool and its manufacturing method
JP3051603B2 (en) Titanium compound sintered body
JP2997320B2 (en) Fiber reinforced ceramics
JP2794122B2 (en) Fiber reinforced ceramics
CA1336101C (en) Silicon aluminum oxynitride based article with improved fracture toughness and strength
JPH10226575A (en) High-pressure form of boron nitride sintered compact for cutting tool
JP2720093B2 (en) Fiber reinforced ceramics
JPH0780708B2 (en) High strength aluminum oxide based sintered body and method for producing the same
JP2997334B2 (en) Fiber reinforced ceramics
JP2794121B2 (en) Fiber reinforced ceramics

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees