JP3256886B2 - Forging method of stepped shaft material - Google Patents

Forging method of stepped shaft material

Info

Publication number
JP3256886B2
JP3256886B2 JP02664093A JP2664093A JP3256886B2 JP 3256886 B2 JP3256886 B2 JP 3256886B2 JP 02664093 A JP02664093 A JP 02664093A JP 2664093 A JP2664093 A JP 2664093A JP 3256886 B2 JP3256886 B2 JP 3256886B2
Authority
JP
Japan
Prior art keywords
anvil
forged
shaft material
forging
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02664093A
Other languages
Japanese (ja)
Other versions
JPH06238385A (en
Inventor
義人 鈴木
一夫 森部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP02664093A priority Critical patent/JP3256886B2/en
Publication of JPH06238385A publication Critical patent/JPH06238385A/en
Application granted granted Critical
Publication of JP3256886B2 publication Critical patent/JP3256886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、航空機用エンジンのフ
ァンシャフトや舶用バルブの製造に好適な、段付軸素材
の鍛造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forging a stepped shaft material suitable for manufacturing fan shafts and marine valves for aircraft engines.

【0002】[0002]

【従来の技術】マニピュレータ装置に把持された被鍛造
材をその軸方向に対し直交する複数の方向から金敷によ
り同時に圧下し、当該被鍛造材をスエージングにより鍛
伸(細径化,テーパ化等)する鍛造装置は公知である。
図1および図2は斯かる鍛造装置を示し、図示しない加
熱炉で鍛造温度に加熱された被鍛造材10は、鍛造装置
1の前部マニピュレータ装置3及び後部マニピュレータ
装置5に交互に把持され、片持ち状態で鍛造機4に送り
込まれる。鍛造機4は被鍛造材10の外周均等位置、即
ち、90°間隔で配設される4つの金敷40を備え、こ
れらの金敷40は被鍛造材10の軸方向に対して直角方
向に同時に移動し、被鍛造材10を圧下する。そして、
金敷40による一回の圧下毎にマニピュレータ装置3又
は5は鍛造機4側に前進して被鍛造材10を所定距離だ
け軸方向に、且つ、軸周りに所定角度だけ回転させた
後、再び金敷40による圧下が繰り返される。かくし
て、被鍛造材10は、鍛造機4を所定回数パスすること
によって所望の外径に鍛伸される。
2. Description of the Related Art A forged material gripped by a manipulator device is simultaneously pressed down by an anvil from a plurality of directions perpendicular to its axial direction, and the forged material is forged and stretched (thinning, tapering, etc.) by swaging. Forging devices are well known.
FIGS. 1 and 2 show such a forging device. A forged material 10 heated to a forging temperature by a heating furnace (not shown) is alternately gripped by a front manipulator device 3 and a rear manipulator device 5 of the forging device 1. It is sent to the forging machine 4 in a cantilever state. The forging machine 4 includes four anvils 40 arranged at equal positions on the outer periphery of the forged material 10, that is, at 90 ° intervals, and these anvils 40 are simultaneously moved in a direction perpendicular to the axial direction of the forged material 10. Then, the forged material 10 is reduced. And
The manipulator device 3 or 5 is advanced to the forging machine 4 each time the anvil 40 presses down to rotate the forged material 10 in the axial direction by a predetermined distance and by a predetermined angle around the axis, and then again by the anvil. The reduction by 40 is repeated. In this way, the forged material 10 is forged and drawn to a desired outer diameter by passing the forging machine 4 a predetermined number of times.

【0003】このような鍛造装置1により被鍛造材を鍛
伸させる場合、金敷と被鍛造材(ワーク)との接触面
が、金敷の所定の鍛造面からはみ出さないように、金敷
形状、特に、金敷のアプローチ角度を所定角度以下に設
定している。より具体的には、図2に示すように、金敷
40にはそれぞれ軸方向に延びる鍛造面40aを有して
おり、その鍛造面40aを挟んでその両側に傾斜側面4
0bを有している。そして、鍛造面40aは、軸素材に
対向する水平面と、この水平面を挟んで前後にアプロー
チ角αで傾斜する傾斜面とを有している。
[0003] When a forged material is forged or stretched by such a forging apparatus 1, the shape of the anvil, particularly the shape of the anvil, is set so that the contact surface between the anvil and the forged material (work) does not protrude from a predetermined forged surface of the anvil. , The approach angle of the anvil is set to a predetermined angle or less. More specifically, as shown in FIG. 2, the anvil 40 has a forged surface 40a extending in the axial direction, and the inclined side surfaces 4a are provided on both sides of the forged surface 40a.
0b. The forged surface 40a has a horizontal surface facing the shaft material, and an inclined surface inclined at an approach angle α back and forth across the horizontal surface.

【0004】[0004]

【発明が解決しようとする課題】従来、この鍛造面のア
プローチ角αを大きく設定すると、経験的に、金敷とワ
ークとの接触面が金敷の鍛造面40aから傾斜側面40
bにはみ出す、いわゆる咬込み現象が生じると信じられ
ており、また、鍛造速度を早め、生産性を向上させるた
めにも、このアプローチ角αを所定値(例えば、8°)
以下に抑えられていた。
Conventionally, if the approach angle α of the forged surface is set to be large, it has been empirically determined that the contact surface between the anvil and the work is shifted from the forged surface 40a of the anvil to the inclined side surface 40a.
b, it is believed that a so-called biting phenomenon occurs. Also, in order to increase the forging speed and improve productivity, this approach angle α is set to a predetermined value (for example, 8 °).
It was kept below.

【0005】しかしながら、例えば、航空機用エンジン
のファンシャフトのような、一端にファンディスクを取
り付けるための傘状のフランジを一体に形成させた段付
シャフト素材を鍛伸により製造する場合、上述した比較
的小さいアプローチ角αを有する金敷を使用すると、段
部の肩形状を鍛造加工では上手く成形することができ
ず、多くの切削代を残して鍛造されていた。
However, for example, when a stepped shaft material such as a fan shaft of an aircraft engine having an umbrella-shaped flange for integrally attaching a fan disk at one end is manufactured by forging, the above-mentioned comparison is made. When an anvil with a very small approach angle α is used, the shoulder shape of the step cannot be formed well by forging, and the forging is performed with a large cutting margin.

【0006】このように、切削代を多く残した段付軸素
材は、後工程の切削加工に時間が掛り、製造コスト上不
利であるため、鍛造素材のニアネットシェイプ化が要請
されている。この鍛造素材のニアネットシェイプ化は、
傘部のファイバフローを最適化して、靱性が高く、高強
度の素材を得るためにも必要である。本発明はこのよう
な事情に鑑みてなされたもので、段付軸素材のニアネッ
トシェイプ化を図り、靱性が高く、高強度の段付軸素材
の鍛造方法を提供することを目的とする。
[0006] As described above, a stepped shaft material having a large cutting allowance requires a long time for cutting in a post-process and is disadvantageous in terms of manufacturing cost. The near net shape of this forged material is
It is also necessary to optimize the fiber flow of the umbrella to obtain a material with high toughness and high strength. The present invention has been made in view of such circumstances, and has an object to provide a near-net shape of a stepped shaft material, and to provide a method of forging a stepped shaft material having high toughness and high strength.

【0007】[0007]

【課題を解決するための手段および作用】上述した目的
を達成するために本発明に依れば、軸素材を軸方向に所
要のワーク送り速度で送りながら、軸素材の外周を金敷
で複数箇所を同時に圧下して鍛伸する、段付軸素材の鍛
造方法において、前記金敷は、軸素材の軸方向に平行す
る水平面と、ワーク送り方向に対して対向し、水平面に
対しアプローチ角度を持って傾斜する傾斜面とを有し、
前記金敷のアプローチ角度を、鍛造後の軸素材段部の形
状に適合する、20°以上の角度に設定し、このアプロ
ーチ角度と軸素材の外径に応じ、アプローチ角度が大に
なるほど小に、且つ、軸素材外径が大になるほど小にな
るように、前記軸素材のワーク送り速度を設定すること
を特徴とする段付軸素材の鍛造方法が提供される。
According to the present invention, in order to achieve the above-mentioned object, the outer periphery of the shaft material is formed at a plurality of positions by anvil while feeding the shaft material at a required workpiece feed speed in the axial direction. Simultaneously forging and elongating the stepped shaft material, wherein the anvil is parallel to the axial direction of the shaft material.
Face the workpiece in the horizontal direction.
Having an inclined surface inclined with an approach angle,
The approach angle of the anvil is determined by the shape of the shaft material step after forging.
Set to an angle of 20 ° or more to fit the shape, and depending on this approach angle and the outer diameter of the shaft material , the approach angle
As small as possible, and as the outer diameter of the shaft material increases,
Thus, there is provided a forging method for a stepped shaft material , which comprises setting the workpiece feed speed of the shaft material.

【0008】発明者らが種々研究した結果、金敷のアプ
ローチ角α、被鍛造材の軸径、および被鍛造材の送り速
度間の関係が解明され、段部の肩形状に適合するアプロ
ーチ角αを有する金敷を使用する場合、その金敷のアプ
ローチ角αおよび軸素材の外径に応じたワーク送り速度
で軸素材を送れば、金敷へのワーク咬込みが生じないこ
とが判明した。
As a result of various studies by the inventors, the relationship between the approach angle α of the anvil, the shaft diameter of the forged material, and the feed speed of the forged material has been clarified, and the approach angle α adapted to the shoulder shape of the stepped portion. It has been found that when using an anvil having an anvil, if the shaft material is fed at a work feed speed corresponding to the approach angle α of the anvil and the outer diameter of the shaft material, the work does not bite into the anvil.

【0009】以下本発明の段付軸素材の鍛造方法をより
詳細に説明する。本発明方法が適用される鍛造装置は、
製造方法は従来方法と異なるものの、装置自体は金敷形
状を除いて従来のこの種の鍛造装置と何ら変わりがな
い。従って、図1および図2において説明した鍛造装置
と同じ構成要素については、これらの図面を参照して説
明することにし、先ずは、本発明方法により鍛伸する軸
素材から説明する。
Hereinafter, the method for forging a stepped shaft material of the present invention will be described in more detail. Forging device to which the method of the present invention is applied,
Although the manufacturing method is different from the conventional method, the apparatus itself is not different from the conventional forging apparatus of this type except for the anvil shape. Therefore, the same components as those of the forging device described in FIGS. 1 and 2 will be described with reference to these drawings. First, the shaft material forged and drawn by the method of the present invention will be described.

【0010】本発明方法は、異径段部を有している軸素
材10の製造に好適である。段部は図1に示すように軸
端10aにあってもよいし、軸中間部にあってもよい。
適用できる鋼種としては、特に限定されるものではない
が、例えば、マルエージング鋼等である。図3および図
4は、本発明に係る鍛造方法に使用する金敷を示す。こ
の金敷50は、被鍛造材10に対向し、これを圧下する
鍛造面52を有している。鍛造面52は、被鍛造材10
の軸方向に延び、この鍛造面52を挟んで左右両側に対
称形状の傾斜側面54が形成されている。そして、鍛造
面52は、中央の水平面52aと、この水平面52aを
挟んで前後対称位置にアプローチ角α1で傾斜する傾斜
面52bと、水平面52aと傾斜面52b間および傾斜
面52bと端面56間にそれぞれ形成され、これらの鍛
造面を繋ぐ傾斜面52c,52dとから構成される。傾
斜面52c,52dはそれぞれ傾斜角β1,β2で傾斜
している。
The method of the present invention is suitable for manufacturing a shaft blank 10 having a step portion having a different diameter. The step may be at the shaft end 10a as shown in FIG. 1 or may be at the shaft middle.
The type of steel that can be used is not particularly limited, and examples thereof include maraging steel. 3 and 4 show an anvil used in the forging method according to the present invention. The anvil 50 has a forged surface 52 which faces the forged material 10 and presses down the material. The forged surface 52 is formed of a material 10 to be forged.
And symmetrical inclined side surfaces 54 are formed on both left and right sides of the forged surface 52. The forged surface 52 has a central horizontal plane 52a, an inclined plane 52b inclined at an approach angle α1 at a position symmetrical about the horizontal plane 52a with respect to the front and rear, and between the horizontal plane 52a and the inclined plane 52b and between the inclined plane 52b and the end face 56. The forging surfaces 52c and 52d are formed and connect these forged surfaces. The inclined surfaces 52c and 52d are inclined at inclination angles β1 and β2, respectively.

【0011】傾斜面52bのアプローチ角α1は、鍛造
する軸素材の段部の肩形状に応じて20°以上の適宜
値、例えば30°に設定される。傾斜面52c,52d
の傾斜角β1,β2も軸素材の段部の肩形状に応じて適
宜値にそれぞれ設定されるが、傾斜面間をなだらかに繋
ぐ角度、例えば10°および45°がよい。上述のよう
な金敷50を鍛造機4に取り付け、軸素材10を鍛伸す
る。このときの鍛伸条件としては、被鍛造材の鋼種、鍛
造前外径、鍛錬比(圧下量)、ワーク送り速度、鍛造温
度、金敷による一回の圧下量等があるが、これらの条件
の設定は、金敷50への咬込みがなく、所望の結晶粒が
得られ、且つ、少ないパス数で仕上げられるように設定
される。例えば、金敷による一回の圧下量が大で、局部
加工発熱による結晶粒の粗大化が心配される場合には、
鍛伸を数回に分け、パス数を増やす必要がある。
The approach angle α1 of the inclined surface 52b is set to an appropriate value of 20 ° or more, for example, 30 °, according to the shoulder shape of the step of the shaft material to be forged. Inclined surfaces 52c, 52d
The inclination angles β1 and β2 are also set to appropriate values in accordance with the shoulder shape of the step portion of the shaft material, but angles that smoothly connect the inclined surfaces, for example, 10 ° and 45 ° are preferable. The anvil 50 as described above is attached to the forging machine 4, and the shaft blank 10 is forged. The forging conditions at this time include the steel type of the material to be forged, the outer diameter before forging, the forging ratio (reduction amount), the work feed speed, the forging temperature, the amount of single reduction by anvil, and the like. The setting is made such that desired crystal grains are obtained without biting into the anvil 50, and the finishing is performed with a small number of passes. For example, when the amount of reduction by one time by the anvil is large, and there is a concern about coarsening of crystal grains due to local processing heat,
It is necessary to increase the number of passes by dividing forging and stretching into several times.

【0012】図5は、本発明者等の研究により見出され
た金敷50のアプローチ角α1、素材径、及びワーク送
り速度との関係を示す。金敷50のアプローチ角α1が
10°以下の場合には、図5から明らかなように、被鍛
造材の軸径に関わらずワーク送り速度を、従来の製造方
法で採用されていた速度、例えば、400mm以下の径
で一回の圧下当たり40mmまで上げても、咬込みは生じ
ない。しかしながら、金敷50のアプローチ角α1を大
きく設定するに従って、アプローチ角α1と素材径に応
じたワーク送り速度を設定しなければならない。すなわ
ち、与えられる金敷50のアプローチ角α1および素材
径に対し、図示される曲線以下の領域のワーク送り速度
で鍛伸させると、金敷50への素材咬込みが生じない。
図3において、金敷50の鍛造面52に斜線で示す領域
は、本発明方法による金敷50の圧下時に金敷50と軸
素材10とが接触する接触面を示し、この場合、接触面
が鍛造面52を外れず、咬込みが生じない。一方、ワー
ク送り速度を、図5に示す曲線で示す領域を超えて大き
い値に設定すると、金敷圧下時に咬込みが生じ、金敷5
0と軸素材10とが接触する接触面は図3の破線で示す
ように傾斜側面54に及ぶ。この咬込みが生じると、鍛
造軸素材に表面きず等の悪影響を及ぼす。
FIG. 5 shows the relationship between the approach angle α1, the material diameter, and the workpiece feed speed of the anvil 50 found by the research of the present inventors. When the approach angle α1 of the anvil 50 is equal to or less than 10 °, as is clear from FIG. 5, the work feed speed is set to the speed used in the conventional manufacturing method regardless of the shaft diameter of the forged material, for example, Even if the diameter is reduced to 400 mm or less and the pressure is increased to 40 mm per reduction, no biting occurs. However, as the approach angle α1 of the anvil 50 is set to be larger, the work feed speed must be set according to the approach angle α1 and the material diameter. In other words, if the forging angle is set to the given approach angle α1 and the material diameter of the anvil 50 at a workpiece feed speed in a region below the curve shown in the figure, the material does not bite into the anvil 50.
In FIG. 3, a hatched area on the forged surface 52 of the anvil 50 indicates a contact surface where the anvil 50 and the shaft blank 10 come into contact when the anvil 50 is reduced by the method of the present invention. In this case, the contact surface is the forged surface 52. Does not come off and biting does not occur. On the other hand, if the work feed speed is set to a large value beyond the area shown by the curve shown in FIG.
The contact surface where the shaft material 10 comes into contact with 0 extends over the inclined side surface 54 as shown by the broken line in FIG. When this biting occurs, the forged shaft material has an adverse effect such as surface flaws.

【0013】なお、図5に示す金敷50のアプローチ角
α1、素材径、及びワーク送り速度との関係は、被鍛造
材の鋼種(変形抵抗)、鍛造温度、金敷による一回の圧
下量等に応じて変化するが、金敷50のアプローチ角α
1が、上述した20°以上になると、ワーク送り速度を
アプローチ角α1と軸素材径とに応じて設定しなければ
ならないことには変わりがない。
The relationship between the approach angle α1, the material diameter, and the workpiece feed speed of the anvil 50 shown in FIG. 5 depends on the steel type (deformation resistance) of the material to be forged, the forging temperature, the amount of reduction by one time of the anvil, and the like. The approach angle α of the anvil 50
When 1 is equal to or more than 20 °, the work feed speed must be set according to the approach angle α1 and the shaft material diameter.

【0014】[0014]

【実施例】本発明方法により、Nimonic 80製の内燃機関
の弁棒荒鍛造をおこなった。この弁棒を鍛伸するため
に、金敷50のアプローチ角α1を弁棒の傘部と軸部間
に形成される段部の肩形状に適合する値に設定した。す
なわち、図3および図4を参考にして、金敷50のアプ
ローチ角α1を30°に設定し、その前後の傾斜面52
c,52dの傾斜角β1,β2をそれぞれ10°および
45°に設定した。
EXAMPLE According to the method of the present invention, a rough forging of a valve stem of an internal combustion engine made of Nimonic 80 was performed. In order to forge and stretch this valve stem, the approach angle α1 of the anvil 50 was set to a value suitable for the shoulder shape of the step formed between the umbrella portion and the shaft portion of the valve stem. That is, referring to FIGS. 3 and 4, the approach angle α1 of the anvil 50 is set to 30 °, and the inclined surfaces 52 before and after the approach angle α1 are set to 30 °.
The inclination angles β1 and β2 of c and 52d were set to 10 ° and 45 °, respectively.

【0015】軸素材10は、初期外径270mmを有
し、125mmになる迄鍛伸した。このとき、各パスで
のワーク送り速度は20〜30mm/回であった。鍛伸
中に金敷50への軸素材咬込みが生じることなく、鍛造
することができた。図6は、上述の鍛伸条件で鍛伸して
得られた、弁棒素材の段部の肩形状を示すもので(実
線)、この段部の肩形状が、使用した金敷50の傾斜面
52c,52b,52dの形状と略同じ形状に仕上げら
れていることが判る。一方、アプローチ角α1が8°の
金敷を使用し、従来方法で、金敷への咬込みが生じるこ
となく鍛伸した場合、段部の肩形状は、図6の破線で示
す形状となる。本発明方法と従来方法とで得られた各段
部の肩形状を比較すると、本発明方法の方がよりニアネ
ットシェイプの軸素材を得られることが明らかである。
The shaft blank 10 has an initial outer diameter of 270 mm and is forged to 125 mm. At this time, the workpiece feed speed in each pass was 20 to 30 mm / time. The forging could be performed without the shaft material being bitten into the anvil 50 during the forging and stretching. FIG. 6 shows the shoulder shape of the step portion of the valve stem material obtained by forging under the above-described forging conditions (solid line), and the shoulder shape of this step portion corresponds to the inclined surface of the anvil 50 used. It can be seen that the shapes are almost the same as the shapes of 52c, 52b, and 52d. On the other hand, when an anvil with an approach angle α1 of 8 ° is used and forged by the conventional method without biting into the anvil, the shoulder shape of the step becomes the shape shown by the broken line in FIG. Comparing the shoulder shape of each step obtained by the method of the present invention and the conventional method, it is clear that the method of the present invention can obtain a shaft material having a near net shape more.

【0016】[0016]

【発明の効果】以上の説明で明らかなように、本発明の
段付軸素材の鍛造方法に依れば、金敷のアプローチ角度
を20°以上の角度に設定し、このアプローチ角度と軸
素材の外径に応じて設定されるワーク送り速度で軸素材
を送りながら上述の金敷で鍛伸するようにしたので、鍛
造された軸素材の段部の肩形状をニアネットシェイプ化
することができ、素材の歩留が向上し、しかもその部分
のファイバフローが好ましいパターンとなり、靱性が高
く、高強度の段付軸素材を得ることができる。
As is apparent from the above description, according to the stepping shaft material forging method of the present invention, the approach angle of the anvil is set to an angle of 20 ° or more, and this approach angle and the shaft material Since the forging is performed with the above-described anvil while feeding the shaft material at the work feed speed set according to the outer diameter, the shoulder shape of the step of the forged shaft material can be made into a near net shape, The yield of the material is improved, and the fiber flow in that portion becomes a preferable pattern, so that a stepped shaft material having high toughness and high strength can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法が適用される鍛造装置の概略図であ
る。
FIG. 1 is a schematic view of a forging apparatus to which the method of the present invention is applied.

【図2】図1に示す鍛造機4の金敷40のレイアウトを
示す断面図である。
FIG. 2 is a sectional view showing a layout of an anvil 40 of the forging machine 4 shown in FIG.

【図3】本発明方法に使用する金敷50の鍛造面の形状
を示す平面図である。
FIG. 3 is a plan view showing a shape of a forged surface of an anvil 50 used in the method of the present invention.

【図4】図3に示す金敷50の側面図である。FIG. 4 is a side view of the anvil 50 shown in FIG. 3;

【図5】本発明方法による鍛伸時の、アプローチ角α
1、軸素材径、およびワーク送り速度の関係を示すグラ
フである。
FIG. 5 shows an approach angle α at the time of forging and stretching according to the method of the present invention.
1 is a graph showing a relationship between 1, a shaft material diameter, and a work feed speed.

【図6】本発明方法で得られた段付軸素材の段部の肩形
状を示す部分断面図である。
FIG. 6 is a partial sectional view showing a shoulder shape of a step portion of the stepped shaft material obtained by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 鍛造装置 3 マニピュレータ装置 4 鍛造機 5 マニピュレータ装置 10 被鍛造材(軸素材) 50 金敷 52 鍛造面 52a 水平面 52b 傾斜面 54 傾斜側面 α1 アプローチ角 DESCRIPTION OF SYMBOLS 1 Forging device 3 Manipulator device 4 Forging machine 5 Manipulator device 10 Forged material (shaft material) 50 Anvil 52 Forged surface 52a Horizontal surface 52b Inclined surface 54 Inclined side surface α1 Approach angle

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B21J 1/00 - 13/14 B21J 17/00 - 19/04 B21K 1/00 - 31/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) B21J 1/00-13/14 B21J 17/00-19/04 B21K 1/00-31/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軸素材を軸方向に所要のワーク送り速度
で送りながら、軸素材の外周を金敷で複数箇所を同時に
圧下して鍛伸する、段付軸素材の鍛造方法において、前記金敷は、軸素材の軸方向に平行する水平面と、ワー
ク送り方向に対して対向し、水平面に対しアプローチ角
度を持って傾斜する傾斜面とを有し、 前記金敷のアプローチ角度を、鍛造後の軸素材段部の形
状に適合する、20°以上の角度に設定し、 このアプローチ角度と軸素材の外径に応じ、アプローチ
角度が大になるほど小に、且つ、軸素材外径が大になる
ほど小になるように、前記軸素材のワーク送り速度を設
定することを特徴とする段付軸素材の鍛造方法。
1. A forging method for a stepped shaft material, wherein the shaft material is forged and stretched by simultaneously rolling down the outer periphery of the shaft material at a plurality of locations with an anvil while feeding the axle material at a required workpiece feed speed in the axial direction. The horizontal plane parallel to the axial direction of the shaft
Opposite to the feed direction and approach angle to the horizontal plane
The angle of approach of the anvil is determined by the shape of the forged shaft material step.
Set to an angle of 20 ° or more to fit the shape, and approach according to this approach angle and the outer diameter of the shaft material.
The larger the angle, the smaller and the outer diameter of the shaft material increases
A forging method of a stepped shaft material , wherein the workpiece feed speed of the shaft material is set so as to be smaller .
JP02664093A 1993-02-16 1993-02-16 Forging method of stepped shaft material Expired - Fee Related JP3256886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02664093A JP3256886B2 (en) 1993-02-16 1993-02-16 Forging method of stepped shaft material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02664093A JP3256886B2 (en) 1993-02-16 1993-02-16 Forging method of stepped shaft material

Publications (2)

Publication Number Publication Date
JPH06238385A JPH06238385A (en) 1994-08-30
JP3256886B2 true JP3256886B2 (en) 2002-02-18

Family

ID=12199053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02664093A Expired - Fee Related JP3256886B2 (en) 1993-02-16 1993-02-16 Forging method of stepped shaft material

Country Status (1)

Country Link
JP (1) JP3256886B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2156239T3 (en) * 1995-07-19 2001-06-16 Sms Demag Ag TOOL FOR RECALLING A PAIR OF TOWING TOOLS FOR THE CONFORMATION OF PLANKS BASED IN CONTINUOUS COLADA IN A PRESS TO RECALK PLANCHONES.
CN102527912A (en) * 2010-12-29 2012-07-04 中原特钢股份有限公司 Process utilizing upper flat and lower V-shaped anvil to forge stepped shafts
CN104368742A (en) * 2014-11-04 2015-02-25 武汉重工铸锻有限责任公司 Inclined plane anvil forging connecting rod transition conical face and transition conical face machining method thereof

Also Published As

Publication number Publication date
JPH06238385A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
AU651197B2 (en) A spinning molding process
EP1382866B1 (en) Connecting rod with a split rod-eye
JP3256886B2 (en) Forging method of stepped shaft material
US5542278A (en) Method of radial forging
JP4584412B2 (en) Method for manufacturing fixed element
JP3256885B2 (en) Long steel forging method
US6250125B1 (en) Method for producing iron-base dispersion-strengthened alloy tube
JPH0569075A (en) Form rolling of short cylinder
JP2570818B2 (en) Forging equipment
JPH07115107B2 (en) Forging method
JP3588262B2 (en) Composite molding method
JP2003148586A (en) Rolled ball screw shaft
JP2767323B2 (en) Method and apparatus for manufacturing camshaft
JPS62179846A (en) Production of engine valve
JP3266053B2 (en) Anvil for free forging
JP2503484B2 (en) Forging method
RU2135319C1 (en) Process of manufacture of deep cylindrical articles from polyhedron billets
JP3091430B2 (en) Rolling equipment for shafted products with head
JPH079064A (en) Manufacture of outer race for ball bearing
JPH03204412A (en) Manufacture of two-piece bearing
CN117340177A (en) Forming process of large-specification alloy cylinder forging
JPS63303640A (en) Production of metal pipe with spiral fin and its device
SU1234026A1 (en) Method of producing cylindrical forgings
JPS62292362A (en) Roll processing method for shaft fillet part with different stress distribution
SU1488061A1 (en) Method of producing sleeves, rings and like articles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees