JP3252851B2 - Electron beam length measurement method - Google Patents

Electron beam length measurement method

Info

Publication number
JP3252851B2
JP3252851B2 JP22019790A JP22019790A JP3252851B2 JP 3252851 B2 JP3252851 B2 JP 3252851B2 JP 22019790 A JP22019790 A JP 22019790A JP 22019790 A JP22019790 A JP 22019790A JP 3252851 B2 JP3252851 B2 JP 3252851B2
Authority
JP
Japan
Prior art keywords
electron beam
pattern
acceleration voltage
signal waveform
secondary electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22019790A
Other languages
Japanese (ja)
Other versions
JPH04102344A (en
Inventor
寛 野末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22019790A priority Critical patent/JP3252851B2/en
Publication of JPH04102344A publication Critical patent/JPH04102344A/en
Application granted granted Critical
Publication of JP3252851B2 publication Critical patent/JP3252851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子線によりパターンの寸法を計測する電子
線測長方法に関する。
Description: TECHNICAL FIELD The present invention relates to an electron beam length measuring method for measuring a pattern dimension by an electron beam.

〔従来の技術〕 近年、半導体集積回路の高集積化、高品質化が進むに
つれ、半導体検査に関しても高信頼性が追求されてい
る。半導体集積回路の高集積化については超LSIなどと
呼ばれている高密度記憶回路装置が微細加工の進歩によ
り開発されつつあるが、この半導体集積回路をより低価
格で生産するため、即ち歩留り向上及び工期短縮のため
製造工程中での検査、特にパターン寸法計測が微細化に
伴って重要となってきている。
[Related Art] In recent years, as the integration degree and quality of a semiconductor integrated circuit have been advanced, high reliability has been pursued also for semiconductor inspection. As for the high integration of semiconductor integrated circuits, high-density storage circuit devices called ultra LSIs are being developed due to advances in microfabrication, but in order to produce these semiconductor integrated circuits at lower prices, that is, to improve the yield Inspection during the manufacturing process, especially pattern dimension measurement, has become important with miniaturization in order to shorten the construction period.

他方、高品質化においては集積回路のパターン寸法が
より高精度なものを得るため高精度寸法計測が必要とな
っている。いずれにおいても高精度寸法計測が必要であ
る。
On the other hand, in order to improve the quality, it is necessary to measure the dimensions of the integrated circuit with high precision in order to obtain a pattern with higher precision. In any case, high-precision dimensional measurement is required.

第7図は従来の電子線測長方法を説明するための電子
線測長装置の一例を示す模式図である。
FIG. 7 is a schematic diagram showing an example of an electron beam measuring device for explaining a conventional electron beam measuring method.

第7図に示すように、装置は防振台114と、防振台114
上に設置され、真空ポンプ112及び113によって真空引き
された真空鏡筒部100と、真空鏡筒部100内に設置された
電子光学系及びステージ系を制御する制御部115と、測
長部パターンを表示するCRT116より構成される。ステー
ジ111はZ方向に垂直な面内での回転方向及びX−Y方
向に移動可能でその上には被測定試料であるウェハー10
9を載せるためのウェハー台110が設置されている。電子
銃部101より射出し制限アパーチャ102を通過した電子ビ
ーム117は縮小レンズ104,106によって縮小され、さらに
制限アパーチャ105を通過した後、再び投影レンズ108に
よって投影されウェハー109上に照射される。ウェハー1
09上に照射された直径が数10μm以下の円形ビームは走
査偏向電極107によって、ウェハー上を走査し、これに
より照射部より発生した2次電子はシンチレータ118に
よって捕捉収集され、得られた信号は制御部115で処理
され寸法が求まる。測長時以外は電子ビーム117はブラ
ンキング電極103によってブランキングされ、即ちウェ
ハー上に照射されず、ウェハー上に形成されたデバイス
への電子ビームダメージを最小限に防ぐように工夫され
ている。
As shown in FIG. 7, the apparatus comprises an anti-vibration table 114 and an anti-vibration table 114.
A vacuum barrel unit 100 installed on the top and evacuated by vacuum pumps 112 and 113, a control unit 115 for controlling an electron optical system and a stage system installed in the vacuum barrel unit 100, and a length measuring unit pattern Is displayed. The stage 111 is movable in a rotation direction in a plane perpendicular to the Z direction and in the XY direction, and has a wafer 10 as a sample to be measured thereon.
A wafer table 110 on which the wafer 9 is to be mounted is provided. The electron beam 117 emitted from the electron gun unit 101 and passed through the limiting aperture 102 is reduced by the reduction lenses 104 and 106, further passes through the limiting aperture 105, is projected again by the projection lens 108, and is irradiated on the wafer 109. Wafer 1
The circular beam having a diameter of several tens of μm or less irradiated on 09 is scanned on the wafer by the scanning deflection electrode 107, whereby the secondary electrons generated from the irradiated portion are captured and collected by the scintillator 118, and the obtained signal is The dimensions are obtained by processing by the control unit 115. The electron beam 117 is blanked by the blanking electrode 103 except at the time of length measurement, that is, the electron beam is not irradiated onto the wafer, and the device is designed so as to minimize the damage of the electron beam to devices formed on the wafer.

測長時、電子線の加速電圧は半導体デバイスのダメー
ジを小さくするため2kV以下で一定に保たれている。
At the time of length measurement, the acceleration voltage of the electron beam is kept constant at 2 kV or less in order to reduce damage to the semiconductor device.

第8図は従来の電子線測長方法を説明するための工程
図である。
FIG. 8 is a process chart for explaining a conventional electron beam length measuring method.

第9図は加速電圧と電子線を照射する物質からの2次
電子放出効率との関係を示した図である。放出効率が1
の時、入射電子数と発生2次電子数は同じである。LSI
で用いられる多くの物質で1となる加速電圧は500V付近
及び1.2kV付近である。放出効率が1より大の時発生す
る2次電子数は入射電子数よりも多い。特にほとんどの
物質では、800V付近で放出効率が極大値を持ち、この時
の2次電子信号波形は最もSN比が良いものとなる。ただ
し、物質は正に帯電する。放出効率が1より小では、発
生する2次電子数は入社電子数よりも少なく、物質は負
に帯電する。
FIG. 9 is a diagram showing the relationship between the acceleration voltage and the efficiency of secondary electron emission from a substance irradiated with an electron beam. Release efficiency is 1
At this time, the number of incident electrons and the number of generated secondary electrons are the same. LSI
The acceleration voltage which becomes 1 for many substances used in the above is around 500 V and around 1.2 kV. The number of secondary electrons generated when the emission efficiency is greater than 1 is larger than the number of incident electrons. In particular, for most substances, the emission efficiency has a maximum value near 800 V, and the secondary electron signal waveform at this time has the best SN ratio. However, the substance is positively charged. If the emission efficiency is smaller than 1, the number of secondary electrons generated is smaller than the number of entering electrons, and the substance is negatively charged.

第10図は測長部120と電子ビーム121との位置関係を示
した断面図であり、第11図は加速電圧800V、第12図は加
速電圧1.2kVでそれぞれ得られた2次電子信号波形122,1
23である。電子ビームによる測長部の走査はSN比向上の
ため通常数回〜百回程度繰り返される。ただし、走査回
数が多くなる程チャージアップはひどくなるので、SN比
とチャージアップとの兼ねあいで走査回数は決定され
る。
FIG. 10 is a sectional view showing the positional relationship between the length measuring unit 120 and the electron beam 121. FIG. 11 is a waveform of a secondary electron signal obtained at an acceleration voltage of 800 V, and FIG. 12 is a waveform of a secondary electron signal obtained at an acceleration voltage of 1.2 kV. 122,1
23. The scanning of the length measuring unit by the electron beam is usually repeated several times to about 100 times to improve the SN ratio. However, the charge-up becomes severe as the number of scans increases, so the number of scans is determined in consideration of the S / N ratio and the charge-up.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来の電子線測長方法は一定の加速電圧で、
パターン部を電子線走査し、発生する2次電子を検出
し、その波形をもとにパターン寸法を計算するが加速電
圧800V付近を用いると2次電子信号波形のSN比は良い
が、2次電子放出量が多く信号が全体的にふくらみ、太
めに測定してしまう。また加速電圧1.2kV付近を用いる
と、2次電子放出量が少なく信号が全体に下がり、SN比
も悪くなり、細く測定してしまうという問題があった。
The conventional electron beam length measurement method described above uses a constant acceleration voltage,
The pattern portion is scanned with an electron beam to detect the generated secondary electrons, and the pattern size is calculated based on the waveform. When an acceleration voltage of around 800 V is used, the S / N ratio of the secondary electron signal waveform is good. Since the amount of electron emission is large, the signal swells as a whole and the measurement is made thicker. Also, when an acceleration voltage of about 1.2 kV is used, there is a problem that the amount of secondary electron emission is small, the signal is reduced as a whole, the S / N ratio is deteriorated, and the measurement is narrow.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の電子線測長方法は、電子線を試料上に走査
し、前記試料上に形成されているパターンの寸法を計測
する電子線測長方法において、前記パターンの寸法が実
際の寸法よりも小さく測定される第1の加速電圧を有す
る前記パターン上を走査して得られた第1の2次電子信
号波形と、前記パターンの寸法が実際の寸法よりも大き
く測定される第2の加速電圧を有する前記電子線で前記
電子線で前記パターン上を走査して得られた第2の2次
電子信号波形とに基づき、前記パターンの寸法を求める
ことを特徴とする。
In the electron beam length measuring method of the present invention, in the electron beam length measuring method of scanning an electron beam on a sample and measuring a dimension of a pattern formed on the sample, the dimension of the pattern is larger than an actual dimension. A first secondary electron signal waveform obtained by scanning over the pattern having a first acceleration voltage measured small, and a second acceleration voltage at which the dimension of the pattern is measured larger than the actual dimension The size of the pattern is obtained based on a second secondary electron signal waveform obtained by scanning the pattern with the electron beam using the electron beam.

さらに、また別の本発明の電子線測長方法は、電子線
を試料上に走査し、前記試料上に形成されているパター
ンの寸法を計測する電子線測長方法において、2次電子
放出効率が1となる第1の加速電圧を有する前記電子線
で前記パターン上を走査して第1の2次電子信号波形を
得る工程と、2次電子放出効率が極大値となる第2の加
速電圧を有する前記電子線で前記パターン上を走査して
第2の2次電子信号波形を得る工程と、前記第1の2次
電子信号波形と前記第2次電子信号波形とに基づき前記
パターンの寸法を求める工程とを有することを特徴とす
る。
According to still another electron beam measuring method of the present invention, in the electron beam measuring method for scanning an electron beam on a sample and measuring a dimension of a pattern formed on the sample, the secondary electron emission efficiency is measured. Scanning the pattern with the electron beam having the first acceleration voltage having a value of 1 to obtain a first secondary electron signal waveform, and a second acceleration voltage at which the secondary electron emission efficiency has a maximum value Scanning the pattern with the electron beam to obtain a second secondary electron signal waveform; and dimensioning the pattern based on the first secondary electron signal waveform and the secondary electron signal waveform. And a step of obtaining

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例を説明するための工程
図である。
FIG. 1 is a process chart for explaining a first embodiment of the present invention.

第1図に示すように、まず、測長すべきパターンを測
長位置に位置合わせを行なう。次に、電子ビームの加速
電圧を1.2kVに設定した後、電子光学系の軸合わせを行
なう。電子ビーム測長機では、加速電圧を変化すると電
子光学系の軸がずれるので軸調整を行なう必要がある。
ただし、あらかじめ加速電圧毎に最適な軸調整の条件を
メモリ内に記憶しておき、加速電圧を変化した時、その
加速電圧に対応する軸調整条件をメモリから読み出し設
定を行なっても良い。次に、パターンを電子ビームで走
査する。ここで、走査回数は従来のm回に対し、m/2回
行なう。得られた2次電子信号波形を第1のメモリに記
憶する。次に、加速電圧を800Vに設定し、800Vでの軸調
整条件をメモリから読み出し設定する。次に、パターン
上をm/2回電子ビームで走査し、2次電子信号波形を第
2のメモリに記憶する。次に、第1のメモリ及び第2の
メモリに記憶された2次電子信号波形を取り出し、CPU
により信号の合成を行ないスレッシュホールド法や直線
近似法などによりパターン寸法を算出する。
As shown in FIG. 1, first, a pattern to be measured is aligned with a measurement position. Next, after setting the acceleration voltage of the electron beam to 1.2 kV, the axis of the electron optical system is aligned. In an electron beam length measuring machine, when the acceleration voltage is changed, the axis of the electron optical system shifts, so that it is necessary to adjust the axis.
However, the optimum axis adjustment condition may be stored in advance in the memory for each acceleration voltage, and when the acceleration voltage is changed, the axis adjustment condition corresponding to the acceleration voltage may be read from the memory and set. Next, the pattern is scanned with an electron beam. Here, the number of scans is m / 2 times compared to the conventional number of m times. The obtained secondary electron signal waveform is stored in the first memory. Next, the acceleration voltage is set to 800 V, and the axis adjustment conditions at 800 V are read from the memory and set. Next, the pattern is scanned with the electron beam m / 2 times, and the secondary electron signal waveform is stored in the second memory. Next, the secondary electron signal waveforms stored in the first memory and the second memory are taken out, and the CPU
And the pattern size is calculated by a threshold method, a linear approximation method, or the like.

第2図乃至第5図は本実施例を説明するための図でそ
れぞれ測定すべきパターン部断面図、加速電圧1.2kVで
の2次電子信号波形、加速電圧0.8kVでの2次電子信号
波形、両加速電圧で得られた2次電子信号波形を合成し
たものである。加速電圧1.2kVでは実寸lよりもやや細
く(l1),0.8kVではやや太く(l2)測定されるのに対
し、本実施例ではほぼ実寸通りに測定される(l3)。こ
こで、先に加速電圧1.2kVを用いたのは1.2kVではチャー
ジアップの影響が小さいからである。0.8kVを先に用い
るとパターンはチャージアップを起こし、次の1.2kVで
の測定時、2次電子信号波形が大きくゆがんでしまい、
合成信号もゆがみ測定精度が劣化するためである。
2 to 5 are cross-sectional views of a pattern portion to be measured, which illustrate the present embodiment, a secondary electron signal waveform at an acceleration voltage of 1.2 kV, and a secondary electron signal waveform at an acceleration voltage of 0.8 kV. And the secondary electron signal waveforms obtained at both acceleration voltages. In accelerating voltage 1.2kV slightly thinner than the actual size l (l 1), whereas the slightly thicker (l 2) measuring the 0.8 kV, in the present embodiment is measured substantially exact street (l 3). Here, the reason why the accelerating voltage of 1.2 kV was used first is that the effect of charge-up is small at 1.2 kV. If 0.8kV is used first, the pattern will charge up, and when measuring at the next 1.2kV, the secondary electron signal waveform will be greatly distorted,
This is because the distortion of the synthesized signal also deteriorates the measurement accuracy.

また、本実施例では加速電圧0.8kV,1.2kV両者に於い
て、それぞれパターン上の電子ビーム走査回数をm/2回
としたが、必ずしもm/2回ずつにする必要はなく、あく
までも測定が正確に行なわれるべく設定するものであ
る。
Further, in the present embodiment, the number of electron beam scans on the pattern was set to m / 2 times at both the acceleration voltages of 0.8 kV and 1.2 kV. It is set to be performed accurately.

第6図は本発明の第2の実施例を説明するための工程
図である。
FIG. 6 is a process chart for explaining a second embodiment of the present invention.

第1の実施例では加速電圧を1.2kVと0.8kVの2段階で
2次電子信号の収集を行なったが、第2の実施例では、
1.2kVと0.8kVの間で1定電圧間隔で、n段階の加速電圧
(1.2kV,0.8kV含む)を用い信号収集を行なう。まず加
速電圧を1.2kVとし2次電子信号波形を収集し、第1の
メモリに記憶する。次に加速電圧を に設定する。軸調整あるいはメモリ中から軸調整条件を
読み出し設定後、2次電子信号波形を収集し、第2のメ
モリに保存する。第1のメモリ及び第2のメモリの信号
波形を合成し第1のメモリに保存する。再び、加速電圧
を下げて、信号収集し、信号合成し、第1メモリに記憶
する一連の動作を加速電圧が800Vになるまで、n回繰り
返す。尚、1繰り返し毎に下げる加速電圧は0.4/(n−
1)(kV)である。こうして、すべての加速電圧での信
号が合成された後、寸法算出を行なう。尚、加速電圧の
上限,下限は必ずしもそれぞれ1.2kV,0.8kVにする必要
はない。また第2の実施例で加速電圧をn段階に設定す
るのは、加速電圧を第1の実施例の如く大きく変化させ
ると軸調整条件が大きく変化し、メモリ中に保存されて
る最適条件が最適条件でなくなってしまうことがあるた
めであり、加速電圧の変化が小さい場合(0.1kV以下)
には、こういう減少がほとんどみられないためである。
In the first embodiment, the secondary electron signal is collected in two stages of the acceleration voltage of 1.2 kV and 0.8 kV, but in the second embodiment,
Signal acquisition is performed at an interval of one constant voltage between 1.2 kV and 0.8 kV using an n-stage acceleration voltage (including 1.2 kV and 0.8 kV). First, the acceleration voltage is set to 1.2 kV, and the secondary electron signal waveform is collected and stored in the first memory. Next, the acceleration voltage Set to. After reading and setting the axis adjustment conditions from the axis adjustment or the memory, the secondary electron signal waveform is collected and stored in the second memory. The signal waveforms of the first memory and the second memory are combined and stored in the first memory. Again, the accelerating voltage is reduced, signals are collected, signals are synthesized, and a series of operations to be stored in the first memory are repeated n times until the accelerating voltage reaches 800V. The accelerating voltage to be lowered for each repetition is 0.4 / (n-
1) (kV). After the signals at all the accelerating voltages are combined in this way, the dimension calculation is performed. Note that the upper and lower limits of the acceleration voltage are not necessarily required to be 1.2 kV and 0.8 kV, respectively. In the second embodiment, the acceleration voltage is set to n stages. When the acceleration voltage is greatly changed as in the first embodiment, the axis adjustment condition changes greatly, and the optimum condition stored in the memory is optimized. This is because the condition may disappear, and the change in acceleration voltage is small (0.1 kV or less)
This is because there is almost no such decrease.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、順次電子線の加速電圧
を変化し、各加速電圧で得られた2次電子信号波形を合
成し、パターン寸法を求めるので、試料のチャージアッ
プによる波形のひずみを受けずまたSN比も良いためパタ
ーン寸法が精度良く計測され、即ち高品質の半導体装置
の作成を可能ならしめるという効果がある。
As described above, the present invention sequentially changes the acceleration voltage of the electron beam, synthesizes the secondary electron signal waveforms obtained at each acceleration voltage, and obtains the pattern dimensions. Since the S / N ratio is high and the S / N ratio is good, the pattern dimensions can be measured with high accuracy, that is, it is possible to produce a high quality semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例を説明するための工程
図、第2図は本発明の第1の実施例を説明するための被
測定試料の模式的断面図、第3図乃至第5図は本発明の
第1の実施例を説明するための2次電子信号波形図、第
6図は本発明の第2の実施例を説明するための工程図、
第7図は従来の電子線測長方法を説明するための電子測
長装置の一例を示す模式図、第8図は従来の電子線測長
方法を説明するための工程図、第9図は加速電圧と2次
電子放出効率との関係を示す図、第10図は従来の電子線
測長方法を説明するための被測定試料の模式的断面図、
第11図及び第12図は従来の電子線測長方法を説明するた
めの2次電子信号波形図である。 100……鏡筒部、101……電子銃部、102……制限アパー
チャ、103……ブランキング電極、104……縮小レンズ、
105……制限アパーチャ、106……縮小レンズ、107……
走査偏向電極、108……投影レンズ、109……ウェハー、
110……ウェハー台、111……ステージ、112,113……真
空ポンプ、114……防震台、115……制御系、116……CR
T、117……電子ビーム、118……シンチレータ、120……
測定試料、121……電子ビーム、122,123,124……信号波
形。
FIG. 1 is a process diagram for explaining a first embodiment of the present invention, FIG. 2 is a schematic cross-sectional view of a sample to be measured for explaining a first embodiment of the present invention, and FIGS. FIG. 5 is a waveform diagram of a secondary electron signal for explaining a first embodiment of the present invention, FIG. 6 is a process diagram for explaining a second embodiment of the present invention,
FIG. 7 is a schematic view showing an example of an electronic length measuring device for explaining a conventional electron beam length measuring method, FIG. 8 is a process diagram for explaining a conventional electron beam length measuring method, and FIG. FIG. 10 is a diagram showing the relationship between acceleration voltage and secondary electron emission efficiency. FIG. 10 is a schematic cross-sectional view of a sample to be measured for explaining a conventional electron beam length measuring method.
FIG. 11 and FIG. 12 are secondary electron signal waveform diagrams for explaining a conventional electron beam length measuring method. 100 ... Barrel unit, 101 ... Electron gun unit, 102 ... Restricted aperture, 103 ... Blanking electrode, 104 ... Reduction lens,
105 ... Restricted aperture, 106 ... Reduction lens, 107 ...
Scanning deflection electrode, 108 projection lens, 109 wafer
110: wafer stage, 111: stage, 112, 113: vacuum pump, 114: earthquake-proof table, 115: control system, 116: CR
T, 117 ... Electron beam, 118 ... Scintillator, 120 ...
Measurement sample, 121: electron beam, 122, 123, 124: signal waveform.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電子線を試料上に走査し、前記試料上に形
成されているパターンの寸法を計測する電子線測長方法
において、前記パターンの寸法が実際の寸法よりも小さ
く測定される第1の加速電圧を有する前記電子線で前記
パターン上を走査して得られた第1の2次電子信号波形
と、前記パターンの寸法が実際の寸法よりも大きく測定
される第2の加速電圧を有する前記電子線で前記パター
ン上を走査して得られた第2の2次電子信号波形とに基
づき、前記パターンの寸法を求めることを特徴とする電
子線測長方法。
1. An electron beam length measuring method for scanning a sample with an electron beam and measuring a dimension of a pattern formed on the sample, wherein the dimension of the pattern is measured to be smaller than an actual dimension. A first secondary electron signal waveform obtained by scanning the pattern with the electron beam having an acceleration voltage of 1 and a second acceleration voltage at which the dimension of the pattern is measured to be larger than the actual dimension. An electron beam length measuring method, wherein a dimension of the pattern is obtained based on a second secondary electron signal waveform obtained by scanning the pattern with the electron beam.
【請求項2】電子線を試料上に走査し、前記試料上に形
成されているパターンの寸法を計測する電子線測長方法
において、2次電子放出効率が1となる第1の加速電圧
を有する前記電子線で前記パターン上を走査して第1の
2次電子信号波形を得る工程と、2次電子放出効率が極
大値となる第2の加速電圧を有する前記電子線で前記パ
ターン上を走査して第2の2次電子信号波形を得る工程
と、前記第1の2次電子信号波形と前記第2次電子信号
波形とに基づき前記パターンの寸法を求める工程とを有
することを特徴とする電子線測長方法。
2. An electron beam length measuring method for scanning an electron beam on a sample and measuring a dimension of a pattern formed on the sample, wherein a first acceleration voltage at which the secondary electron emission efficiency becomes 1 is set to Scanning the pattern with the electron beam to obtain a first secondary electron signal waveform, and scanning the pattern with the electron beam having a second acceleration voltage at which the secondary electron emission efficiency has a maximum value. Scanning and obtaining a second secondary electron signal waveform; and obtaining a size of the pattern based on the first secondary electron signal waveform and the secondary electron signal waveform. Electron beam length measurement method.
【請求項3】前記第1の加速電圧を有する前記電子線で
前記パターン上を走査し、その後前記第2の加速電圧を
有する前記電子線で前記パターン上を走査することを特
徴とする請求項2記載の電子線測長方法。
3. The pattern is scanned with the electron beam having the first acceleration voltage, and thereafter, the pattern is scanned with the electron beam having the second acceleration voltage. 2. The electron beam length measuring method according to 2.
JP22019790A 1990-08-22 1990-08-22 Electron beam length measurement method Expired - Fee Related JP3252851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22019790A JP3252851B2 (en) 1990-08-22 1990-08-22 Electron beam length measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22019790A JP3252851B2 (en) 1990-08-22 1990-08-22 Electron beam length measurement method

Publications (2)

Publication Number Publication Date
JPH04102344A JPH04102344A (en) 1992-04-03
JP3252851B2 true JP3252851B2 (en) 2002-02-04

Family

ID=16747411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22019790A Expired - Fee Related JP3252851B2 (en) 1990-08-22 1990-08-22 Electron beam length measurement method

Country Status (1)

Country Link
JP (1) JP3252851B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2985826B2 (en) 1997-04-09 1999-12-06 日本電気株式会社 Position detecting apparatus and method

Also Published As

Publication number Publication date
JPH04102344A (en) 1992-04-03

Similar Documents

Publication Publication Date Title
US4567364A (en) Method and apparatus for measuring dimension of secondary electron emission object
EP0953203B1 (en) Electron beam dose control for scanning electron microscopy and critical dimension measurement instruments
JPH11108864A (en) Method and apparatus for inspecting pattern flaw
US20060284088A1 (en) Focus correction method for inspection of circuit patterns
JPS6317523A (en) Electron-beam lithography equipment
KR101993618B1 (en) Sem image acquisition device and sem image acquisition method
JP2000123768A (en) Charged particle beam device, adjustment method of charged particle beam device and manufacture of semiconductor device
JPH08506685A (en) Scanning techniques for reducing the effects of surface charges in particle beam devices
US4578587A (en) Error-corrected corpuscular beam lithography
EP1300870A1 (en) Multiple electron beam device
KR20220165771A (en) Image Enhancement for Multi-Layered Structures in Charged Particle Beam Inspection
US5712488A (en) Electron beam performance measurement system and method thereof
JP3252851B2 (en) Electron beam length measurement method
JP2000286310A (en) Method and apparatus for inspecting pattern defects
JP4310824B2 (en) Electron beam inspection device
JP3751841B2 (en) Inspection apparatus using electron beam and inspection method using electron beam
JP3420037B2 (en) Dimension measuring device and dimension measuring method
JP2008262882A (en) Charged particle beam device and method of generating charged particle beam image
JP3876668B2 (en) Visual inspection equipment using electron beam
US6941006B1 (en) Method and system for calibrating the scan amplitude of an electron beam lithography instrument
JP2002245960A (en) Charged particle beam device and device manufacturing method using the same
TWI826833B (en) Inspection apparatus and non-transitory computer-readable medium
JP2993000B2 (en) Electron beam length measuring device
US20230162944A1 (en) Image enhancement based on charge accumulation reduction in charged-particle beam inspection
JP2003197141A (en) Inspection device and inspection method using charged particle beam

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees