JP3248326B2 - Air flow of communication wire - Google Patents

Air flow of communication wire

Info

Publication number
JP3248326B2
JP3248326B2 JP34356893A JP34356893A JP3248326B2 JP 3248326 B2 JP3248326 B2 JP 3248326B2 JP 34356893 A JP34356893 A JP 34356893A JP 34356893 A JP34356893 A JP 34356893A JP 3248326 B2 JP3248326 B2 JP 3248326B2
Authority
JP
Japan
Prior art keywords
communication wire
particles
small
pipeline
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34356893A
Other languages
Japanese (ja)
Other versions
JPH07168071A (en
Inventor
欣司 田口
明義 野口
裕昭 佐野
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP34356893A priority Critical patent/JP3248326B2/en
Priority to TW083103029A priority patent/TW261666B/zh
Priority to DE69403991T priority patent/DE69403991T2/en
Priority to EP94105410A priority patent/EP0620627B1/en
Priority to US08/225,321 priority patent/US5499797A/en
Priority to AU59361/94A priority patent/AU669780B2/en
Priority to CA002120897A priority patent/CA2120897C/en
Priority to KR1019940007424A priority patent/KR0161549B1/en
Priority to US08/434,290 priority patent/US5732934A/en
Publication of JPH07168071A publication Critical patent/JPH07168071A/en
Application granted granted Critical
Publication of JP3248326B2 publication Critical patent/JP3248326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • G02B6/52Underground or underwater installation; Installation through tubing, conduits or ducts using fluid, e.g. air

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Electric Cable Installation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバケーブルな
どの通信線材を気流により管路内に布設する通信線材の
気流送通方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for transmitting a communication wire, such as an optical fiber cable, in a pipe by airflow.

【0002】[0002]

【従来の技術】通信線材を既設の管路に圧力気体を吹き
込みながら、気流によって送通する方法においては、通
信線材を管路の内壁との摩擦係数を小さくすることが重
要なことである。
2. Description of the Related Art In a method of transmitting a communication wire by an air current while blowing a pressurized gas into an existing pipeline, it is important to reduce a coefficient of friction between the communication wire and an inner wall of the pipeline.

【0003】例えば、特開昭2−50111号公報に記
載された光ファイバケーブルは、管路の内壁との接触面
となる被覆層の最外層に固体滑材を添加して摩擦係数を
小さくしようとするものである。また、特公平2−22
921号公報には、光ファイバケーブルの布設方法にお
いて潤滑材として、自体が容易に劈開することにより滑
性をもたらすタルクを吹き込むことが記載されている。
For example, in an optical fiber cable described in Japanese Patent Application Laid-Open No. 50111/1990, a solid lubricant is added to the outermost layer of a coating layer which is a contact surface with the inner wall of a conduit to reduce the coefficient of friction. It is assumed that. In addition, 2-22
No. 921 describes that in a method of laying an optical fiber cable, talc, which gives lubricity by being easily cleaved by itself, is blown as a lubricant.

【0004】しかし、さらに長尺な圧送を行なうために
は、さらに摩擦を低減する必要が生じてきた。
[0004] However, in order to carry out longer pressurization, it has been necessary to further reduce friction.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上述した事
情に鑑みてなされたもので、通信線材と管路との摩擦を
低減し、長尺の通信線材を布設回収できる通信線材の気
流送通方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and reduces the friction between a communication wire and a pipeline to lay and recover a long communication wire. It is intended to provide a communication method.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の発明
は、通信線材を管路内に気流により送通する通信線材の
気流送通方法であって、気流中に小径粒子を送り込むよ
うにする通信線材の気流送通方法において、前記小径粒
子が、粒径1〜300μmの球形粒子であり、かつ、プ
ラスチック粒子またはプラスチック製の中空粒子である
ことを特徴とするものである。
According to the first aspect of the present invention, there is provided a method of transmitting a communication wire by a gas flow in a pipe, wherein the small diameter particles are fed into the air flow. Wherein the small-diameter particles are spherical particles having a particle diameter of 1 to 300 μm, and are plastic particles or plastic hollow particles.

【0007】請求項2に記載の発明は、請求項1に記載
の通信線材の気流送通方法において、小径粒子が管路や
通信線材に比べて十分硬いことを特徴とするものであ
る。
According to a second aspect of the present invention, there is provided a method for transmitting a communication wire in an air stream according to the first aspect, wherein the small-diameter particles are sufficiently harder than a conduit or a communication wire.

【0008】請求項3に記載の発明は、請求項1または
2に記載の通信線材の気流送通方法において、小径粒子
が通常の空気流により容易に管路全長を通り抜けられる
ほど軽いことを特徴とするものである。
According to a third aspect of the present invention, in the method of the first or second aspect, the small-diameter particles are light enough to be easily passed through the entire length of the pipe by a normal air flow. It is assumed that.

【0009】請求項4に記載の発明は、請求項1に記載
の気流送通方法による通信線材の気流布設方法を特徴と
するものであり、請求項5に記載の発明は、請求項1に
記載の気流送通方法による通信線材の気流回収方法を特
徴とするものである。
According to a fourth aspect of the present invention, there is provided a method of laying a communication wire in an air flow by the air flow transmitting method of the first aspect, and the invention of a fifth aspect is directed to the first aspect. A method for recovering an airflow of a communication wire by the airflow transmitting method described above is characterized.

【0010】[0010]

【作用】本発明によれば、小径粒子が通信線材や圧縮空
気とともに管路に送り込まれて気流に乗って管路中を送
通する。この際、送通中の小径粒子が通信線材と管路の
間にはさまると、粒子径の分だけ通信線材を持ち上げら
れ、また、粒子の転がりによってベアリングの原理のよ
うに、小径粒子が、通信線材と管路との摩擦抵抗を減ら
して滑性を増す作用が生じるのである。
According to the present invention, small-diameter particles are sent into a pipeline together with a communication wire and compressed air, and flow through the pipeline along with an air flow. At this time, when the small-diameter particles being transmitted are caught between the communication wire and the conduit, the communication wire is lifted by the particle diameter, and the small-diameter particles are transferred by the rolling of the particles as in the principle of the bearing. This has the effect of reducing the frictional resistance between the wire and the conduit and increasing the lubricity.

【0011】したがって、小径粒子としては、転がりや
すい軽いもの、通信線材をもち上げやすい硬質のものが
よい。このような条件から、小径粒子としては、アクリ
ル、スチロール、ポリカーボネートなど、硬質で比重の
軽いプラスチックが有用である。
Therefore, as the small-diameter particles, it is preferable to use light particles that are easy to roll and hard particles that are easy to lift the communication wire. Under these conditions, as the small-diameter particles, plastics having a low specific gravity such as acryl, styrene, and polycarbonate are useful.

【0012】また、粒子径は、1〜300μmが適して
いる。これ以下になると、粒子に発生した静電力の効果
が大きく表れ、気流により動きにくくなり、管路壁に付
着して、管路を狭くするなどにより、見かけ上の抵抗と
なり、摩擦抵抗が増加したかのようになる。逆に、粒子
径が大きすぎると、管路と通信線材の間隙に粒子が詰ま
り、通信線材が締め付けられるようになり、摩擦抵抗が
増大し、送通性能が低下するものである。この理由によ
って、管路内を気流によって十分な速度で運動し、なお
かつ通信線材と管路の間隙でコロの効果により送通抵抗
を減少させる効果をもたらすためには、粒子径は、1〜
300μm径程度の大きさが適当である。
The particle diameter is suitably from 1 to 300 μm. Below this, the effect of the electrostatic force generated on the particles becomes large, it becomes difficult to move due to the air flow, it adheres to the pipe wall, and the pipe becomes narrower, etc., causing apparent resistance, increasing frictional resistance As if. Conversely, if the particle diameter is too large, the particles will clog the gap between the conduit and the communication wire, and the communication wire will be tightened, the frictional resistance will increase, and the transmission performance will decrease. For this reason, in order to move the pipe at a sufficient speed by the air flow and to reduce the transmission resistance by the effect of the roller in the gap between the communication wire and the pipe, the particle diameter is 1 to 1.
A size of about 300 μm diameter is appropriate.

【0013】このように、気流による通信用線材を送通
させる技術は、空の管路に通信用線材を布設する場合の
みでなく、管路に既設の通信線材を回収する場合におい
ても上記と同様な作用により良好な送通性能を得ること
ができる。
[0013] As described above, the technique of transmitting a communication wire by airflow is not limited to the case of laying a communication wire in an empty pipe, but also the method of collecting an existing communication wire in a pipe. Good transmission performance can be obtained by the same action.

【0014】[0014]

【実施例】図1は、本発明の通信線材の気流送通方法の
1実施例の説明図である。図中、1は通信線材、2はリ
ール、3は管路、4は圧送ヘッド、5はコンプレッサ、
6はT分岐、7は投下筒、8は気密栓、9は小径粒子、
10は回収瓶、11はフィルタである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of one embodiment of a method for air flow of a communication wire according to the present invention. In the figure, 1 is a communication wire, 2 is a reel, 3 is a pipeline, 4 is a pressure feed head, 5 is a compressor,
6 is a T-branch, 7 is a drop cylinder, 8 is an airtight plug, 9 is a small particle,
10 is a collection bottle, 11 is a filter.

【0015】通信線材1は、リール2より供給され、圧
送ヘッド4を介して管路3に送られる。圧送ヘッド4に
は、コンプレッサ5から圧縮空気が管路3に向けて送ら
れる。また、通信線材1は、気密シールを介して圧送ヘ
ッド4中に導入され、駆動リールによって、管路3に挿
入される。管路3の途中にT分岐6が設けられ、投下筒
7が取り付けられている。投下筒7は、T分岐6側に小
孔が開けられ、収納された小径粒子9が小量ずつT分岐
6から管路3内に供給される。
The communication wire 1 is supplied from a reel 2 and sent to a pipe 3 via a pressure feed head 4. Compressed air is sent from the compressor 5 to the pressure feed head 4 toward the pipeline 3. Further, the communication wire 1 is introduced into the pressure feed head 4 through an airtight seal, and is inserted into the pipeline 3 by a drive reel. A T-branch 6 is provided in the middle of the pipe 3, and a drop cylinder 7 is attached. The dropping cylinder 7 is provided with a small hole on the side of the T-branch 6, and the stored small-diameter particles 9 are supplied into the pipeline 3 from the T-branch 6 in small amounts.

【0016】投下筒7の上端には、気密栓8が設けら
れ、管路3内に導入された圧縮空気が投下筒7内を逆流
しないようにしている。管路3の出口側には、回収瓶1
0が取り付けられ、フィルタ11を通して、管路3の出
口側から噴出する空気流を排出している。したがって、
空気流とともに管路3の端部から出た小径粒子は、回収
瓶10内に回収される。
An airtight plug 8 is provided at the upper end of the dropping cylinder 7 to prevent the compressed air introduced into the pipeline 3 from flowing back inside the dropping cylinder 7. At the outlet side of the conduit 3, a collection bottle 1
0 is attached, and the air flow ejected from the outlet side of the conduit 3 is discharged through the filter 11. Therefore,
The small-diameter particles that have come out of the end of the pipe 3 together with the air flow are collected in the collection bottle 10.

【0017】図1で説明した実施例を具体例により説明
する。通信線材1は、図3に示すように、外径250μ
mの光通信線12を7本用いて、中心に1本とその周囲
に6本配列し、外側を発泡ポリエチレンの被覆13で外
径2mmとした線材を用いた。管路3としては、内径が
6mm、外径が8mmのポリエチレン材料のパイプを用
いて、長さ1500mmの管路への送通を行なった。
The embodiment described with reference to FIG. 1 will be described with a specific example. The communication wire 1 has an outer diameter of 250 μm as shown in FIG.
Using seven optical communication lines 12 of m, one was arranged at the center and six were arranged around the center, and a wire having an outer diameter of 2 mm with a covering 13 of foamed polyethylene was used on the outside. As the conduit 3, a pipe made of a polyethylene material having an inner diameter of 6 mm and an outer diameter of 8 mm was used, and the pipe 3 was fed to a 1500 mm long conduit.

【0018】圧送ヘッド4は、特公平2−22921号
公報に記載のものと同形態のものであり、通信線材1を
圧縮空気を満たした管路3に引き込む駆動ローラーと、
コンプレッサから供給された圧縮空気を管路に導くノズ
ルを有するものである。また、その後に、小径粒子9を
管路3に投下する投下筒7が設けられている。投下筒7
の管路3側はT分岐6であり、上部に気密栓8が設けら
れている。投下筒7内は、小径粒子9の隙間を通して管
路2内の圧力とほぼ等しくなっており、重力によって小
径粒子9は管路3内に投下される。投下筒7の取り付け
角度により投下量を変えることができる。
The pressure feed head 4 has the same configuration as that described in Japanese Patent Publication No. 22921/1990, and includes a drive roller for drawing the communication wire 1 into the pipeline 3 filled with compressed air.
It has a nozzle for guiding compressed air supplied from a compressor to a pipeline. After that, a drop cylinder 7 for dropping the small-diameter particles 9 into the conduit 3 is provided. Drop cylinder 7
Is a T-branch 6 on the side of the pipe 3, and an airtight plug 8 is provided at the upper part. The pressure in the dropping cylinder 7 is substantially equal to the pressure in the pipeline 2 through the gap between the small-diameter particles 9, and the small-diameter particles 9 are dropped into the pipeline 3 by gravity. The drop amount can be changed depending on the mounting angle of the drop cylinder 7.

【0019】実験結果について説明する。 −−比較例1−− 圧力6kg/cm2 の圧縮空気を用いて、小径粒子を投
下せずに通信線材の送通を行なったところ、圧送長が7
00mまでは10m/分以上の速度で良好に送通でき
た。しかし、700m以降では、通信線材の送通速度は
明らかに低下し、850mで1m/分程度となった。こ
の状態においては、通信線材は管路と密着し、管路の入
口から多量に通信線材を送り込むと、管路内で蛇行して
通信線材の伝送特性を損なう状態であった。この状態
は、実用上は利用できない布設速度である。
The experimental results will be described. --Comparative Example 1-- When the communication wire was sent using compressed air at a pressure of 6 kg / cm 2 without dropping small-diameter particles, the pressure feed length was 7 mm.
Up to 00 m, it was possible to satisfactorily transmit at a speed of 10 m / min or more. However, after 700 m, the transmission speed of the communication wire was clearly reduced, and was about 1 m / min at 850 m. In this state, the communication wire is in close contact with the pipeline, and when a large amount of the communication wire is sent from the entrance of the pipeline, the communication wire is meandered in the pipeline and the transmission characteristics of the communication wire are impaired. This state is a laying speed that cannot be practically used.

【0020】−−実施例1−− 比較例1において、送通速度が低下した時点から、管路
内に直径100μm程度のほぼ球形のアクリルの小径粒
子を、2g/分程度の量でT分岐から管路内に送り込ん
だところ、徐々に線材の速度が上昇し、20分間で10
m/分の送通速度となるまでに回復した。このままアク
リルの小径粒子の送り込みを行なった結果、1500m
の管路への送通ができた。この間の線材の送通速度の変
化を図2に示す。
--Example 1-- In Comparative Example 1, from the point of time when the feeding speed was reduced, small spherical particles of substantially spherical acrylic having a diameter of about 100 μm were T-branched in an amount of about 2 g / min. From the pipe, the speed of the wire gradually increased,
It recovered until the feed speed reached m / min. As a result of sending small diameter particles of acrylic as it is, 1500 m
To the pipeline. FIG. 2 shows the change in the wire passing speed during this time.

【0021】−−実施例2−− 実施例1におけるアクリル小径粒子を、送通開始時点か
ら同様に送り込んだ結果、管路の全長にわたって10m
/分の送通速度が維持でき、87分で1500mの送通
が完了できた。
Example 2 As a result of similarly feeding the small acrylic particles in Example 1 from the start of the passage, 10 m was obtained over the entire length of the pipeline.
/ Min transmission speed was maintained, and the transmission of 1500 m was completed in 87 minutes.

【0022】−−実施例3−− 小径粒子として、アクリルの中空粒子100μmを投入
して実施例1,2と同様の送通を行なったところ、同様
に管路全長にわたって10m/分以上の送通速度が維持
でき、90分で1500mの送通が完了できた。
--Example 3 --- Acrylic hollow particles of 100 μm were charged as small-diameter particles, and the same flow as in Examples 1 and 2 was performed. The passing speed was maintained, and the transmission of 1500 m was completed in 90 minutes.

【0023】−−実施例4−− 小径粒子として、粒子径に100μm程度のほぼ球状の
鉄の粒子を投入して、実施例1,2と同様の送通を行な
ったところ、線材速度は10m/分以下になることな
く、125分で1500mの送通ができた。しかし、実
施例2のアクリル粒子に比べて圧送速度が遅いのは、鉄
粒子が重いため転がりにくく、ベアリングの効果が少な
かったためと考える。
Example 4 As substantially small iron particles, approximately spherical iron particles having a particle diameter of about 100 μm were introduced, and the same flow as in Examples 1 and 2 was performed. The transmission of 1500 m was achieved in 125 minutes without becoming less than / min. However, the reason why the pumping speed was slower than that of the acrylic particles in Example 2 is considered to be that the iron particles were heavy and thus did not easily roll, and the effect of the bearing was small.

【0024】−−比較例2−− 直径0.1μm〜0.5μm程度のほぼ球形のアクリル
粒子を、管路内に投下しながら、圧力6kg/cm2
圧縮空気で、通信線材の送通を行なった結果、150m
で速度が10m/分以下に低下した。この場合は、アク
リル粒子は、管路内面にへばりつき、摩擦が増大したた
めと考えられる。
--Comparative Example 2--Transmission of communication wires with compressed air at a pressure of 6 kg / cm 2 while dropping substantially spherical acrylic particles having a diameter of about 0.1 μm to 0.5 μm into a pipeline. 150m
Reduced the speed to 10 m / min or less. In this case, it is considered that the acrylic particles adhered to the inner surface of the pipe, and the friction increased.

【0025】−−比較例3−− 直径350〜500μm程度のほぼ球形のアクリル粒子
を、管路内に投下しながら、圧力6kg/cm2 の圧縮
空気で、通信線材の送通を行なった結果、50mで速度
が10m/分以下に低下し、60mで停止した。この場
合は、管路内壁と通信線材との隙間にアクリル粒子が詰
まる現象が認められ、アクリル粒子が大きすぎたため、
良好な送通性能は得られなかった。
--Comparative Example 3 --- Results of sending a communication wire with compressed air at a pressure of 6 kg / cm 2 while dropping substantially spherical acrylic particles having a diameter of about 350 to 500 μm into a pipe. At 50 m, the speed dropped below 10 m / min and stopped at 60 m. In this case, a phenomenon was observed in which the gap between the pipe inner wall and the communication wire was clogged with acrylic particles, and the acrylic particles were too large.
Good transmission performance was not obtained.

【0026】−−比較例4−− タルクを、管路内に投下しながら、圧力6kg/cm2
の圧縮空気で、通信線材の送通を行なった結果、800
mまでは10m/分程度の速度で良好に送通できた。し
かし、800m以降では、通信線材の送通速度は、明ら
かに低下し、1000mで1m/分程度になった。この
状態においては、通信線材は、管路と密着し、管路の入
口から多量に通信線材を送り込むと、管路内で蛇行し
て、通信線材の伝送特性を損なう状態であった。この状
態は、実用上は利用できない布設速度である。
--Comparative Example 4-- A pressure of 6 kg / cm 2 was applied while talc was dropped into a pipeline.
As a result of transmitting the communication wire with compressed air of
up to 10 m / min. However, after 800 m, the transmission speed of the communication wire was clearly reduced to about 1 m / min at 1000 m. In this state, the communication wire is in close contact with the pipeline, and when a large amount of the communication wire is sent from the entrance of the pipeline, the communication wire is meandered in the pipeline, thus impairing the transmission characteristics of the communication wire. This state is a laying speed that cannot be practically used.

【0027】−−実施例5−− 小径粒子として、粒子径100μm程度のフッ素樹脂粒
子を投入して、実施例1,2と同様の送通を行なったと
ころ、線材速度は13m/分以下になることはなく、1
30分で1500mの送通ができた。この実施例の場
合、実施例2のアクリル粒子に比べて圧送速度が遅いの
は、フッ素樹脂粒子が柔らかく、通信線材と管路との間
で変形するため、線材が持ち上がりにくく、また、ま
た、転がりにくくなり、ベアリングの効果が少なかった
ためと考えられる。
Example 5 Fluororesin particles having a particle diameter of about 100 μm were introduced as small-diameter particles, and the same flow as in Examples 1 and 2 was performed. Never become 1
The transmission of 1500m was completed in 30 minutes. In the case of this embodiment, the reason why the pumping speed is slower than that of the acrylic particles of the embodiment 2 is that the fluororesin particles are soft and deformed between the communication wire and the conduit, so that the wire is hardly lifted, and This is probably because the rolling became difficult and the effect of the bearing was small.

【0028】−−実施例6−− 小径粒子として、1辺100μm程度の立方体に近い形
状のアクリル粒子を投入して、実施例1,2と同様の送
通を行なったところ、線材速度は10m/分以下になる
ことはなく、120分で1500mの送通ができた。圧
送速度が遅いのは、粒子の形状が立方体に近いため、球
形に比べ転がりにくいためと考える。
Example 6 Acrylic particles having a shape close to a cubic shape with a side of about 100 μm were introduced as small-diameter particles, and the same feeding as in Examples 1 and 2 was performed. / Min, and the transmission of 1500 m was completed in 120 minutes. The reason why the pumping speed is low is considered to be that the shape of the particles is close to a cubic, and therefore, it is difficult to roll as compared with a spherical shape.

【0029】−−実施例7−− 実施例2で1500m圧送した通信線材を、圧力6kg
/cm2 の圧縮空気を用いて回収を試みたところ、通信
線材は全く動かなかった。しかし、管路逆端から実施例
2のアクリル小径粒子を送り込んだ結果、通信線材の全
長を100分で回収できた。
Example 7 A communication wire pressure-fed at 1500 m in Example 2 was compressed to a pressure of 6 kg.
When the collection was attempted using compressed air of / cm 2 , the communication wire did not move at all. However, as a result of sending the small acrylic particles of Example 2 from the opposite end of the pipeline, the entire length of the communication wire could be recovered in 100 minutes.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、本発明
によれば、より長尺の管路に安定して通信線材の送通を
行なうことが可能となり、布設や回収に用いることがで
きるという効果がある。
As is apparent from the above description, according to the present invention, it is possible to stably transmit a communication wire through a longer pipe, and it can be used for laying and recovery. This has the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の通信線材の気流送通方法の一実施例の
説明図である。
FIG. 1 is an explanatory diagram of one embodiment of a method of airflow of a communication wire according to the present invention.

【図2】実験結果の説明図である。FIG. 2 is an explanatory diagram of an experimental result.

【図3】本発明の実施例に用いた通信線材の断面図であ
る。
FIG. 3 is a sectional view of a communication wire used in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 通信線材 2 リール 3 管路 4 圧送ヘッド 5 コンプレッサ 6 T分岐 7 投下筒 8 気密栓 9 小径粒子 10 回収瓶 11 フィルタ DESCRIPTION OF SYMBOLS 1 Communication wire 2 Reel 3 Pipeline 4 Pumping head 5 Compressor 6 T-branch 7 Drop cylinder 8 Airtight stopper 9 Small diameter particle 10 Collection bottle 11 Filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 茂 神奈川県横浜市栄区田谷町1番地 住友 電気工業株式会社 横浜製作所内 (56)参考文献 特開 平2−150803(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 6/46 H02G 1/08 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeru Tanaka 1-chome, Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yokohama Works (56) Field surveyed (Int. Cl. 7 , DB name) G02B 6/46 H02G 1/08

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 通信線材を管路内に気流により送通する
通信線材の気流送通方法であって、気流中に小径粒子を
送り込むようにする通信線材の気流送通方法において、
前記小径粒子が、粒径1〜300μmの球形粒子であ
り、かつ、プラスチック粒子またはプラスチック製の中
空粒子であることを特徴とする通信線材の気流送通方
法。
1. A method for transmitting a communication wire in a pipeline by an airflow, wherein the communication wire is configured to send small-diameter particles into the airflow.
The method for airflow transmission of a communication wire, wherein the small-diameter particles are spherical particles having a particle diameter of 1 to 300 µm and are plastic particles or plastic hollow particles.
【請求項2】 小径粒子が管路や通信線材に比べて十分
硬いことを特徴とする請求項1に記載の通信線材の気流
送通方法。
2. The method according to claim 1, wherein the small-diameter particles are sufficiently harder than a conduit or a communication wire.
【請求項3】 小径粒子が通常の空気流により容易に管
路全長を通り抜けられるほど軽いことを特徴とする請求
項1または2に記載の通信線材の気流送通方法。
3. The method according to claim 1, wherein the small-diameter particles are light enough to easily pass through the entire length of the pipeline by a normal air flow.
【請求項4】 請求項1に記載の気流送通方法による通
信線材の気流布設方法。
4. A method for laying airflow of a communication wire by the airflow passing method according to claim 1.
【請求項5】 請求項1に記載の気流送通方法による通
信線材の気流回収方法。
5. A method for recovering an air flow of a communication wire by the air flow transmitting method according to claim 1.
JP34356893A 1993-04-10 1993-12-15 Air flow of communication wire Expired - Fee Related JP3248326B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP34356893A JP3248326B2 (en) 1993-12-15 1993-12-15 Air flow of communication wire
DE69403991T DE69403991T2 (en) 1993-04-10 1994-04-07 Method and device for inserting a communication cable into a pipe by means of an air flow
EP94105410A EP0620627B1 (en) 1993-04-10 1994-04-07 Method and apparatus for inserting a communication wire through a pipeline by air flow
TW083103029A TW261666B (en) 1993-04-10 1994-04-07
US08/225,321 US5499797A (en) 1993-04-10 1994-04-08 Method for inserting a communication wire through a pipeline by air flow
AU59361/94A AU669780B2 (en) 1993-04-10 1994-04-08 Method and apparatus for inserting a communication wire through a pipeline by air flow
CA002120897A CA2120897C (en) 1993-04-10 1994-04-08 Method and apparatus for inserting a communication wire through a pipeline by air flow
KR1019940007424A KR0161549B1 (en) 1993-04-10 1994-04-09 Method and apparatus for inserting a communication wire through a pipeline by air flow
US08/434,290 US5732934A (en) 1993-04-10 1995-05-03 Apparatus for inserting a communication wire through a pipeline by air flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34356893A JP3248326B2 (en) 1993-12-15 1993-12-15 Air flow of communication wire

Publications (2)

Publication Number Publication Date
JPH07168071A JPH07168071A (en) 1995-07-04
JP3248326B2 true JP3248326B2 (en) 2002-01-21

Family

ID=18362535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34356893A Expired - Fee Related JP3248326B2 (en) 1993-04-10 1993-12-15 Air flow of communication wire

Country Status (1)

Country Link
JP (1) JP3248326B2 (en)

Also Published As

Publication number Publication date
JPH07168071A (en) 1995-07-04

Similar Documents

Publication Publication Date Title
EP0620627B1 (en) Method and apparatus for inserting a communication wire through a pipeline by air flow
CN104407420B (en) Optical cable and the method for manufacturing optical cable
JP2552589B2 (en) Power cable and optical fiber insertion method
EP0345043B1 (en) Transmission line installation
AU632903B2 (en) Method for laying optical fiber unit and apparatus therefor
EP1181606B1 (en) A fibre feeding device
US4468003A (en) Process for pulling cables into conduits
EP1042696B1 (en) Method of inserting a light transmitting member into a tube
EP0838040B1 (en) Method of installing an optical fibre unit in a tube
JP3248326B2 (en) Air flow of communication wire
EP0456076B1 (en) Optical fiber dispensing system
JP2010018264A (en) Parachute mounting device
US5678785A (en) Fiber-optic cable dispenser and remotely controlled vehicle using same
WO2001073493A1 (en) Signal transmitting cable
JP3136830B2 (en) Airflow installation method for communication wires
JPH0736659B2 (en) Traveling device in small diameter pipeline
US20030068144A1 (en) Optical fiber deployment tube
JPH03290604A (en) Cable laying method
JP2746434B2 (en) Line head for drawing in cable already installed pipeline
JP2951394B2 (en) Optical fiber feeding method to long distance small diameter pipe
JP2000134744A (en) Removing method for cable laid in conduit
JP3138523B2 (en) Laying and collecting communication lines
JPH0833506B2 (en) Fiber optic cable
JP2830287B2 (en) Manufacturing method of optical fiber cable
JPS6114604A (en) Method for drawing wire body into thin diameter cylindrical body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees